The Evolution of a Single Toe in Horses: Causes, Consequences, and the Way Forward

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of a Single Toe in Horses: Causes, Consequences, and the Way Forward 1 The evolution of a single toe in horses: causes, consequences, and the way forward 2 Brianna K. McHorse,1,*,†,‡ Andrew A. Biewener,*,† and Stephanie E. Pierce*,‡ 3 4 *Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; 5 †Concord Field Station, Harvard University, Bedford, MA 01730, USA; ‡Museum of Comparative Zoology, 6 Harvard University, Cambridge, MA 02138, USA 7 8 1 [email protected] 9 10 Abstract 11 Horses are a classic example of macroevolution in three major traits—large body size, tall- 12 crowned teeth (hypsodonty), and a single toe (monodactyly)—but how and why monodactyly evolved is 13 still poorly understood. Existing hypotheses usually connect digit reduction in horses to the spread and 14 eventual dominance of open-habitat grasslands, which took over from forests during the Cenozoic; digit 15 reduction has been argued to be an adaptation for speed, locomotor economy, stability, and/or 16 increased body size. In this review, we assess the evidence for these (not necessarily mutually exclusive) 17 hypotheses from a variety of related fields, including paleoecology, phylogenetic comparative methods, 18 and biomechanics. Convergent evolution of digit reduction, including in litopterns and artiodactyls, is 19 also considered. We find it unlikely that a single evolutionary driver was responsible for the evolution of 20 monodactyly, because changes in body size, foot posture, habitat, and substrate are frequently found to 21 influence one another (and to connect to broader potential drivers, such as changing climate). We 22 conclude with suggestions for future research to help untangle the complex dynamics of this remarkable 23 morphological change in extinct horses. A path forward should combine regional paleoecology studies, Evolution of a single toe in horses 2 24 quantitative biomechanical work, and make use of convergence and modern analogs to estimate the 25 relative contributions of potential evolutionary drivers for digit reduction. 26 27 Total words in text: 7608 28 29 Introduction 30 Horse evolution and grasslands 31 Horses are the only living members of the family Equidae, which today comprises just six species 32 in the genus Equus (including zebras, asses, and caballine horses, the group to which domestic horses 33 belong). In contrast to today’s paucity of species, the equid fossil record includes nearly 50 genera and 34 hundreds of species over the last 58 million years (MacFadden 1994). The earliest equids were only dog- 35 sized, with four toes on the foreleg and three on the hind leg (MacFadden 1994). Today’s horses are 36 large, long-legged grazers with a single toe on each leg, which is enclosed in a hard hoof. An enlarged 37 third digit makes up the bulk of the distal limb, with considerably reduced metapodials II and IV present 38 as splint bones fused to the center metapodial (Figure 1). Recent work has shown that vestiges of digits I 39 and V may still be present as ridges and wings in the proximal metapodial and distal phalanx (Solounias 40 et al. 2018). Despite their large size and long, slender limbs, horses are considerably athletic, reaching a 41 recorded top racing speed of 70 km/hr (“Fastest speed for a race horse” 2019); the highest jump 42 recorded by a domestic horse and rider is 2.47 m (“Highest jump by a horse” 2019). That horses can 43 accomplish such feats on a single toe, which evolved millions of years prior to human influence, is 44 remarkable. 45 Fossil horses played a critical role in both supporting Darwin’s theory of evolution and, later, the 46 Modern Synthesis (Simpson 1951). In the 1870s, O.C. Marsh had made a considerable collection of fossil 47 horses, which he then arranged into a series of small to large, three-toed to one toe, low-crowned teeth Evolution of a single toe in horses 3 48 to high-crowned teeth (Marsh 1874). This proposed evolutionary series was so striking for its time that 49 after seeing it, T.H. Huxley, “Darwin’s Bulldog,” rewrote an address to be given at the New York 50 Academy of Sciences to include these fossil horses as evidence of evolution (Schuchert 1940). At the 51 time, orthogenesis—an evolutionary “progression” in a straight line towards some ideal form—was a 52 popular conception of evolution, and this arrangement of horses supported that view (Figure 2). Thus 53 the classic story of horse evolution was formed: as grasslands took over from forests, the horse 54 gradually evolved larger body size (perhaps to better defend against predators), taller-crowned teeth to 55 handle abrasive grasses, and long, monodactyl limbs to race away from predators in their newly open 56 habitat (Figure 2; Matthew 1926). 