An Interview with Bernd Sturmfels

Total Page:16

File Type:pdf, Size:1020Kb

An Interview with Bernd Sturmfels MAA FOCUS January 2008 “Mathematicians Have a Different Perspective” An Interview with Bernd Sturmfels By Joe Gallian and Ivars Peterson After receiving his PhD from the for very focused studies; students tend University of Washington in 1987, Ger- to reach a higher level rather quickly. man-born Bernd Sturmfels held positions In the traditional German system, the at Cornell University and New York first degree was called the “Diplom,” University before landing at the Univer- and one obtained this degree after about sity of California at Berkeley, where he five years. It used to be a rather rigorous currently teaches. Sturmfels has received program, comparable to a strong Masters numerous honors, including the MAA’s Lester R. Ford Award for expository writ- program with a written thesis. ing in 1999 and designation as a George Pólya Lecturer. Sturmfels served as the In the last 20 years, there have been Hewlett-Packard Research Professor at many changes in the university systems MSRI Berkeley in 2003/0, and was a in Europe, not just in Germany, and now Clay Institute Senior Scholar in Summer most schools offer Bachelor and Masters 200. A leading experimentalist among Degrees more similar to the system in the mathematicians, Sturmfels has authored States. Not everyone is happy about these eight books and about 10 articles, in changes, needless to say. the areas of combinatorics, algebraic geometry, symbolic computation and FOCUS: How do you describe your their applications. He currently works research area? on algebraic methods in statistics and of Washington and the University of To- computational biology. ronto, so I was told to go to one of these Sturmfels: I work in combinatorics two schools. He was absolutely right: and algebraic geometry, with a special MAA FOCUS: Did you become inter- Victor Klee, a former MAA president, emphasis on applications outside of ested in mathematics at a young age? turned out to be a most wonderful thesis pure mathematics. Recently, I have been advisor for me. especially interested in applications in Bernd Sturmfels: I was a pretty good statistics, optimization and computational student in school, interested in almost I obtained a fellowship from the Ger- biology. Computational biology offers all subjects. There was never anything man government to study for one year fascinating opportunities to mathemati- special about mathematics, no competi- in Seattle. Three months after arriving, cians, and can ultimately lead to new tions or Olympiads or any such in my I fell madly in love with this wonderful and unexpected developments within high school. After graduating from high undergraduate English major from Korea, mathematics. school, I was in the German army for 15 and I just had to stay awhile longer in months to do my compulsory military Seattle. That’s why I ended up getting FOCUS: Which mathematicians have service. It was during those lonely eve- my doctoral degree at the University of had a large influence on you? nings in the barracks that I tried to figure Washington. My now-wife and I stayed out what I was really interested in. That together all those years, and, after mov- Sturmfels: Victor Klee, my advisor turned out to be mathematics and the ing around for many years, we finally in Seattle, ranks first. Others that have emerging field of computer science. returned to the West Coast in 1995. influenced me greatly include Louis Billera, Richard Stanley, I.M. Gel’fand FOCUS: You came from Germany to at- FOCUS: How does mathematics educa- and Bill Fulton. tend graduate school at the University of tion at the college and graduate school Washington. What drew you there? level in the U.S. differ from that in FOCUS: You have been involved in Germany? “experimental mathematics.” What, to Sturmfels: My German advisor sent me you, is experimental? What are the ex- to Seattle in 1985. I was interested in Sturmfels: The main difference is that periments that you are doing? spending a year abroad, but I was think- in Germany, students declare their major Sturmfels: Well, computer experiments. ing of France or England, something before entering university. There are few I can experiment by hypothesis testing or closer to home. My advisor strongly breadth requirements, so once someone it could be just plain old exploration, just urged me to go to North America. His is a university student most of the classes to see what happens. “Gee I wonder what contacts were primarily at the University taken are in mathematics. This makes January 2008 MAA FOCUS properties the following mathematical who has many of these diploma students; learned over the years the value of com- object has.” Actually, that’s often the first that setting lends itself more easily to munication skills. Of course you have to step. I think you can use computation as a maintaining software. So the software in be good in math, but I think when I was tool to form hypotheses, or to test. my field is quite difficult for an academic younger I wasn’t as keenly aware of how math person to develop and even more important social skills and communica- I don’t trust humans a lot. You know, difficult to maintain. That’s a real chal- tion skills are. One doesn’t think about it people think that a written proof is the lenge. I admire anybody who does it and in the math context, but that’s something gold standard. I think many mathematical hope they get a lot of support. that I also pay attention to. So if there’s papers and arguments contain errors and a student I feel would have a very hard gaps and the only reason we don’t find FOCUS: Now that you’re at Berkeley, time communicating in either writing or them is because they don’t get read. On a prestigious institution that attracts verbally, then I’m more cautious. the whole, the building