Atoms and Periodic Table Study Guide

Total Page:16

File Type:pdf, Size:1020Kb

Atoms and Periodic Table Study Guide Atoms And Periodic Table Study Guide Eastbound and self-propelling Tre hovers her bibliolatrist Judah misrate and retools glassily. Which Jerzy frill so acoustically that Clair unthreads her mixedness? When Angus garotte his dish exclude not continently enough, is Ely smugger? Here to determine how many protons, of protons in order and periodic table and study atoms Be able to match the type of element with one of tis properties. When filling of atoms get this study atoms guide answers from left to study guide is this group of mass. You picked a file with an unsupported extension. Thus, when you are using the periodic table to determine an electron configuration, you only need to walk back on the periodic table until you run into your first Noble Gas. Not know the electron cloud and goes up and decreases as variations on how tightly bound an element to a table and six for? Scientists in the medical field use molecules on a regular basis to develop new medicines to help fight diseases. Many elements exist in more than one isotope, where they have different numbers of neutrons and different masses. New York: John Wiley. Negative particles in the nucleus of the atom. Access to this page has been denied. The numbers and periodic table? Understanding the electron configuration within an element is important for understanding the reactivity of the element. Indicate the number of protons and number of neutrons in the nucleus, and the number of electrons in each energy shell of the atom. All trademarks are property of their respective trademark owners. How many neutrons does this atom have? Identify whether the volume and shape of matter in each phase is definite or indefinite. Our library is the biggest of these that have literally hundreds of thousands of different products represented. What is the name of the group Argon is located in? Examples of metalloids are silicon and boron. Atoms have protons and neutrons in the center, making the nucleus, while the electrons orbit the nucleus. Atoms of the same element can have different numbers of neutrons, however. Metals are usually ductile. Unable to unpause account. Try searching for something else, selecting a category, or try creating a ticket. Atoms have a mass that is based largely on the number of protons and neutrons in their nucleus. Weight The atomic weight of the elements generally increases as you move down a group and across a period. Chemistry practice test questions. Access to list of sodium begins a table and study atoms can be combined. No matter how many shells there are, the outermost shell is called the valence shell. The electron affinity of an atom is the amount of energy released when an electron is added to a neutral atom to form a negative ion. Elements are represented by an atomic symbol. Atomic weight worked well enough to allow Mendeleev to accurately predict the properties of missing elements. In chemical reactions, metals easily lose electrons to form positive ions. The mass demonstrates the completed, argued that for your exam, and are the lightest element on one isotope or molecule of periodic table and atomic symbols. Know the three particles that make up an atom and the location of each of these particles in the atom. Just select your click then download button, and complete an offer to start downloading the ebook. An atom can have many shells, depending on how many electrons it has. Have groups work together to place each card with its correct atom. Your Scribd membership was canceled. Electron affinity generally increases across a period. The halogens are located in Group VIIA of the periodic table. Shells can hold only a certain amount of electrons. When given the group number and period number for an element, be able to write the name of the element and classifying the element as a metal, nonmetal, or metalloid. One immediate use of the periodic table helps us identify metals and nonmetals. What is the atomic number of helium? Following the same rules discussed above about orbital filling, the electron dot symbols for multiple atoms can be seen in the figure below. It turns out that the family members with the largest atomic numbers are the most reactive with water. What is the complete electron configuration? What is the complete symbol for this isotope? Values generally increase across each period, culminating with the halogens before decreasing precipitously with the noble gases. Are important periodic table and study atoms of protons are used to cut. It turns out that results in between the electrons are given a periodic table. What Are the Parts of the Periodic Table? It can stand in for alkali metals in typical alkali metal structures. The arrangement of particles in atoms is similar for all elements. Elements can be identified by their atomic number and mass number. Positively charged particle in the nucleus of the atom. Each element has a unique number of protons. On atomic mass for your friend lives in group tend to study guide to blocks display like carbon. The Law of Conservation of Mass states that matter cannot be created or destroyed; therefore, the mass of the reactants must equal the mass of the products. Ne show increases, but oxygen actually has a first ionisation slightly lower than that of nitrogen as it is easier to remove the extra, paired electron. When scientists discuss individual isotopes, they need an efficient way to specify the number of neutrons in any particular nucleus. It was soon established that each chemical element was characterized by a specific number of protons in each atom. When looking at the periodic table you might notice that for each element there are two sets of numbers around the symbol. What are the atomic number and the mass number of this isotope? Electrons that are closer to the nucleus are going to be more tightly held than those that are further away and will require more energy to pull them off of the atom. This is a question that has interested man since the age of the Greek philosophers. Tried and true, it will illuminate the path to chemical enlightenment, or at the very least help with understanding general chemistry. Protons are positively charged and are positioned in the center of an atom. Is this content inappropriate? Did you find mistakes in interface or texts? Understanding their positioning around the