6Cfe01-543 2/10

Total Page:16

File Type:pdf, Size:1020Kb

6Cfe01-543 2/10 6CFE01-543 2/10 Anatomía de Cupresáceas ROMÁN, E.1, GARCÍA ESTEBAN, L.1, DE PALACIOS DE PALACIOS, P.1 y GARCÍA 1 FERNÁNDEZ, F. 1 Cátedra de Tecnología de la Madera. Dpto. Ingeniería Forestal. E.T.S.I. Montes – Universidad Politécnica de Madrid. Resumen Se han descrito anatómicamente las maderas de 17 géneros monoespecíficos de la familia Cupressaceae: Taiwania, Sequoiadendron, Sequoia, Metasequoia, Cryptomeria, Glyptostrobus, Thujopsis, Fokienia, Tetraclinis, Platycladus, Microbiota, Papuacedrus, Pilgerodendron, Austrocedrus, Diselma, Fitzroya y Neocallitropsis. Para la evaluación de los clades establecidos por filogenie molecular y las agrupaciones morfológicas, se han considerado aquellos caracteres de la madera que no se encuentran influenciados por factores externos o internos. Como estudios previos manifiestan, nuestros resultados revelan un alto grado de homogeneidad entre los géneros estudiados, destacando algunas características anatómicas comunes como la presencia de extensiones de toro, verrugosidades en la cara interna de las traqueidas, la presencia de parénquima axial y el campo de cruce tipo cupressoide. La existencia de estas características, corrobora la inclusión de la familia Taxodiaceae dentro de Cupressaceae, permitiéndole formar un grupo dentro de la misma por su mayor altura de los radios leñosos y la presencia de campo de cruce tipo taxodioide. Nuestro estudio anatómico también apoya la asociación entre los géneros Fitzroya-Diselma, Fitzroya-Diselma-Pilgerodendron, Glyptostrobus-Cryptomeria, Sequoia-Sequoiadendron y Sequoia-Sequoiadendron-Metasequoia. Contrariamente, las descripciones anatómicas de los 17 géneros no presentan un resultado firme para la división entre aquellos pertenecientes al Hemisferio Norte o Sur así como otras asociaciones, debilitando los grupos. Palabras clave Madera, microscopía electrónica, microscopía óptica, filogenie. 1. Introducción La familia Cupressaceae consta de 30 géneros distribuidos por todo el mundo (FARJON, 2005), 17 de los cuales son monoespecíficos. La descripción anatómica de sus especies ha sido realizada por diversos autores (PEIRCE, 1936; 1937; PHILLIPS, 1948; GREGUSS, 1955; GAUSSEN, 1968; PANSHIN & DE ZEEUW 1980; GROMYKO, 1982; ESTEBAN et al., 2002), aunque en muchas ocasiones son contradictorias. La causa de esta falta de consenso entre los diversos autores se debe a la variabilidad que muestran algunos caracteres anatómicos según los factores ambientales y a la posición de la muestra en el árbol (JONES, 1924; BANNAN, 1941; 1944; PANSHIN & DE ZEEUW 1980; YAMAMOTO, 1992; MARTÍN et al., 2010; ESTEBAN et al., 2012). Basados en criterios morfológicos (YOUNG & WATSON 1969; ECKENWALDER, 1976; HART, 1987) o moleculares (TSUMURA et al., 1995; KUSUMI et al., 2000; GADEK et al., 2000; QUINN et al., 2002), diversos autores han realizado distintas agrupaciones entre los géneros de la familia Cupressaceae, según las afinidades entre los mismos. 3/10 2. Objetivos El objetivo de este estudio es describir anatómicamente los géneros monoespecíficos de la familia Cupressaceae, según el criterio especificado por IAWA COMMITTEE (2004), y en base al mismo, discutir las asociaciones en clades establecidas por filogenie molecular y las agrupaciones con base morfológica. 3. Metodología Las especies estudiadas, así como su procedencia y la colección de origen, se encuentran enumeradas en la Tabla 1. Las preparaciones microscópicas fueron preparadas siguiendo los métodos usuales de reblandecimiento, corte (empleándose para cortar el microtomo con grosores entre 10 – 15 µm), tinción y montaje. Las muestras fueron observadas sin teñir y teñidas con safranina y Sudan 4 para colorear la resina de rojo (JANE, 1970). La descripción anatómica se realizó siguiendo la terminología de IAWA COMMITTEE (2004). Las muestras han sido observadas utilizando microscopio óptico (Ligth Microscopy) Leica DM2500 con cámara DFC 420 y software de tratamiento de imágenes IM50 v.5 release 220, y microscopio electrónico de barrido (Scanning Electron Microscopy) SEM mod. JEOL JSM-6380. Las muestras empleadas en el microscopio electrónico fueron preparadas mediante el método descrito por HEADY & EVANS (2000). 