57 Despite subsequent recognition that equid evolution was in fact more like a bush than a straight 58 line (Simpson 1951; MacFadden 1994), it is still portrayed in a linear fashion in many museums and 59 textbooks (MacFadden et al. 2012). Some trends in equid evolution do appear to exist by gestalt— 60 today’s horses are indeed much larger, hypsodont, and have reduced digits relative to the earliest 61 horses. Monodactyly had two separate evolutions, one in the Dinohippus/Equus lineage and one in the 62 Pliohippus/Astrohippus lineage, strongly suggesting at least some adaptive utility and selection for this 63 condition. It therefore requires careful attention to discuss the evolution of horses without slipping into 64 verbal orthogenesis by drawing a straight line between the earliest horse and the lone surviving genus 65 today, particularly given that trends of digit reduction and increasing hypsodonty do exist in at least 66 some parts of the horse tree (Janis 2007). But evidence from diet, habitat, tooth morphology, and digit 67 state do not match the orthogenetic pattern: decreasing body size was common in lineages such as the 68 Archaeohippus or Nannippus; not all tridactyl horses browsed; and not all hypsodont, monodactyl 69 horses grazed (MacFadden 1994; MacFadden et al. 2012). 70 Beyond the pattern itself, the classic explanations for why horses evolved the way they did is 71 tremendously “sticky” (Schimel 2012). Long after the complexity of the equid tree and the nonlinearity Evolution of a single toe in horses 4 72 of trait evolution was acknowledged, the initial explanations for each horse trait still held the weight of 73 established fact rather than reasonable hypothesis. The evolutionary story of horses has seen several 74 advances in understanding over the last few decades, particularly as powerful quantitative methods 75 emerge and we accumulate more available specimens through fieldwork, museum cataloguing, and 76 especially digitization (Marshall et al. 2018). With these new data and methods, untested explanations 77 for horse trait evolution have been challenged one by one. 78 The simple causal relationship between abrasive grass and hypsodonty has been shown to be 79 complicated, with grasslands predating hypsodonty by at least four million years in horses, rodents, and 80 lagomorphs (Strömberg 2002, 2006; Jardine et al. 2012). Tooth mesowear, a macroscopic measure of 81 tooth wear that can record information about diet, is highly variable within fossil horse populations and 82 does not always match up directly with grasslands and hypsodonty (Mihlbachler et al. 2011); 83 furthermore, fresh grazing can cause mesowear similar to browsing (Winkler et al. 2019). In extant taxa, 84 hypsodonty correlates more with habitat openness (Mendoza and Palmqvist 2008)than with the 85 proportion of grass consumed, and feeding height (which relates to the amount of soil grit consumed) 86 drives microwear more than diet (Mainland 2003). The study of tooth enamel isotopes has also 87 complicated the relationship between hypsodonty and diet; for example, in one locality, the hypsodont 88 horse species were likely browsers while the species with low-crowned teeth were consuming more 89 grasses (MacFadden et al. 1999), and individual variation in isotope values can be high in large 90 herbivores (Green et al. 2018). Hypsodonty seems to be driven mostly by grit (via phytolith, dirt, or 91 volcanic ash), not grass alone, and evolved under much less of a straightforward evolutionary arms race 92 than initially thought. 93 Increasing body size, which was initially explained as a defense mechanism against predation 94 (Matthew 1926), has also been suggested as an example of Cope’s rule (that lineages tend to increase in 95 maximum body size through time) in equids (Martin 2018), perhaps as a result of ecological Evolution of a single toe in horses 5 96 specialization (Raia et al. 2012). Others have argued that because grass is generally less nutritious than 97 browse (but see Codron et al. 2007), larger body size was beneficial because it increased total digestive 98 capacity, thus allowing the animal to process larger quantities of low-quality food (Demment and Van 99 Soest 1985; Lovegrove and Mowoe 2013). A recent study showed strong evidence for transitions to an 100 unguligrade foot posture being associated with rapid increases in body size, and rate of body size 101 evolution, across mammals (Kubo et al. 2019), pointing to the possibility that unguligrady supports 102 larger body sizes. Kubo et al. (2019) suggested that larger body sizes may provide a release from higher 103 levels of predation, again connecting predator pressures to horse evolution. However, many equid 104 lineages retained similar body sizes through evolutionary time or even became smaller (MacFadden 105 1994), irrespective of expanding grasslands. Recent work suggested that more than 90% of changes in 106 horse body size can be explained simply by diffusion, a random walk of evolution, rather than 107 competition for niches (Shoemaker et al. 2013), so the pattern of increasing body mass may not be a 108 trend at all.