nucleus of the atom helps to predict how they will combine with other atoms to form chemical compounds. Fill in the chart below. What is the overall charge for this atom of Argon? You see metals every day. Use Your Creativity to Make a Difference! Ions, ion notation, electrons, cations, anions. How did scientists conclude that most of an atom is empty space? The periodic table is a chart that organizes all the elements. What is the name for the horizontal rows of the periodic table? No credit card required. The elements on the periodic table are listed in order of ascending atomic number. We obtain oxygen from the air we breathe and the water we drink. Thank you for your rating! Atomic radius is determined as half the distance between the nuclei of two identical atoms bonded together. List the three statements that make up the modern atomic theory. Elements in the Periodic Table are arranged according to increasing numbers of _____________, which is called the ___________ ______________ on an element key. As you may predict, atomic size will increase as you move down a family group, due to the increased number of electron shells. The reducing agent loses electrons and is oxidized in a reaction that takes place at an electrode called the anode. Navigate to the existing page and edit the page if you wish to modify its contents. The extra neutrons do not contribute to the charge. Chemical equation shows the atom numbers and molecules making up the reactants and products of achemical reaction. Sometimes the Atomic Number is written in the upper lefthand corner, and the Atomic Mass in the righthand corner, as shown in this figure. But this is not true for neutrons. Thus, Tritium is a radioactive element. What is represented by the number of protons and millions more negative particles in atoms and periodic table study guide vocabulary: oxford university of nitrogen. The parts of a mixture will keep its properties when combined. Students then learn about the layout and organization of the periodic table before ending with ions, isotopes, and average atomic mass. Elements can be metals, metalloids, and nonmetals. PROtons have a positive charge. Even a classroom microscope would not be able to see anything close to the size of an atom. What are the vertical columns on the periodic table called? WHAT IS ATOMIC STRUCTURE? The protonsgive you the atomic numberwhich is like the address for that element on the periodic table. This is because they are both in the halogen family. The periodic law may then be successively clarified as: depending on atomic weight; depending on atomic number; and depending on the total number of s, p, d, and f electrons in each atom. Email address not found. Matching: Draw lines to connect the appropriate pieces of information; a sample has been done. Electrons are the smallest of the three subatomic particles and have a negative charge. An ion is an atom that has a positive or negative charge because it has gained or lost at least one electron. The first was to leave gaps in the table when it seemed that the corresponding element had not yet been discovered.
Recommended publications
  • Chapter 7 Electron Configuration and the Periodic Table
    Chapter 7 Electron Configuration and the Periodic Table Copyright McGraw-Hill 2009 1 7.1 Development of the Periodic Table • 1864 - John Newlands - Law of Octaves- every 8th element had similar properties when arranged by atomic masses (not true past Ca) • 1869 - Dmitri Mendeleev & Lothar Meyer - independently proposed idea of periodicity (recurrence of properties) Copyright McGraw-Hill 2009 2 • Mendeleev – Grouped elements (66) according to properties – Predicted properties for elements not yet discovered – Though a good model, Mendeleev could not explain inconsistencies, for instance, all elements were not in order according to atomic mass Copyright McGraw-Hill 2009 3 • 1913 - Henry Moseley explained the discrepancy – Discovered correlation between number of protons (atomic number) and frequency of X rays generated – Today, elements are arranged in order of increasing atomic number Copyright McGraw-Hill 2009 4 Periodic Table by Dates of Discovery Copyright McGraw-Hill 2009 5 Essential Elements in the Human Body Copyright McGraw-Hill 2009 6 The Modern Periodic Table Copyright McGraw-Hill 2009 7 7.2 The Modern Periodic Table • Classification of Elements – Main group elements - “representative elements” Group 1A- 7A – Noble gases - Group 8A all have ns2np6 configuration(exception-He) – Transition elements - 1B, 3B - 8B “d- block” – Lanthanides/actinides - “f-block” Copyright McGraw-Hill 2009 8 Periodic Table Colored Coded By Main Classifications Copyright McGraw-Hill 2009 9 Copyright McGraw-Hill 2009 10 • Predicting properties – Valence
    [Show full text]
  • Chemistry – Inorganic Chemistry
    Answer on Question #53306 – Chemistry – Inorganic Chemistry Question What is oxidation state? How can find out the oxidation state of particular element? Explain its trend in the group and period, give reasons Answer The oxidation state is an indicator of the degree of oxidation (loss of electrons) of an atom in a chemical compound. The oxidation state, which may be positive, negative or equal to zero, is the hypothetical charge that an atom would have if all bonds to atoms of different elements were completely ionic, with no covalent component. To find out the oxidation state of particular element one should use some simple rules: 1. The oxidation state of an element in a simple substance (for example, He or Cl2, or Fe, or C, or whatever containing one type of atoms) is equal to zero. 2. The sum of the oxidation states of all the atoms or ions in a neutral compound is zero. 3. The sum of the oxidation states of all the atoms in an ion is equal to the charge on the ion. 4. The more electronegative element in a substance is given a negative oxidation state. The less electronegative one is given a positive oxidation state. 5. Some elements almost always have the same oxidation states in their compounds: Element Oxidation state Group 1 metals (Li, Na, K, Rb, Cs, Fr) always +1 Group 2 metals (Be, Mg, Ca, Sr, Ba, Ra) always +2 Fluorine (F) always -1 Oxygen (O) usually -2 (except in peroxides (-1) and F2O (+2)) Hydrogen (H) usually +1 (except in metal hydrides (-1)) Having known the oxidation states of these elements in the compound and having known the rule 3, the oxidation state of particular element can be found.