4. Resultados En la Tabla 2 se recoge la descripción anatómica de la madera, según el criterio de IAWA COMMITTEE (2004), de los 17 géneros monoespecíficos de la familia Cupressaceae. Los caracteres que se han tenido en cuenta son aquellos que no se ven afectados por factores ambientales ni por la posición de la muestra en el árbol. Dichos caracteres son: depósitos en traqueidas (48) (Fig. 1A); extensiones de toro (58) (Fig. 1B); muescas en el borde de las punteaduras (59) (Fig. 1C); verrugosidades (60) (Fig. 1D); parénquima axial presente (72); pared transversal lisa (76) (Fig. 1E); pared transversal irregular (77) (Fig. 1F); pared transversal nodular (78) (Fig. 1G); paredes axiales nodulares (86) (Fig. 1H); paredes horizontales lisas (87) (Fig. 1I); paredes horizontales punteadas (88) (Fig. 1H); hendiduras (89) (Fig. 1J); campo de cruce tipo cupressoide (93) (Fig. 1K); campo de cruce tipo taxodioide (94) (Fig. 1L); radios de menos de 4 células de altura (102); radios entre 5 y 15 células de altura (103); radios entre 16 y 30 células de altura (104); radios de más de 30 células de altura (105). 5. Discusión La inclusión de la familia Taxodiaceae (menos Sciadopitys) dentro de Cupressaceae, se ha realizado en base a criterios moleculares (TSUMURA et al., 1995; KUSUMI et al., 2000; GADEK et al., 2000; QUINN et al., 2002) y morfológicos (YOUNG & WATSON 1969; ECKENWALDER, 1976; HART, 1987). Tal inclusión se ve reforzada por las características anatómicas observadas, como ya señalaron YOUNG & WATSON (1969), pudiéndose determinar rasgos casi generales entre todos los géneros de la familia Cupressaceae, como las 4/10 extensiones de toro (salvo en Tetraclinis (Fig. 1B), las verrugosidades en la cara interna de las traqueidas (menos en Papuacedrus y Neocallitropsis) (Fig. 1D), la presencia de parénquima axial (a excepción de Neocallitropsis) y el campo de cruce tipo cupressoide (Fig. 1K). Tabla 1. Lista de especies estudiadas con referencia a las colecciones de donde se han obtenido las muestras y su región de procedencia Número Especies Distribución geográfica Institución (Código) referencia Forest Products Laboratory (SJRw 3747) Fitzroya cupressoides 1 Chile y Argentina Maderas de Chile Universidad de (Molina) I. M. Johnston Valdivia Austrocedrus chilensis (D. Maderas de Chile Universidad de 2 Chile y Argentina Don) Pic. Serm. y Bizarri Valdivia Pilgerodendron uviferum Maderas de Chile Universidad de 3 Chile y Argentina (D. Don) Florin Valdivia Sequoia sempervirens (D. Costa Oeste de los Tervuren Xylarium, Royal Museum of 4 Don) Endl EEUU Central Africa (Tw 45912) Sequoiadendron Universidad Politécnica de Madrid, ETSI Costa Oeste de los 5 giganteum (Lindl.) J. Montes, Cátedra de Tecnología de la EEUU Buchholz madera (ETSIM X1559) Metasequoia Jodrell Laboratory, Royal Botanic 6 glyptostroboides Hu y W. China Gardens (Kew 24607 W2) C. Cheng Glyptostrobus pensilis Department of Botany, National Museum 7 (Stauton ex D. Don) K. China of Natural History, Smithsonian Koch Institution (USw 4420) Universidad Politécnica de Madrid, ETSI Cryptomeria japonica 8 Japón Montes, Cátedra de Tecnología de la (Thunb. ex L. f.) D. Don madera (ETSIM X1513) Myanmar, Taiwan, Taiwania cryptomerioides 9 Vietnam y el oeste de Universidad de Kyoto Hayata China Papuacedrus papuana (F. Nueva Guinea y las Jodrell Laboratory, Royal Botanic 10 Muell.) H. L. Li