Recommended publications
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Unit-V Evolution of Horse
    UNIT-V EVOLUTION OF HORSE Horses (Equus) are odd-toed hooped mammals belong- ing to the order Perissodactyla. Horse evolution is a straight line evolution and is a suitable example for orthogenesis. It started from Eocene period. The entire evolutionary sequence of horse history is recorded in North America. " Place of Origin The place of origin of horse is North America. From here, horses migrated to Europe and Asia. By the end of Pleis- tocene period, horses became extinct in the motherland (N. America). The horses now living in N. America are the de- scendants of migrants from other continents. Time of Origin The horse evolution started some 58 million years ago, m the beginning of Eocene period of Coenozoic era. The modem horse Equus originated in Pleistocene period about 2 million years ago. Evolutionary Trends The fossils of horses that lived in different periods, show that the body parts exhibited progressive changes towards a particular direction. These directional changes are called evo- lutionary trends. The evolutionary trends of horse evolution are summarized below: 1. Increase in size. 2. Increase in the length of limbs. 3. Increase in the length of the neck. 4. Increase in the length of preorbital region (face). 5. Increase in the length and size of III digit. 6. Increase in the size and complexity of brain. 7. Molarization of premolars. Olfactory bulb Hyracotherium Mesohippus Equus Fig.: Evolution of brain in horse. 8. Development of high crowns in premolars and molars. 9. Change of plantigrade gait to unguligrade gait. 10. Formation of diastema. 11. Disappearance of lateral digits.
    [Show full text]
  • Genomics and the Evolutionary History of Equids Pablo Librado, Ludovic Orlando
    Genomics and the Evolutionary History of Equids Pablo Librado, Ludovic Orlando To cite this version: Pablo Librado, Ludovic Orlando. Genomics and the Evolutionary History of Equids. Annual Review of Animal Biosciences, Annual Reviews, 2021, 9 (1), 10.1146/annurev-animal-061220-023118. hal- 03030307 HAL Id: hal-03030307 https://hal.archives-ouvertes.fr/hal-03030307 Submitted on 30 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annu. Rev. Anim. Biosci. 2021. 9:X–X https://doi.org/10.1146/annurev-animal-061220-023118 Copyright © 2021 by Annual Reviews. All rights reserved Librado Orlando www.annualreviews.org Equid Genomics and Evolution Genomics and the Evolutionary History of Equids Pablo Librado and Ludovic Orlando Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France; email: [email protected] Keywords equid, horse, evolution, donkey, ancient DNA, population genomics Abstract The equid family contains only one single extant genus, Equus, including seven living species grouped into horses on the one hand and zebras and asses on the other. In contrast, the equine fossil record shows that an extraordinarily richer diversity existed in the past and provides multiple examples of a highly dynamic evolution punctuated by several waves of explosive radiations and extinctions, cross-continental migrations, and local adaptations.