of mathematics very good students, how do you find the is sound, but if a mathematical state- students and their capabilities? FOCUS: Have you had any significant ment works out in a computer test, then involvement with undergraduates in I believe it a lot more. So I would say Sturmfels: I think the students are won- research? exploration, verification, and falsifica- derful, but of course we have a large tion. And then the last stage is once you program in Berkeley. Compared to some Sturmfels: Some, but not as much as have the conjecture or hypothesis then of the smaller private schools we compete I would like to. Lior Pachter and I are you can sort of go case by case and see: with, we have more of a spectrum, simply teaching an upper division undergraduate Is it true for n=8? And so on. because our program is much larger and course on mathematical biology at Berke- also because we try to be open. We have ley, where the students work in teams on The design of experiments is very im- a tradition of letting in students that might specific projects. This replaces the final portant. I think that’s where I sort of see not otherwise make the cut, so there’s a exams, and some interesting research my strength. Just like a lab scientist, a lot spectrum. But I would say that the stu- projects have sprung out of that. In fact, of work needs to go into creating a well dents I worked with are wonderful. I’ve thought out model system and model learned a lot from, and with, them. I just taught that course in the spring organism, to design the experiment, to of 2007, and I think that three or four pick a range of test problems that are FOCUS: And it sounds like you work a students have continued their research not too easy and not too hard, which lot with them. over the summer and beyond. However, will reveal the right phenomenon. That’s I must say that supervising undergraduate the challenge that distinguishes a good Sturmfels: Yeah, it’s the best part of research in mathematics is challenging, experimentalist from one that’s maybe the job. and essentially impossible for me, if and not so good. when it requires very regular one-on-one FOCUS: I’ve known faculty who take meetings. A laboratory setting, where FOCUS: Is that influenced by changes the approach of identifying the gradu- undergrads learn from graduate students in technology? ate students they want and approaching and post-docs, always works better for them. Is that similar to your approach? the problems of interest to me. Sturmfels: Definitely! Certainly now you can do a lot more than when I Sturmfels: Yeah I think that’s probably FOCUS: What about the sense of doing started. But I would say that experiments similar. It’s a little bit like dating. It helps mathematics in a broader context, for ex- in mathematics are not as technology- to be proactive. But finding a good match ample in biology and so on. Do students driven as in, say, molecular biology. Our is a two-way street. I think it helps the come in with that kind of interest or do technology is not progressing at the rapid student along if this relationship is built they develop it? rate it is in molecular biology, where it’s early on, so I try to play as active a role crucial to have the latest equipment just as possible, both in recruiting when they Sturmfels: It works both ways. I had to compete… It’s a little less crucial in come to Berkeley, and also in the first some students who were very pure and mathematics.
Recommended publications
  • Computations in Algebraic Geometry with Macaulay 2
    Computations in algebraic geometry with Macaulay 2 Editors: D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels Preface Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re- cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith- mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv- ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi- mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all.
    [Show full text]
  • Prizes and Awards Session
    PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes ....................................................................................................................
    [Show full text]
  • Arxiv:2010.06953V2 [Math.RA] 23 Apr 2021
    IDENTITIES AND BASES IN THE HYPOPLACTIC MONOID ALAN J. CAIN, ANTÓNIO MALHEIRO, AND DUARTE RIBEIRO Abstract. This paper presents new results on the identities satisfied by the hypoplactic monoid. We show how to embed the hypoplactic monoid of any rank strictly greater than 2 (including infinite rank) into a direct product of copies of the hypoplactic monoid of rank 2. This confirms that all hypoplactic monoids of rank greater than or equal to 2 satisfy exactly the same identities. We then give a complete characterization of those identities, and prove that the variety generated by the hypoplactic monoid has finite axiomatic rank, by giving a finite basis for it. 1. Introduction A (non-trivial) identity is a formal equality u ≈ v, where u and v are words over some alphabet of variables, which is not of the form u ≈ u. If a monoid is known to satisfy an identity, an important question is whether the set of identities it satisfies is finitely based, that is, if all these identities are consequences of those in some finite subset (see [37, 42]). The plactic monoid plac, also known as the monoid of Young tableaux, is an important algebraic structure, first studied by Schensted [38] and Knuth [23], and later studied in depth by Lascoux and Schützenberger [27]. It is connected to many different areas of Mathematics, such as algebraic combinatorics, symmetric functions [29], crystal bases [4] and representation theory [14]. In particular, the question of identities in the plactic monoid has received a lot of attention recently [26, 20]. Finitely-generated polynomial-growth groups are virtually nilpotent and so sat- isfy identities [16].