Molucas Gardens (Kew 19275 W2) Forest Products Laboratory (SJRw 11 Diselma archeri Hook. f. Tasmania 27044) Neocallitropsis pancheri Forest Products Laboratory (SJRw 12 Nueva Caledonia (Carrière) de Laub. 51802) Fokienia hodginsii (Dunn) Forest Products Laboratory (SJRw 13 China, Laos y Vietnam A. Henry y H. H. Thomas 23080) Universidad Politécnica de Madrid, ETSI Microbiota decussate 14 Rusia Montes, Cátedra de Tecnología de la Komarov madera (ETSIM X1198) Thujopsis dolabrata Jodrell Laboratory, Royal Botanic 15 (Thunb. ex L. f.) Siebold Japón Gardens (Kew 19329 W2) y Zucc. Platycladus orientalis (L.) Jodrell Laboratory, Royal Botanic 16 China, Corea y Rusia Franco Gardens (Kew 71699 W2) España, Algeria, Malta, Universidad Politécnica de Madrid, ETSI Tetraclinis articulata 17 Marruecos, Túnez y Montes, Cátedra de Tecnología de la (Vahl) Mast. Libia madera (ETSIM X1523) En el estudio de los géneros monoespecíficos del grupo Taxodiaceae (Sequoia, Sequoiadendron, Metasequoia, Glyptostrobus, Cryptomeria y Taiwania), se han observado características anatómicas que permiten diferenciarlos del resto de cupresáceas, ya que poseen 5/10 un mayor rango de altura de los radios leñosos, se observa la presencia en los radios de paredes horizontales tanto lisas como punteadas, y muchos de ellos presentan un campo de cruce tipo taxodioide, que sólo se ha observado fuera de este grupo en Papuacedrus y Microbiota (Fig. 1L). Dentro de este grupo se han descrito por caracteres morfológicos y moleculares dos clades bien resueltos: Sequoioid (Metasequoia-Sequoia- Sequoiadendron) y Taxodioid (Cryptomeria-Taxodium -Glyptostrobus) (ECKENWALDER, 1976; TSUMURA et al., 1995; GADEK et al., 2000). Anatómicamente se han observado características generales en los dos clades, pero se diferencian en una presencia generalizada de hendiduras y campo de cruce tipo taxodioide en Taxodioid, y una altura de los radios mayor en Sequoioid. Dentro del clade Sequoioid, los géneros Sequoia-Sequoiadendron son muy semejantes,
Recommended publications
  • New Fossil Plant Discovery Links Patagonia to New Guinea in a Warmer Past 10 November 2009
    New fossil plant discovery links Patagonia to New Guinea in a warmer past 10 November 2009 insect-feeding richness found at the fossil sites. The specimen shown is coalified with light patches of facial leaf cuticle visible overlying coal. Note opposite branching, enlarged lateral leaves, and light-colored amber in foliar resin canals. Credit: Image credit: P. Wilf. Fossil plants are windows to the past, providing us with clues as to what our planet looked like millions of years ago. Not only do fossils tell us which species were present before human-recorded history, but they can provide information about the climate and how and when lineages may have dispersed around the world. Identifying fossil plants can be tricky, however, when plant organs fail to be This is foliage of Papuacedrus prechilensis (Berry) Wilf preserved or when only a few sparse parts can be et al., comb. nov. (Cupressaceae), from the middle found. Eocene Río Pichileufú flora of Río Negro Province, Patagonia, Argentina. The monotypic genus In the November issue of the American Journal of Papuacedrus is today restricted to montane rainforests Botany, Peter Wilf (of Pennsylvania State of New Guinea and the Moluccas, but its scarce fossil University) and his U.S. and Argentine colleagues record includes Tasmania and Antarctica. Wilf et al. published their recent discovery of abundant describe a suite of well-preserved specimens excavated from early and middle Eocene sites in Patagonia, fossilized specimens of a conifer previously known including an immature seed cone attached to foliage with as "Libocedrus" prechilensis found in Argentinean organic preservation, bearing numerous characters Patagonia.