    [Show full text]
  • Skeleton of the Oligocene (30 Million-Year-Old) Horse, Mesohippus, Is a Featured Exhibit at the New North Dakota Cowboy Hall of Fame in Medora
    Skeleton of the Oligocene (30 million-year-old) horse, Mesohippus, is a featured exhibit at the new North Dakota Cowboy Hall of Fame in Medora By John W. Hoganson Developers of the recently opened North Dakota Cowboy Hall of Fame contacted me about having a fossil exhibit in the new Hall in Medora. Of course, what would be more appropriate than an exhibit interpreting the evolution of the horse? Most people are under the false impression that horses did not inhabit North America until they were introduced by the Spaniards during the early days of conquest. But horses are indigenous to North America. Fossil remains of the earliest horse, referred to as Hyracotherium (or sometimes Eohippus), have been recovered from early Eocene (about 50 million years old) rocks in North America. In fact, they were some of the most abundant mammals that lived during that time. The fossil record of horses in North Dakota extends back to the Oligocene, about 30 million years ago, when the diminutive horse, Mesohippus roamed western North Dakota. Mesohippus was tiny, about the size of a sheep. The adults were only about 20 inches tall at the shoulder. They also had three toes on each foot compared to the modern horse Equus that has one. Mesohippus was also probably more of a browsing herbivore compared to the modern grazing horse. We have found many Mesohippus fossils in North Dakota but no complete skeletons. Consequently, the Mesohippus skeleton on exhibit at the Cowboy Hall of Fame is an exact cast replica. We have also found the remains of 50,000-year-old horses in North Dakota indicating that horses lived here during the last Ice Age.
    [Show full text]
  • Scale-Dependence of Cope's Rule in Body Size Evolution of Paleozoic
    Scale-dependence of Cope’s rule in body size evolution of Paleozoic brachiopods Philip M. Novack-Gottshall* and Michael A. Lanier Department of Geosciences, University of West Georgia, Carrollton, GA 30118-3100 Edited by Steven M. Stanley, University of Hawaii at Manoa, Honolulu, HI, and approved January 22, 2008 (received for review October 10, 2007) The average body size of brachiopods from a single habitat type volume) for 369 adult genera [see supporting information (SI) increased gradually by more than two orders of magnitude during Appendix, Tables 1 and 2] from deep-subtidal, soft-substrate their initial Cambrian–Devonian radiation. This increase occurred habitats demonstrates that brachiopod body size increased sub- nearly in parallel across all major brachiopod clades (classes and stantially and gradually during the Early and Mid-Paleozoic (Fig. orders) and is consistent with Cope’s rule: the tendency for size to 1), from a Cambrian mean of 0.04 ml (Ϫ1.40 log10 ml Ϯ 0.27 SE, increase over geological time. The increase is not observed within n ϭ 18 genera) to a Devonian mean of 1.55 ml (0.19 log10 ml Ϯ small, constituent clades (represented here by families), which 0.06, n ϭ 150). The magnitude of size increase between periods underwent random, unbiased size changes. This scale-dependence is statistically significant. We evaluated within-phylum dynamics is caused by the preferential origination of new families possessing by using maximum-likelihood comparisons among three evolu- initially larger body sizes. However, this increased family body size tionary models: directional (driven, biased, general random does not confer advantages in terms of greater geological duration walk) change (DRW), unbiased (passive) random walk (URW), or genus richness over families possessing smaller body sizes.
    [Show full text]
  • Paleobiology of Archaeohippus (Mammalia; Equidae), a Three-Toed Horse from the Oligocene-Miocene of North America
    PALEOBIOLOGY OF ARCHAEOHIPPUS (MAMMALIA; EQUIDAE), A THREE-TOED HORSE FROM THE OLIGOCENE-MIOCENE OF NORTH AMERICA JAY ALFRED O’SULLIVAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2002 Copyright 2002 by Jay Alfred O’Sullivan This study is dedicated to my wife, Kym. She provided all of the love, strength, patience, and encouragement I needed to get this started and to see it through to completion. She also provided me with the incentive to make this investment of time and energy in the pursuit of my dream to become a scientist and teacher. That incentive comes with a variety of names - Sylvan, Joanna, Quinn. This effort is dedicated to them also. Additionally, I would like to recognize the people who planted the first seeds of a dream that has come to fruition - my parents, Joseph and Joan. Support (emotional, and financial!) came to my rescue also from my other parents—Dot O’Sullivan, Jim Jaffe and Leslie Sewell, Bill and Lois Grigsby, and Jerry Sewell. To all of these people, this work is dedicated, with love. ACKNOWLEDGMENTS I thank Dr. Bruce J. MacFadden for suggesting that I take a look at an interesting little fossil horse, for always having fresh ideas when mine were dry, and for keeping me moving ever forward. I thank also Drs. S. David Webb and Riehard C. Hulbert Jr. for completing the Triple Threat of Florida Museum vertebrate paleontology. In each his own way, these three men are an inspiration for their professionalism and their scholarly devotion to Florida paleontology.