    [Show full text]
  • Vita BERND STURMFELS Department of Mathematics, University of California, Berkeley, CA 94720 Phone
    Vita BERND STURMFELS Department of Mathematics, University of California, Berkeley, CA 94720 Phone: (510) 642 4687, Fax: (510) 642 8204, [email protected] M.A. [Diplom] TH Darmstadt, Germany, Mathematics and Computer Science, 1985 Ph.D. [Dr. rer. nat.] TH Darmstadt, Germany, Mathematics, 1987 Ph.D. University of Washington, Seattle, Mathematics, 1987 Professional Experience: 1987–1988 Postdoctoral Fellow, I.M.A., University of Minnesota, Minneapolis 1988–1989 Assistant Professor, Research Institute for Symbolic Computation, (RISC-Linz), Linz, Austria 1989–1991 Assistant Professor, Department of Mathematics, Cornell University 1992–1996 Associate Professor, Department of Mathematics, Cornell University 1994–2001 Professor, Department of Mathematics, University of California, Berkeley 2001– Professor, Department of Mathematics and Computer Science, UC Berkeley Academic Honors: 1986 - 1987 Alfred P. Sloan Doctoral Dissertation Fellowship 1991 - 1993 Alfred P. Sloan Research Fellow 1992 - 1997 National Young Investigator (NSF) 1992 - 1997 David and Lucile Packard Fellowship 1999 Lester R. Ford Prize for Expository Writing (MAA) 2000-2001 Miller Research Professorship, UC Berkeley Spring 2003 John von Neumann Professor, Technical University M¨unchen 2003-2004 Hewlett-Packard Research Professor at MSRI Berkeley July 2004 Clay Mathematics Institute Senior Scholar Research Interests: Computational Algebra, Combinatorics, Algebraic Geometry Selected Professional Activities: Visiting Positions: D´epartment de Math´ematiques, Universit´ede Nice, France, Spring 1989 Mathematical Sciences Research Institute, Berkeley, Fall 1992 Courant Institute, New York University, 1994–95 RIMS, Kyoto University, Japan, 1997–98 Current Editorial Board Membership: Journal of the American Mathematical Society, Duke Mathematical Journal, Collecteana Mathematica, Beitr¨agezur Geometrie und Algebra, Order, Discrete and Computational Geometry, Applicable Algebra (AAECC) Journal of Combinatorial Theory (Ser.
    [Show full text]
  • April 2017 Table of Contents
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society April 2017 Volume 64, Number 4 AMS Prize Announcements page 311 Spring Sectional Sampler page 333 AWM Research Symposium 2017 Lecture Sampler page 341 Mathematics and Statistics Awareness Month page 362 About the Cover: How Minimal Surfaces Converge to a Foliation (see page 307) MATHEMATICAL CONGRESS OF THE AMERICAS MCA 2017 JULY 2428, 2017 | MONTREAL CANADA MCA2017 will take place in the beautiful city of Montreal on July 24–28, 2017. The many exciting activities planned include 25 invited lectures by very distinguished mathematicians from across the Americas, 72 special sessions covering a broad spectrum of mathematics, public lectures by Étienne Ghys and Erik Demaine, a concert by the Cecilia String Quartet, presentation of the MCA Prizes and much more. SPONSORS AND PARTNERS INCLUDE Canadian Mathematical Society American Mathematical Society Pacifi c Institute for the Mathematical Sciences Society for Industrial and Applied Mathematics The Fields Institute for Research in Mathematical Sciences National Science Foundation Centre de Recherches Mathématiques Conacyt, Mexico Atlantic Association for Research in Mathematical Sciences Instituto de Matemática Pura e Aplicada Tourisme Montréal Sociedade Brasileira de Matemática FRQNT Quebec Unión Matemática Argentina Centro de Modelamiento Matemático For detailed information please see the web site at www.mca2017.org. AMERICAN MATHEMATICAL SOCIETY PUSHING LIMITS From West Point to Berkeley & Beyond PUSHING LIMITS FROM WEST POINT TO BERKELEY & BEYOND Ted Hill, Georgia Tech, Atlanta, GA, and Cal Poly, San Luis Obispo, CA Recounting the unique odyssey of a noted mathematician who overcame military hurdles at West Point, Army Ranger School, and the Vietnam War, this is the tale of an academic career as noteworthy for its o beat adventures as for its teaching and research accomplishments.