    [Show full text]
  • Extinction, Transoceanic Dispersal, Adaptation and Rediversification
    Turnover of southern cypresses in the post-Gondwanan world: Title extinction, transoceanic dispersal, adaptation and rediversification Crisp, Michael D.; Cook, Lyn G.; Bowman, David M. J. S.; Author(s) Cosgrove, Meredith; Isagi, Yuji; Sakaguchi, Shota Citation The New phytologist (2019), 221(4): 2308-2319 Issue Date 2019-03 URL http://hdl.handle.net/2433/244041 © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust; This is an open access article under the terms Right of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Type Journal Article Textversion publisher Kyoto University Research Turnover of southern cypresses in the post-Gondwanan world: extinction, transoceanic dispersal, adaptation and rediversification Michael D. Crisp1 , Lyn G. Cook2 , David M. J. S. Bowman3 , Meredith Cosgrove1, Yuji Isagi4 and Shota Sakaguchi5 1Research School of Biology, The Australian National University, RN Robertson Building, 46 Sullivans Creek Road, Acton (Canberra), ACT 2601, Australia; 2School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia; 3School of Natural Sciences, The University of Tasmania, Private Bag 55, Hobart, Tas 7001, Australia; 4Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; 5Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan Summary Author for correspondence: Cupressaceae subfamily Callitroideae has been an important exemplar for vicariance bio- Michael D. Crisp geography, but its history is more than just disjunctions resulting from continental drift. We Tel: +61 2 6125 2882 combine fossil and molecular data to better assess its extinction and, sometimes, rediversifica- Email: [email protected] tion after past global change.
    [Show full text]
  • Bgci's Plant Conservation Programme in China
    SAFEGUARDING A NATION’S BOTANICAL HERITAGE – BGCI’S PLANT CONSERVATION PROGRAMME IN CHINA Images: Front cover: Rhododendron yunnanense , Jian Chuan, Yunnan province (Image: Joachim Gratzfeld) Inside front cover: Shibao, Jian Chuan, Yunnan province (Image: Joachim Gratzfeld) Title page: Davidia involucrata , Daxiangling Nature Reserve, Yingjing, Sichuan province (Image: Xiangying Wen) Inside back cover: Bretschneidera sinensis , Shimen National Forest Park, Guangdong province (Image: Xie Zuozhang) SAFEGUARDING A NATION’S BOTANICAL HERITAGE – BGCI’S PLANT CONSERVATION PROGRAMME IN CHINA Joachim Gratzfeld and Xiangying Wen June 2010 Botanic Gardens Conservation International One in every five people on the planet is a resident of China But China is not only the world’s most populous country – it is also a nation of superlatives when it comes to floral diversity: with more than 33,000 native, higher plant species, China is thought to be home to about 10% of our planet’s known vascular flora. This botanical treasure trove is under growing pressure from a complex chain of cause and effect of unprecedented magnitude: demographic, socio-economic and climatic changes, habitat conversion and loss, unsustainable use of native species and introduction of exotic ones, together with environmental contamination are rapidly transforming China’s ecosystems. There is a steady rise in the number of plant species that are on the verge of extinction. Great Wall, Badaling, Beijing (Image: Zhang Qingyuan) Botanic Gardens Conservation International (BGCI) therefore seeks to assist China in its endeavours to maintain and conserve the country’s extraordinary botanical heritage and the benefits that this biological diversity provides for human well-being. It is a challenging venture and represents one of BGCI’s core practical conservation programmes.
