Analysis of an Intermediate Band Solar Cell System
Total Page:16
File Type:pdf, Size:1020Kb
Analysis of an Intermediate Band Solar Cell System Based on Systems Engineering Principles Anne Elisabeth Thorstensen Chemical Engineering and Biotechnology Submission date: December 2013 Supervisor: Fride Vullum, IMTE Co-supervisor: Annik Magerholm Fet, IØT Turid Worren Reenaas, IFY Norwegian University of Science and Technology Department of Materials Science and Engineering Preface This report describes the master’s thesis carried out in the course “TMT4900 Materials Chemistry and Energy Technology, Master Thesis”. Fride Vullum-Bruer (Dep. of Materials Science and Engineering) has been the supervisor, and Turid Worren Reenaas (Dep. of Physics) and Annik Magerholm Fet (Dep. of Industrial Economics and Technology Management) have been co-supervisors during this work. They have guided me throughout this process, and contributed in different technology fields. I would like to express my thanks to them. Also, I would like to thank my fellow students who have helped me during the last preparations of the thesis. By doing this master’s thesis, I have been part of a new research activity on NTNU; the interdisciplinary project “Socially Robust Solar Cells (SoRoSol)” which deals with sustainable development of intermediate band solar cells (IBSCs), and has been carried out in the solar cell physics group at the Department of Physics at NTNU. In addition, as a chemist and materials engineer, it was a rewarding experience to study a completely new field for me; systems engineering, and I gathered knowledge outside the boarders of my study program. I, Anne Elisabeth Thorstensen, declare that the work described in this report has been done in accordance with the regulations at NTNU. Trondheim, December 2013. i ii Abstract The intermediate band solar cell (IBSC) is a so-called third generation solar cell, based on a new type of semiconductor materials; the intermediate band (IB) materials. In IB materials there is an additional intermediate energy band in the band gap of the semiconductor. Solar cells using such materials have an efficiency limit of 63 % in comparison to 41 % for solar cells made of conventional semiconductors. IBSCs have been attempted realized since 2001, based on toxic or non-abundant materials only. For sustainable development of IBSCs, it is important to identify materials and production routes that result in minimized environmental impacts. Two possible host materials for IBSCs were identified during a previous specialization project, and these were used as case materials to explore the challenges related to realization of sustainable IBSCs. This thesis describes the analysis of an IBSC system based on a ZnO/IB- Cu2O/Cu2O cell. The main objective was to analyze and optimize this intermediate band solar cell to determine if ZnO and Cu2O are promising IBSC materials. To get an overview of the functions and relationships of a complete IBSC system, a method combining the detailed materials technology field and holistic systems engineering process was utilized. This unusual combination and the fact that IBSCs are a relatively new and unexplored concept, resulted in a customized approach. Sustainable solutions for large-scale production of the IBSC with focus on cell structure and materials were explored. Two cell cases were developed; an “advanced” cell with high quality materials and production, and one “simple” cell with a more conventional production route and less complex materials. The location of the desired IBSC system installation was set to a rooftop in Oslo, and a conventional photovoltaic (PV) system being planned there was the basis for a system example. Desired and location-based performance parameters for an IBSC system located in Oslo were identified. A new approach that can solve combined materials technology and systems engineering assignments was developed. By utilizing this approach, challenges for ZnO and Cu2O as IBSC host materials were identified. The material challenges proved to be comprehensive, but might be overcome by customized growth of Cu2O single crystals to reduce resistivity, and tailoring the buffer layer and surface treatment at the ZnO/IB-Cu2O junction to reduce unwanted interface defects. The findings in this thesis implied that the ZnO/IB-Cu2O/Cu2O IBSC could be manufactured for industrial purposes to compete with other PV technologies if the material challenges are overcome. iii iv Sammendrag Mellombåndsolcellen er en såkalt tredje generasjon solcelle, basert på en ny type halvledermaterialer; mellombåndsmaterialer, også kalt IB-materialer. I IB-materialer er det et ekstra energibånd i båndgapet til halvlederen. Solceller laget av slike materialer har en teoretisk effektivitetsgrense på 63 % sammenlignet med 41 % for solceller laget av konvensjonelle halvledere. Siden 2001 har det vært