    [Show full text]
  • Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina
    Palaeontologia Electronica palaeo-electronica.org An exceptionally well-preserved skeleton of Thomashuxleya externa (Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina Juan D. Carrillo and Robert J. Asher ABSTRACT We describe one of the oldest notoungulate skeletons with associated cranioden- tal and postcranial elements: Thomashuxleya externa (Isotemnidae) from Cañadón Vaca in Patagonia, Argentina (Vacan subage of the Casamayoran SALMA, middle Eocene). We provide body mass estimates given by different elements of the skeleton, describe the bone histology, and study its phylogenetic position. We note differences in the scapulae, humerii, ulnae, and radii of the new specimen in comparison with other specimens previously referred to this taxon. We estimate a body mass of 84 ± 24.2 kg, showing that notoungulates had acquired a large body mass by the middle Eocene. Bone histology shows that the new specimen was skeletally mature. The new material supports the placement of Thomashuxleya as an early, divergent member of Toxodon- tia. Among placentals, our phylogenetic analysis of a combined DNA, collagen, and morphology matrix favor only a limited number of possible phylogenetic relationships, but cannot yet arbitrate between potential affinities with Afrotheria or Laurasiatheria. With no constraint, maximum parsimony supports Thomashuxleya and Carodnia with Afrotheria. With Notoungulata and Litopterna constrained as monophyletic (including Macrauchenia and Toxodon known for collagens), these clades are reconstructed on the stem
    [Show full text]
  • Perissodactyla, Mammalia) from the Middle Eocene of Myanmar Un Nouveau Tapiromorphe Basal (Perissodactyla, Mammalia) De L’Eocène Moyen Du Myanmar
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Geobios 39 (2006) 513–519 http://france.elsevier.com/direct/GEOBIO/ Original article A new basal tapiromorph (Perissodactyla, Mammalia) from the middle Eocene of Myanmar Un nouveau tapiromorphe basal (Perissodactyla, Mammalia) de l’Eocène moyen du Myanmar Grégoire Métais a, Aung Naing Soe b, Stéphane Ducrocq c,* a Carnegie Museum of Natural History, Section of Vertebrate Paleontology, 4400 Forbes Avenue, Pittsburgh, PA 15213, USA b Department of Geology, Yangon University, Yangon 11422, Myanmar c Laboratoire de Géobiologie, Biochronologie et Paléontologie Humaine, UMR 6046 CNRS, Faculté des Sciences de Poitiers, 40, avenue du recteur-Pineau, 86022 Poitiers cedex, France Received 29 September 2004; accepted 10 May 2005 Available online 20 March 2006 Abstract A new genus and species of tapiromorph, Skopaiolophus burmese nov. gen., nov. sp., is described from the middle Eocene Pondaung For- mation in central Myanmar. This small form displays a striking selenolophodont morphology associated with a mixture of primitive “condylar- thran” dental characters and derived tapiromorph features. Skopaiolophus is here tentatively referred to a group of Asian tapiromorphs unknown so far. The occurrence of such a form in Pondaung suggests that primitive tapiromorphs might have persisted in southeast Asia until the late middle Eocene while they became extinct elsewhere in both Eurasia and North America. © 2006 Elsevier SAS. All rights reserved. Résumé Un nouveau genre et une nouvelle espèce de tapiromorphe, Skopaiolophus burmese nov. gen. nov. sp., sont décrits dans la Formation de Pondaung d’âge fini-éocène moyen, au Myanmar.