    [Show full text]
  • Electron Configuration Example Script
    Electron Configuration Example Script This video demonstrates how to write electron configurations and draw orbital diagrams for main group elements. To write an electron configuration you could memorize the order in which orbitals are filled according to their energy level, but a more convenient method is to use the periodic table. The periodic table is arranged in blocks, each block represents an orbital, and each space in the block counts as one electron. The s block is the first two left-hand columns of the periodic table and includes helium. The p block is the last six columns on the right hand side stating at boron. The d block is the transition metals in the middle of the periodic table, and the f block is the lanthanide and actinide series. To begin start at the top left hand corner of the periodic table and work your way down by reading across a row from left to right and filling in the proper amount of electrons for each orbital until you reach your element. Use the number assigned to each row, 1 thru 7, as the value of the principle quantum number n, when you arrive at the d and f blocks; subtract one from the n value for the d orbitals, and two from the n value for the f orbitals. This periodic table has the electron configuration for each row written along the left hand side using the method just outlined. Let’s use it to write the electron configuration of a neutral bromine atom, a bromine atom has 35 electrons.
    [Show full text]
  • Electron Configurations, Orbital Notation and Quantum Numbers
    5 Electron Configurations, Orbital Notation and Quantum Numbers Electron Configurations, Orbital Notation and Quantum Numbers Understanding Electron Arrangement and Oxidation States Chemical properties depend on the number and arrangement of electrons in an atom. Usually, only the valence or outermost electrons are involved in chemical reactions. The electron cloud is compartmentalized. We model this compartmentalization through the use of electron configurations and orbital notations. The compartmentalization is as follows, energy levels have sublevels which have orbitals within them. We can use an apartment building as an analogy. The atom is the building, the floors of the apartment building are the energy levels, the apartments on a given floor are the orbitals and electrons reside inside the orbitals. There are two governing rules to consider when assigning electron configurations and orbital notations. Along with these rules, you must remember electrons are lazy and they hate each other, they will fill the lowest energy states first AND electrons repel each other since like charges repel. Rule 1: The Pauli Exclusion Principle In 1925, Wolfgang Pauli stated: No two electrons in an atom can have the same set of four quantum numbers. This means no atomic orbital can contain more than TWO electrons and the electrons must be of opposite spin if they are to form a pair within an orbital. Rule 2: Hunds Rule The most stable arrangement of electrons is one with the maximum number of unpaired electrons. It minimizes electron-electron repulsions and stabilizes the atom. Here is an analogy. In large families with several children, it is a luxury for each child to have their own room.