fler forsøk på å produsere mellombåndsolceller, men disse har kun basert seg på sjeldne eller giftige materialer. For bærekraftig utvikling av mellombåndsolceller er det viktig å identifisere materialer og produksjonsmetoder som fører til minimale miljøpåvirkninger. To mulige vertsmaterialer for mellombåndsolceller ble identifisert under et tidligere spesialiseringsprosjekt. Disse ble brukt som case-materialer i denne oppgaven for å utforske utfordringer knyttet til realisering av bærekraftige mellombåndsolceller. Denne masteroppgaven beskriver analysen av et mellombåndsolcellesystem basert på en ZnO/IB-Cu2O/Cu2O celle. Hovedmålet var å analysere og optimalisere denne mellombåndsolcellen og avgjøre om ZnO og Cu2O er lovende materialer for mellombåndsolceller. For å få en oversikt over funksjoner og relasjoner mellom komponentene av et komplett mellombåndsolcellesystem, ble detaljert materialteknologi og den helhetlige systems engineering prosessen kombinert. Denne uvanlige kombinasjonen og det faktum at IBSCs er et relativt nytt og uutforsket konsept, resulterte i en ny og spesialtilpasset metode. Bærekraftige løsninger for storskalaproduksjon av mellombåndsolceller med fokus på cellestruktur og materialer ble utforsket. To celle caser ble utviklet, en «avansert» celle med høykvalitetsmaterialer og -produksjon, og en «enkel» celle med en mer konvensjonelle produksjonsmetoder og mindre komplekse materialer. Plasseringen av det ønskede mellombåndssolcellesystemet ble valgt til et tak i Oslo, og et konvensjonelt krystallinsk solcellesystem som planlegges å installeres der dannet grunnlaget for et systemeksempel. Lokasjonsbaserte og spesifiserte ytelsesparametere for et mellombåndsystem med beliggenhet i Oslo-området ble identifisert på grunnlag av behov og krav bestemt tidligere i prosessen. En ny tilnærming som kan løse kombinerte materialteknologi og systems engineering-baserte oppgaver ble utviklet gjennom denne masteroppgaven. Utfordringer vedrørende ZnO og Cu2O som vertsmaterialer for mellombåndsolceller ble identifisert ved å benytte denne tilpassede metoden. De materielle utfordringene viste seg å være omfattende, men kan løses ved å tilpasse enkrystallveksten av Cu2O som vil redusere resistiviteten, og skreddersy et bufferlag og overflatebehandling for ZnO/IB-Cu2O-grenseflaten for å redusere uønskede defekter. Funnene i denne masteroppgaven antydet at ZnO/IB-Cu2O/Cu2O mellombåndsolcellen kan produseres for industrielle formål og konkurrere med andre PV teknologier dersom de materielle utfordringene blir løst. v vi Contents 1 INTRODUCTION ............................................................................................................................................. 1 1.1 THE EFFICIENCY AND COST CHALLENGE ................................................................................................................. 1 1.2 THE INTERMEDIATE BAND SOLAR CELL (IBSC) CONCEPT .................................................................................. 2 1.3 LIFE CYCLE ASSESSMENT AND SYSTEMS ENGINEERING ........................................................................................ 3 1.4 OBJECTIVES AND LIMITATIONS ................................................................................................................................. 4 2 FROM SOLAR CELL TO PHOTOVOLTAIC (PV) SYSTEM .................................................................... 7 2.1 THE THREE GENERATIONS ........................................................................................................................................ 7 2.2 THE SOLAR CELL ......................................................................................................................................................... 9 2.2.1 The intermediate band solar cell ................................................................................................................ 10 2.3 PREPARATION OF SOLAR CELL MATERIALS ......................................................................................................... 13 2.3.1 Single crystal production ............................................................................................................................... 13 2.3.2 Deposition methods .......................................................................................................................................... 13 2.3.3 Compatibility of materials ............................................................................................................................. 14 2.4 THE PV MODULE...................................................................................................................................................... 17 2.4.1 Cell encapsulation ............................................................................................................................................