    [Show full text]
  • Mammalia, Litopterna) from Quebrada Fiera (Late Oligocene), Mendoza Province, Argentina
    Andean Geology 46 (2): 368-382. May, 2019 Andean Geology doi: 10.5027/andgeoV46n2-3109 www.andeangeology.cl Macraucheniidae and Proterotheriidae (Mammalia, Litopterna) from Quebrada Fiera (Late Oligocene), Mendoza Province, Argentina *Gabriela I. Schmidt1, Esperanza Cerdeño2, Santiago Hernández del Pino2 1 Laboratorio de Paleontología de Vertebrados, Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (CICYTTP, CONICET)-Provincia de ER-UADER, Materi y España, E3105BWA, Diamante, Entre Ríos, Argentina. [email protected] 2 Paleontología, IANIGLA, CCT-CONICET Mendoza, Avda. Ruiz Leal s/n, 5500 Mendoza, Argentina. [email protected]; [email protected] * Corresponding author: [email protected] ABSTRACT. In this contribution we present new specimens of Litopterna recovered during the last decade in Que- brada Fiera (Mendoza Province, Argentina), whose fossiliferous sediments, currently recognized as the base of Agua de la Piedra Formation, are assignable to Late Oligocene (Deseadan South American Land Mammal Age). Two remains mentioned in the first publication on this locality were neither detailed nor described, and they have not been located in the corresponding repository. The new material consists of postcranial fragmentary remains (astragali, calcaneum, and metapodials) of Macraucheniidae (Cramaucheniinae) and an incomplete upper molar (M3) of Proterotheriidae (Proterotheriinae). These few remains of litopterns contrast with the abundance of notoungulates at Quebrada Fiera. A comparative study was carried out with material from Patagonia (Argentina) and taxa recorded in Bolivia and Peru for the same temporal interval. The specimens of Cramaucheniinae are assigned to Coniopternium andinum and the molar of Proterotheriinae to cf. Lambdaconus suinus. This contribution allows us to extend the geographical range of Coniop- ternium, filling the gap between the Patagonian and lower latitude localities (Bolivia and Peru) in which this genus was found.
    [Show full text]
  • Mammal Diversity Will Take Millions of Years to Recover from the Current Biodiversity Crisis
    Mammal diversity will take millions of years to recover from the current biodiversity crisis Matt Davisa,b,1, Søren Faurbyc,d, and Jens-Christian Svenninga,b aCenter for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, 8000 Aarhus C, Denmark; bSection for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark; cDepartment of Biological and Environmental Sciences, University of Gothenburg, SE 405 30 Gothenburg, Sweden; and dGothenburg Global Biodiversity Centre, University of Gothenburg, SE-405 30 Gothenburg, Sweden Edited by Gene Hunt, Smithsonian Institution, Washington, DC, and accepted by Editorial Board Member Douglas Futuyma September 6, 2018 (received for review March 26, 2018) TheincipientsixthmassextinctionthatstartedintheLate PD can only be restored by time as species evolve and create new Pleistocene has already erased over 300 mammal species and, evolutionary history. For example, although as few as 500 indi- with them, more than 2.5 billion y of unique evolutionary history. viduals of the critically endangered (CR) pygmy sloth (Bradypus At the global scale, this lost phylogenetic diversity (PD) can only be pygmaeus) remain (13), global PD would recover from the ex- restored with time as lineages evolve and create new evolutionary tinction of this species in less than 2 y (11). This is not to say that history. Given the increasing rate of extinctions however, can a new species of pygmy sloth would evolve within this time or mammals evolve fast enough to recover their lost PD on a human that the sloth’s ecological functions would be restored, but that time scale? We use a birth–death tree framework to show that the 8,900-y loss in unique evolutionary history brought about by even if extinction rates slow to preanthropogenic background lev- the sloth’s extinction could be countered simply by all 5,418 els, recovery of lost PD will likely take millions of years.