    [Show full text]
  • Curriculum Vitae
    Paul Breiding | Curriculum Vitae Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany Q [email protected] • paulbreiding.org • PBrdng u Paul Breiding • 7 @_pbrdng • born 12th of May 1988, german citizenship Max-Plack-Institute for Mathematics in the Sciences Leipzig Head of Emmy Noether Research Group: Numerical and Probabilistic Nonlinear Algebra Since 04/2021 University of Kassel Substitute Professor for Computeralgebra 11/2020 – 03/2021 Akademie der Wissenschaften und der Literatur Mainz Member of the Junge Akademie 04/2020 – 03/2024 Parental leave 7 months in total 10/2019 – 11/2019 and 04/2020 – 10/2020 Technische Universität Berlin Postdoctoral researcher in the algorithmic algebra research group 04/2019 – 10/2020 Max-Plack-Institute for Mathematics in the Sciences Leipzig Postdoctoral researcher in the nonlinear algebra research group 10/2017 – 03/2019 Technische Universität Berlin PhD student with Prof. Dr. Bürgisser 12/2013 – 09/2017 Date of thesis defense: July 25, 2017. Evaluation ’summa cum laude’. Simons Institute for the Theory of Computing Visiting graduate student 08/2014 – 10/2014 Algorithms and Complexity in Algebraic Geometry Education Georg-August-Universität Göttingen Master of Science 10/2011 – 11/2013 Evaluation: excellent. Universidad de Sevilla Undergraduate studies, part of the Erasmus exchange program 02/2011 – 09/2011 Georg-August Universität Göttingen Bachelor of Science 10/2008 – 09/2011 Languages........................................................................................................................
    [Show full text]
  • Lectures on Algebraic Statistics
    Lectures on Algebraic Statistics Mathias Drton, Bernd Sturmfels, Seth Sullivant September 27, 2008 2 Contents 1 Markov Bases 7 1.1 Hypothesis Tests for Contingency Tables . 7 1.2 Markov Bases of Hierarchical Models . 17 1.3 The Many Bases of an Integer Lattice . 26 2 Likelihood Inference 35 2.1 Discrete and Gaussian Models . 35 2.2 Likelihood Equations for Implicit Models . 46 2.3 Likelihood Ratio Tests . 54 3 Conditional Independence 67 3.1 Conditional Independence Models . 67 3.2 Graphical Models . 75 3.3 Parametrizations of Graphical Models . 85 4 Hidden Variables 95 4.1 Secant Varieties in Statistics . 95 4.2 Factor Analysis . 105 5 Bayesian Integrals 113 5.1 Information Criteria and Asymptotics . 113 5.2 Exact Integration for Discrete Models . 122 6 Exercises 131 6.1 Markov Bases Fixing Subtable Sums . 131 6.2 Quasi-symmetry and Cycles . 136 6.3 A Colored Gaussian Graphical Model . 139 6.4 Instrumental Variables and Tangent Cones . 143 6.5 Fisher Information for Multivariate Normals . 150 6.6 The Intersection Axiom and Its Failure . 152 6.7 Primary Decomposition for CI Inference . 155 6.8 An Independence Model and Its Mixture . 158 7 Open Problems 165 4 Contents Preface Algebraic statistics is concerned with the development of techniques in algebraic geometry, commutative algebra, and combinatorics, to address problems in statis- tics and its applications. On the one hand, algebra provides a powerful tool set for addressing statistical problems. On the other hand, it is rarely the case that algebraic techniques are ready-made to address statistical challenges, and usually new algebraic results need to be developed.