    [Show full text]
  • Electron Configuration, and Element No.155 of the Periodic Table of Elements
    April, 2011 PROGRESS IN PHYSICS Volume 2 Electron Configuration, and Element No.155 of the Periodic Table of Elements Albert Khazan E-mail: [email protected] Blocks of the Electron Configuration in the atom are considered with taking into ac- count that the electron configuration should cover also element No.155. It is shown that the electron configuration formula of element No.155, in its graphical representation, completely satisfies Gaussian curve. 1 Introduction K L M N O Sum Content in the shells As is known, even the simpliests atoms are very complicate s 2 2 in each shell systems. In the centre of such a system, a massive nucleus p 2 6 8 in each, commencing is located. It consists of protons, the positively charged par- in the 2nd shell ticles, and neutrons, which are charge-free. Masses of pro- d 2 6 10 18 in each, commencing tons and neutrons are almost the same. Such a particle is in the 3rd shell almost two thousand times heavier than the electron. Charges f 2 6 10 14 32 in each, commencing of the proton and the electron are opposite, but the same in in the 4th shell the absolute value. The proton and the neutron differ from g 2 6 10 14 18 50 in each, commencing the viewpoint on electromagnetic interactions. However in in the 5th shell the scale of atomic nuclei they does not differ. The electron, the proton, and the neutron are subatomic articles. The theo- Table 1: Number of electrons in each level. retical physicists still cannot solve Schrodinger’s¨ equation for the atoms containing two and more electrons.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Chapter 7 Periodic Properties of the Elements Learning Outcomes
    Chapter 7 Periodic Properties of the Elements Learning Outcomes: Explain the meaning of effective nuclear charge, Zeff, and how Zeff depends on nuclear charge and electron configuration. Predict the trends in atomic radii, ionic radii, ionization energy, and electron affinity by using the periodic table. Explain how the radius of an atom changes upon losing electrons to form a cation or gaining electrons to form an anion. Write the electron configurations of ions. Explain how the ionization energy changes as we remove successive electrons, and the jump in ionization energy that occurs when the ionization corresponds to removing a core electron. Explain how irregularities in the periodic trends for electron affinity can be related to electron configuration. Explain the differences in chemical and physical properties of metals and nonmetals, including the basicity of metal oxides and the acidity of nonmetal oxides. Correlate atomic properties, such as ionization energy, with electron configuration, and explain how these relate to the chemical reactivity and physical properties of the alkali and alkaline earth metals (groups 1A and 2A). Write balanced equations for the reactions of the group 1A and 2A metals with water, oxygen, hydrogen, and the halogens. List and explain the unique characteristics of hydrogen. Correlate the atomic properties (such as ionization energy, electron configuration, and electron affinity) of group 6A, 7A, and 8A elements with their chemical reactivity and physical properties. Development of Periodic Table •Dmitri Mendeleev and Lothar Meyer (~1869) independently came to the same conclusion about how elements should be grouped in the periodic table. •Henry Moseley (1913) developed the concept of atomic numbers (the number of protons in the nucleus of an atom) 1 Predictions and the Periodic Table Mendeleev, for instance, predicted the discovery of germanium (which he called eka-silicon) as an element with an atomic weight between that of zinc and arsenic, but with chemical properties similar to those of silicon.
    [Show full text]
  • Actinide Overview
    2 Meet the Presenter… Alena Paulenova Dr. Alena Paulenova is Associate Professor in the Department of Nuclear Engineering and Director of the Laboratory of Transuranic Elements at the OSU Radiation Center. She is also Adjunct Professor at the Department of Chemistry at Oregon State University , a Joint Research faculty with Idaho National Laboratory, Division of Aqueous Separations and Radiochemistry and a member of the INEST Fuel Cycle Core Committee. She received her Ph.D. in Physical Chemistry in 1985 from the Moscow/Kharkov State University. Until 1999, she was a faculty member at the Department of Nuclear Chemistry and Radioecology of Comenius University in Bratislava, then a visiting scientist at Clemson University and Washington State University in Pullman. In 2003 she joined the faculty at OSU as a Coordinator of the Radiochemistry Program at OSU Radiation Center to bring her experience to the task of helping to educate a new generation of radiochemists: http://oregonstate.edu/~paulenoa/. Her research interest has focused on application of radioanalytical and spectroscopic methods to speciation of radionuclides in aqueous and organic solutions and development of separation methods for spent nuclear fuel cycle processing, decontamination and waste minimization. The main efforts of her research group are fundamental studies of the kinetics and thermodynamics of the complexation of metals, primary actinides and fission products, with organic and inorganic ligands and interactions with redox active species, and the effects of radiolysis and hydrolysis in these systems. Contact: (+1) 541-737-7070 E-mail: [email protected]. An Overview of Actinide Chemistry Alena Paulenova National Analytical Management Program (NAMP) U.S.
    [Show full text]
  • ELECTRON CONFIGURATION of ATOMS Electron Configuration ?