    [Show full text]
  • New Radiometric 40Ar–39Ar Dates and Faunistic Analyses Refine
    www.nature.com/scientificreports OPEN New radiometric 40Ar–39Ar dates and faunistic analyses refne evolutionary dynamics of Neogene vertebrate assemblages in southern South America Francisco J. Prevosti1,2*, Cristo O. Romano2,3, Analía M. Forasiepi2,3, Sidney Hemming4, Ricardo Bonini2,5, Adriana M. Candela2,6, Esperanza Cerdeño2,3, M. Carolina Madozzo Jaén2,7,8, Pablo E. Ortiz2,7, François Pujos2,3, Luciano Rasia2,6, Gabriela I. Schmidt2,9, Matias Taglioretti10,11,12, Ross D. E. MacPhee13 & Ulyses F. J. Pardiñas2,14,15 The vertebrate fossil record of the Pampean Region of Argentina occupies an important place in South American vertebrate paleontology. An abundance of localities has long been the main basis for constructing the chronostratigraphical/geochronological scale for the late Neogene–Quaternary of South America, as well as for understanding major patterns of vertebrate evolution, including the Great American Biotic Interchange. However, few independently-derived dates are available for constraining this record. In this contribution, we present new 40Ar/39Ar dates on escorias (likely the product of meteoric impacts) from the Argentinean Atlantic coast and statistically-based biochronological analyses that help to calibrate Late Miocene–Pliocene Pampean faunal successions. For the type areas of the Montehermosan and Chapadmalalan Ages/Stages, our results delimit their age ranges to 4.7–3.7 Ma and ca. 3.74–3.04 Ma, respectively. Additionally, from Buenos Aires Province, dates of 5.17 Ma and 4.33 Ma were recovered for “Huayquerian” and Montehermosan faunas. This information helps to better calibrate important frst appearances of allochthonous taxa in South America, including one of the oldest records for procyonids (7.24–5.95 Ma), cricetids (6.95– 5.46 Ma), and tayassuids (> 3.74 Ma, oldest high-confdence record).
    [Show full text]
  • Early Eocene Fossils Suggest That the Mammalian Order Perissodactyla Originated in India
    ARTICLE Received 7 Jul 2014 | Accepted 15 Oct 2014 | Published 20 Nov 2014 DOI: 10.1038/ncomms6570 Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India Kenneth D. Rose1, Luke T. Holbrook2, Rajendra S. Rana3, Kishor Kumar4, Katrina E. Jones1, Heather E. Ahrens1, Pieter Missiaen5, Ashok Sahni6 & Thierry Smith7 Cambaytheres (Cambaytherium, Nakusia and Kalitherium) are recently discovered early Eocene placental mammals from the Indo–Pakistan region. They have been assigned to either Perissodactyla (the clade including horses, tapirs and rhinos, which is a member of the superorder Laurasiatheria) or Anthracobunidae, an obscure family that has been variously considered artiodactyls or perissodactyls, but most recently placed at the base of Proboscidea or of Tethytheria (Proboscidea þ Sirenia, superorder Afrotheria). Here we report new dental, cranial and postcranial fossils of Cambaytherium, from the Cambay Shale Formation, Gujarat, India (B54.5 Myr). These fossils demonstrate that cambaytheres occupy a pivotal position as the sister taxon of Perissodactyla, thereby providing insight on the phylogenetic and biogeographic origin of Perissodactyla. The presence of the sister group of perissodactyls in western India near or before the time of collision suggests that Perissodactyla may have originated on the Indian Plate during its final drift toward Asia. 1 Center for Functional Anatomy & Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, Maryland 21205, USA. 2 Department of Biological Sciences, Rowan University, Glassboro, New Jersey 08028, USA. 3 Department of Geology, H.N.B. Garhwal University, Srinagar 246175, Uttarakhand, India. 4 Wadia Institute of Himalayan Geology, Dehradun 248001, Uttarakhand, India. 5 Research Unit Palaeontology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium.
    [Show full text]