    [Show full text]
  • Vietnamese Conifers and Some Problems of Their Sustainable Utilization Ke Loc Et Al
    Vietnamese conifers and some problems of their sustainable utilization Ke Loc et al. Vietnamese conifers and some problems of their sustainable utilization Phan Ke Loc 1, 2, Nguyen Tien Hiep 2, Nguyen Duc To Luu 3, Philip Ian Thomas 4, Aljos Farjon 5, L.V. Averyanov 6, J.C. Regalado, Jr. 7, Nguyen Sinh Khang 2, Georgina Magin 8, Paul Mathew 8, Sara Oldfield 9, Sheelagh O’Reilly 8, Thomas Osborn 10, Steven Swan 8 and To Van Thao 2 1 University of Natural Science, Vietnam National University, Hanoi; 2 Institute of Ecology and Biological Resources; 3 Vietnam Central Forest Seed Company; 4 Royal Botanic Garden Edinburgh; 5 Royal Botanic Gardens, Kew; 6 Komarov Botanical Institute; 7 Missouri Botanical Garden; 8 Fauna & Flora International; 9 Global Trees Campaign; 10 Independent Consultant Introduction Vietnam is now recognized as one of the top ten global conifer conservation ‘hotspots’, as defined by the Conifer Specialist Group of the World Conservation Union (IUCN). Vietnam’s conifer flora has approximately 34 species that are indigenous to the country, making up about 5% of conifers known worldwide. Although conifers represent only less than 0.3% of the total number of higher vascular plant species of Vietnam, they are of great ecological, cultural and economic importance. Most conifer wood is prized for its high value in house construction, furniture making, etc. The decline of conifer populations in Vietnam has caused serious concern among scientists. Threats to conifer species are substantial and varied, ranging from logging (both commercial and subsistence), land clearing for agriculture, and forest fire. Over the past twelve years (1995-2006), Vietnam Botanical Conservation Program (VBCP), a scientific cooperation between the Missouri Botanical Garden in Saint Louis and the Institute of Ecology and Biological Resources in Hanoi, has conducted various studies on this important group of plants in order to gather baseline information necessary to make sound recommendations for their conservation and sustainable use.
    [Show full text]
  • The Pine Genome Initiative- Science Plan Review
    ProCoGen Training Workshop 2013 Umeå An Undiscovered Country: What Comparative Genomics Tells Us of Gymnosperm Genomes Ujwal R. Bagal, W. Walter Lorenz, Jeffrey F.D. Dean Warnell School of Forestry and Natural Resources & Institute of Bioinformatics University of Georgia Diverse Form and Life History JGI CSP - Conifer EST Project Transcriptome Assemblies Statistics Pinaceae Reads Contigs* • Pinus taeda 4,074,360 164,506 • Pinus palustris 542,503 44,975 • Pinus lambertiana 1,096,017 85,348 • Picea abies 623,144 36,867 • Cedrus atlantica 408,743 30,197 • Pseudotsuga menziesii 1,216,156 60,504 Other Conifer Families • Wollemia nobilis 471,719 35,814 • Cephalotaxus harringtonia 689,984 40,884 • Sequoia sempervirens 472,601 42,892 • Podocarpus macrophylla 584,579 36,624 • Sciadopitys verticillata 479,239 29,149 • Taxus baccata 398,037 33,142 *Assembled using MIRA http://ancangio.uga.edu/ng-genediscovery/conifer_dbMagic.jnlp Loblolly pine PAL amino acid sequence alignment Analysis Method Sequence Collection PlantTribe, PlantGDB, GenBank, Conifer DBMagic assemblies 25 taxa comprising of 71 sequences Phylogenetic analysis Maximum Likelihood: RAxML (Stamatakis et. al) Bayesian Method: MrBayes (Huelsenbeck, et al.) Tree reconciliation: NOTUNG 2.6 (Chen et al.) Phylogenetic Tree of Vascular Plant PALs Phylogenetic Analysis of Conifer PAL Gene Sequences Conifer-specific branch shown in green Amino Acids Under Relaxed Constraint Maximum Likelihood analysis Nested codon substitution models M0 : constant dN/dS ratio M2a : rate ratio ω1< 1, ω2=1 and ω3>1 M3 : (ω1< ω2< ω3) (M0, M2a, M3, M2a+S1, M2a+S2, M3+S1, M3+S2) Fitmodel version 0.5.3 ( Guindon et al. 2004) S1 : equal switching rates (alpha =beta) S2 : unequal switching rates (alpha ≠ beta) Variable gymnosperm PAL amino acid residues mapped onto a crystal structure for parsley PAL Ancestral polyploidy in seed plants and angiosperms Jiao et al.