    [Show full text]
  • MONOMIAL RESOLUTIONS Dave Bayer Irena Peeva Bernd Sturmfels
    MONOMIAL RESOLUTIONS Dave Bayer Irena Peeva Bernd Sturmfels 1. Introduction. Let M be a monomial ideal in the polynomial ring S = k[x1,...,xn] over a field k. We are interested in the problem, first posed by Kaplansky in the early 1960’s, of finding a minimal free resolution of S/M over S. The difficulty of this problem is reflected in the fact that the homology of arbitrary simplicial complexes can be encoded (via the Stanley-Reisner correspondence [BH,Ho,St]) into the multigraded Betti numbers of S/M. In particular, the minimal free resolution may depend on the characteristic of k. We introduce a method for resolving S/M by encoding the entire resolution into a single simplicial complex (Construction 2.1). This method is different from the way simplicial complexes are used in the Stanley-Reisner correspondence to compute Betti numbers. One of the central ideas in this paper is that there exists a genericity condition, which ensures simply structured homological behavior. The same idea is developed further for toric varieties in [PS]. We call a monomial ideal M generic if no variable xi appears with the same nonzero exponent in two distinct minimal generators of M. Almost all monomial ideals are generic, in the sense that those which fail to be generic lie on finitely many hyperplanes in the matrix space of exponents. We prove that the minimal free resolution for any generic monomial ideal M comes (in the sense of Construction 2.1) from a simplicial complex ∆M , which we call the Scarf complex of M.IfM is Artinian, then the Scarf complex is a regular triangulation of a simplex (Corollary 5.5).
    [Show full text]
  • The 1999 Notices Index, Volume 46, Number 11
    index.qxp 10/15/99 11:17 AM Page 1480 The 1999 Notices Index Index Section Page Number The AMS 1480 Meetings Information 1489 Announcements 1481 Memorial Articles 1490 Authors of Articles 1482 New Publications Offered by the AMS 1490 Reference and Book List 1420 Officers and Committee Members 1490 Deaths of Members of the Society 1483 Opinion 1490 Education 1484 Opportunities 1490 Feature Articles 1484 Prizes and Awards 1491 Forum 1485 Articles on the Profession 1492 Letters to the Editor 1486 Reviews 1492 Mathematicians 1487 Surveys 1493 Mathematics Articles 1489 Tables of Contents 1493 Mathematics History 1489 About the Cover, 26, 245, 318, 420, 534, 658, 781, 918, AMS Meeting in August 2000, 355 1073, 1208, 1367 AMS Menger Awards at the 1999 Intel-International Science and Engineering Fair, 912 Acknowledgment of Contributions, 947 AMS Officers and Committee Members, 1271 AMS Participates in Capitol Hill Exhibition, 918 The AMS AMS Participates in Faculty Preparation Program, 1072 1998 Election Results, 266 AMS Short Courses, 1171 1998 Report of the Committee on Meetings and Confer- AMS Standard Cover Sheet, 60, 270, 366, 698, 972, 1102, ences, 810 1282, 1428 1999 AMS Centennial Fellowships Awarded, 684 (The) Birth of an AMS Meeting, 1029 1999 AMS Election, 58, 267 Bylaws of the American Mathematical Society, 1252 1999 AMS-MAA-SIAM Morgan Prize, 469 Call for Proposals for 2001 Conferences, 1177, 1331 1999 Arnold Ross Lectures, 692 Conference Announced (Summer Mathematics Experience: 1999 Bôcher Prize, 463 A Working Conference on Summer
    [Show full text]
  • On the Rank of a Tropical Matrix
    Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 On the Rank of a Tropical Matrix MIKE DEVELIN, FRANCISCO SANTOS, AND BERND STURMFELS Abstract. This is a foundational paper in tropical linear algebra, which is linear algebra over the min-plus semiring. We introduce and compare three natural definitions of the rank of a matrix, called the Barvinok rank, the Kapranov rank and the tropical rank. We demonstrate how these notions arise naturally in polyhedral and algebraic geometry, and we show that they differ in general. Realizability of matroids plays a crucial role here. Connections to optimization are also discussed. 1. Introduction The rank of a matrix M is one of the most important notions in linear algebra. This number can be defined in many different ways. In particular, the following three definitions are equivalent: • The rank of M is the smallest integer r for which M can be written as the sum of r rank one matrices. A matrix has rank 1 if it is the product of a column vector and a row vector. • The rank of M is the smallest dimension of any linear space containing the columns of M. • The rank of M is the largest integer r such that M has a nonsingular r × r minor. Our objective is to examine these familiar definitions over an algebraic struc- ture which has no additive inverses. We work over the tropical semiring (R, ⊕, ), whose arithmetic operations are a ⊕ b := min(a, b) and a b := a + b. This work was conducted during the Discrete and Computational Geometry semester at M.S.R.I., Berkeley.