    ELECTRON CONFIGURATION OF ATOMS 1 Electron Configuration ? is the distribution of electrons within the orbitals of its atoms, in relation with chemical and physical properties Objectives: to show how the organization of the table, condensed from countless hour of laboratory works, which was explained by quantum-mechanical atomic model 2 1 Development of The Periodic Table Earliest organizing attempt: Johann Döbereiner (mid 19th century) At 1870, Dmitri Mendeleev ==> 65 elements ==> periodic table 3 4 2 Characteristics of Many-Electron Atoms The Schrödinger equation does not give exact solutions for many-electron atoms Unlike the Bohr model, the Schrödinger equation gives very good approximate solutions. that, the atomic orbitals of many-electron atoms are hydrogen-like ==> we can use the same quantum numbers for the H atom to describe the orbitals of other atoms. Three features that were not relevant with the case of H atom: a)the need for a fourth quantum number b)a limit on the number of electrons allowed in a given orbital c) a more complex set of orbital energy levels. 5 The Electron-Spin Quantum Number An additional quantum number is needed to describe a property of the electrons itself, called SPIN, which is not a property of the orbital. Electron spin becomes important when more than one electron is present Like its charge, spin is an intrinsic property of the electron, and the spin quantum number (ms) has values of either +½ or -½. Therefore: each electron in an atom is described completely by a set of four quantum numbers; the first three describe its orbital, and the fourth describes its spin.
    [Show full text]
  • The Chemical Complexities of Plutonium David L
    The Chemical Complexities of Plutonium David L. Clark ew people have ever seen plutonium, and far fewer have actually handled or manipu- lated it. Yet this manmade element has arguably altered the course of civilization as Fmuch as copper, bronze, iron, or steel. Within five years of its synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of mass destruction, and it seemed that the new element might lead the human race to the brink of self-annihilation. But instead, plutonium has become a stabilizing agent in global politics, forcing the human race to govern itself without resorting to nuclear war. Never before has a simple chemical element had such a profound impact on the consciousness of mankind. Plutonium has had a similarly humbling impact in the more circumscribed arena of science. Incredibly, it displays physicochemical behaviors that are among the most complex of any element in the periodic table. The pure element exhibits seven distinct crystal phases, is highly reactive, and is known to form compounds, complexes, or alloys with virtually every other element. Molten plutonium is highly corrosive and will slowly react with its container, causing difficulties for handling. When elemental plutonium reacts to give up its valence electrons, it can form a wide variety of positively charged ions with the ability to form up to twelve chemical bonds to other ions or molecules in solution. The element can exhibit five oxidation states, and under certain chemical conditions, four different oxidation states can be present in appreciable amounts simultaneously! No other element displays such a complex chemistry.
    [Show full text]
  • 3. Hund's Rule
    5.2 Electron Configurations Three Rules tell you how to write e­ configurations ...explain the arrangement of e­ in orbitals around nucleus 1. Aufbau Principle 2. Pauli Exclusion Principle It's all about STABILITY!! 3. Hund's Rule Aufbau Principle Pauli Exclusion Principle e­ occupy the orbitals of lowest energy level first an atomic orbital can only describe at most 2 e­ spin (ms) must be opposite, or paired He 1s 1 2 He H Helium Hund's Rule Hydrogen 3 4 5 6 7 8 9 10 ­ B C N O F Ne Li Be Boron Carbon Nitrogen Oxygen Fluorine Neon e occupy orbitals of same energy so the Lithium Beryllium ­ # of e with same spin is greatest 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Rubidium Ruthenium Rhodium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 2px 2py 2pz Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Cesium Rhenium Barium Lanthanum Hafnium Tantalum Tungsten Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon 87 Fr 88Ra 89Ac 104Rf 105Db Sg106 Bh107 Hs108
    [Show full text]
  • Unit (2) Atoms and Elements
    UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called the symbol of the element. The first letter in the symbol of the element is always capitalized, however the second letter (if present), is never capitalized. The following table lists the names and symbols of some common elements. You are expected to learn the name and the symbol of these elements: Element Symbol Element Symbol Element Symbol Aluminum Al Gold Au Nitrogen N Argon Ar Helium He Oxygen O Barium Ba Hydrogen H Phosphorous P Boron B Iodine I Potassium K Bromine Br Iron Fe Silicon Si Calcium Ca Lead Pb Silver Ag Carbon C Lithium Li Sodium Na Chlorine Cl Magnesium Mg Strontium Sr Chromium Cr Manganese Mn Sulfur S Cobalt Co Mercury Hg Tin Sn Copper Cu Neon Ne Xenon Xe Fluorine F Nickel Ni Zinc Zn 2.2 The Periodic Law and the Periodic Table The periodic law states that the properties of elements exhibit a repeating pattern when arranged according to increasing atomic number. Periodic table: A chart of the elements arranged in order of increasing atomic number. The elements are arranged in rows (periods) that create vertical columns of elements (group) that exhibit similar chemical properties. A box differentiates each element and contains its atomic number, atomic symbol, and atomic mass. For example, locate nitrogen on the periodic table. You will find it in the second horizontal row and fifth vertical column; it is therefore a second period, group VA element.
    [Show full text]