    [Show full text]
  • Tasmania - from the Wet West to the Dry East
    This collection is maintained with the assistance of the Tasmania - from the wet west to the dry east. Regional Branch of the Australian Plant Society. Influences on the development of the Tasmanian plant mix Montane moorland and cool oceanic heathland When Gondwana existed as a super Geology of Tasmania Vegetation Map of Tasmania The Tasmanian highland vegetation developed in isolation from the Australian Alps. Even during ice continent, Australia and Tasmania, Africa, ages, hundreds of kilometres of lowland vegetation separated the two high altitude environments. South America, New Zealand and Antarctica shared many plant families and some Montane plants have to cope with wide temperature fluctuations, with periods of below 0°C and Genera. exposure to winds. Cold may be prolonged if the ground freezes. Plants may be blanketed by snow or BASS STRAIT the mountains by cloud. Snowmelt or clear weather can cause intense rays of light, resulting in high For example, the protea family has members temperature. Wind or sun can dry the plant and soil. in all those land masses except Antarctica. The Southern Africa panel covers the protea family more fully. Plants require moisture and warmth. Small hard leaves offer Tasmania was the last land mass to break protection from the drying away from Antarctica. The opening of the effects of sun and wind. Low gap between these land masses allowed the ocean to circulate growth avoids wind. Branches around Antarctica, cooling the earth’s climate and so locking up grow close together to shelter vast quantities of water as ice. the parts of each plant.
    [Show full text]
  • Supporting Information
    Supporting Information Mao et al. 10.1073/pnas.1114319109 SI Text BEAST Analyses. In addition to a BEAST analysis that used uniform Selection of Fossil Taxa and Their Phylogenetic Positions. The in- prior distributions for all calibrations (run 1; 144-taxon dataset, tegration of fossil calibrations is the most critical step in molecular calibrations as in Table S4), we performed eight additional dating (1, 2). We only used the fossil taxa with ovulate cones that analyses to explore factors affecting estimates of divergence could be assigned unambiguously to the extant groups (Table S4). time (Fig. S3). The exact phylogenetic position of fossils used to calibrate the First, to test the effect of calibration point P, which is close to molecular clocks was determined using the total-evidence analy- the root node and is the only functional hard maximum constraint ses (following refs. 3−5). Cordaixylon iowensis was not included in in BEAST runs using uniform priors, we carried out three runs the analyses because its assignment to the crown Acrogymno- with calibrations A through O (Table S4), and calibration P set to spermae already is supported by previous cladistic analyses (also [306.2, 351.7] (run 2), [306.2, 336.5] (run 3), and [306.2, 321.4] using the total-evidence approach) (6). Two data matrices were (run 4). The age estimates obtained in runs 2, 3, and 4 largely compiled. Matrix A comprised Ginkgo biloba, 12 living repre- overlapped with those from run 1 (Fig. S3). Second, we carried out two runs with different subsets of sentatives from each conifer family, and three fossils taxa related fi to Pinaceae and Araucariaceae (16 taxa in total; Fig.