    [Show full text]
  • Tropical Gaussians: a Brief Survey 3
    TROPICAL GAUSSIANS: A BRIEF SURVEY NGOC MAI TRAN Abstract. We review the existing analogues of the Gaussian measure in the tropical semir- ing and outline various research directions. 1. Introduction Tropical mathematics has found many applications in both pure and applied areas, as documented by a growing number of monographs on its interactions with various other ar- eas of mathematics: algebraic geometry [BP16, Gro11, Huh16, MS15], discrete event systems [BCOQ92, But10], large deviations and calculus of variations [KM97, Puh01], and combinato- rial optimization [Jos14]. At the same time, new applications are emerging in phylogenetics [LMY18, YZZ19, PYZ20], statistics [Hoo17], economics [BK19, CT16, EVDD04, GMS13, Jos17, Shi15, Tra13, TY19], game theory, and complexity theory [ABGJ18, AGG12]. There is a growing need for a systematic study of probability distributions in tropical settings. Over the classical algebra, the Gaussian measure is arguably the most important distribution to both theoretical probability and applied statistics. In this work, we review the existing analogues of the Gaussian measure in the tropical semiring. We focus on the three main characterizations of the classical Gaussians central to statistics: invariance under orthonor- mal transformations, independence and orthogonality, and stability. We show that some notions do not yield satisfactory generalizations, others yield the classical geometric or ex- ponential distributions, while yet others yield completely different distributions. There is no single notion of a ‘tropical Gaussian measure’ that would satisfy multiple tropical analogues of the different characterizations of the classical Gaussians. This is somewhat expected, for the interaction between geometry and algebra over the tropical semiring is rather different from that over R.
    [Show full text]
  • Jahrbuch-2018 V3
    Berlin-Brandenburgische Akademie der Wissenschaften vormals Preußische Akademie der Wissenschaften JAHRBUCH 2018 Berlin-Brandenburgische Akademie der Wissenschaften vormals Preußische Akademie der Wissenschaften Berlin-Brandenburgische Akademie der Wissenschaften vormals Preußische Akademie der Wissenschaften JAHRBUCH 2018 Impressum Herausgeberin: Berlin-Brandenburgische Akademie der Wissenschaften Redaktion: Andreas Schmidt unter Mitarbeit von Iris Johanna Bauer Redaktionsschluss: 10. Mai 2019 Grafik und Layout: angenehme gestaltung/Thorsten Probst Druck: Druckerei Conrad GmbH, Berlin © Berlin-Brandenburgische Akademie der Wissenschaften, 2019 Jägerstraße 22/23, 10117 Berlin, www.bbaw.de Nachdruck, auch auszugsweise, nur mit ausdrücklicher Genehmigung der Herausgeberin ISBN 978-3-939818-83-0 VORWORT Liebe Leserinnen und Leser, die wissenschaftliche Arbeit unserer Akademie ist bestimmt von geis- teswissenschaftlicher Grundlagenforschung. Unsere 23 Akademien- vorhaben haben 2018 ihre Arbeit erfolgreich fortgesetzt und zusammen mit der TELOTA-Initiative an der Digitalisierung ihrer Forschungsergebnisse gearbeitet. Welche grundlegende Arbeit in Foto: BBAW, Judith Affolter unserem Hause geleistet wird, wird in der Öffentlichkeit oft durch Jahres tage und Jubiläen besonders sichtbar. Ein solches war der 200. Geburtstag von Karl Marx am 5. Mai 2018. So wurde in zahlreichen Presseveröffentlichungen auf die Publikationen unseres Aka- demien vorhabens „Marx-Engels-Gesamtausgabe“ (MEGA) Bezug genommen. Große Projekte umzu- setzen, erfordert nicht
    [Show full text]