    [Show full text]
  • Methods for Measuring Frost Tolerance of Conifers: a Systematic Map
    Review Methods for Measuring Frost Tolerance of Conifers: A Systematic Map Anastasia-Ainhoa Atucha Zamkova *, Katherine A. Steele and Andrew R. Smith School of Natural Sciences, Bangor University, Bangor LL57 2UW, Gwynedd, UK; [email protected] (K.A.S.); [email protected] (A.R.S.) * Correspondence: [email protected] Abstract: Frost tolerance is the ability of plants to withstand freezing temperatures without unrecov- erable damage. Measuring frost tolerance involves various steps, each of which will vary depending on the objectives of the study. This systematic map takes an overall view of the literature that uses frost tolerance measuring techniques in gymnosperms, focusing mainly on conifers. Many different techniques have been used for testing, and there has been little change in methodology since 2000. The gold standard remains the field observation study, which, due to its cost, is frequently substituted by other techniques. Closed enclosure freezing tests (all non-field freezing tests) are done using various types of equipment for inducing artificial freezing. An examination of the literature indicates that several factors have to be controlled in order to measure frost tolerance in a manner similar to observation in a field study. Equipment that allows controlling the freezing rate, frost exposure time and thawing rate would obtain results closer to field studies. Other important factors in study design are the number of test temperatures used, the range of temperatures selected and the decrements between the temperatures, which should be selected based on expected frost tolerance of the tissue and species. Citation: Atucha Zamkova, A.-A.; Steele, K.A.; Smith, A.R.
    [Show full text]
  • Population Size of Two Endangered Vireya Rhododendron Species and Their Surrounding Vegetation on the Top of the Mt
    jurnal.krbogor.lipi.go.id Buletin Kebun Raya Vol. 19 No. 1, Januari 2016 [57–66] e-ISSN: 2460-1519 | p-ISSN: 0125-961X Scientific Article POPULATION SIZE OF TWO ENDANGERED VIREYA RHODODENDRON SPECIES AND THEIR SURROUNDING VEGETATION ON THE TOP OF THE MT. RANTEMARIO, SULAWESI Ukuran Populasi Dua Jenis Vireya Rhododendron Berkategori Genting dan Vegetasi Sekitarnya di Puncak Gunung Rantemario, Sulawesi Wiguna Rahman and Andes H. Rozak Cibodas Botanic Garden, Indonesian Institute of Sciences Sindanglaya Cianjur 43253 PO.BOX SDL, West Java, Indonesia * Email: [email protected] Received/Diterima: November 25, 2015; Accepted/Disetujui: January 25, 2016 Abstrak Lima dari 29 jenis Rhododendron di Sulawesi terancam kepunahan dan dua diantaranya termasuk dalam kategori Genting (EN D). Pengamatan di lapangan telah dilakukan untuk menentukan ukuran populasi terkini dari R. eymae dan R. nanophyton var. nanophyton yang berkategori Genting tersebut. Seratus empat puluh plot 2 (masing-masing berukuran 5x5 m ) dibuat pada tujuh transek di kawasan puncak G. Rantemario (3,269–3,445 m dpl), Sulawesi Selatan. Hasil pengukuran berhasil menemukan 318 individu R. eymae dan dua individu R. nanophyton var. nanophyton dalam plot yang dibuat. Berdasarkan data yang diperoleh, ukuran populasi hasil estimasi dari dua jenis Rhododendron tersebut tidak memenuhi kriteria Genting (EN D). Kategori yang lebih tepat untuk dua jenis tersebut yaitu Rawan (VU D2). Pertimbangan perubahan kategori tersebut dijelaskan dalam makalah ini. Semak dan herba yang dominan di puncak G. Rantemario yaitu Leptospermum javanica (IVI=37.08), Eriocaulon truncatum (IVI=34.83), dan Styphelia suaveolens (IVI=24.63). Asosiasi ketiga jenis tumbuhan tersebut dengan dua jenis Rhododendron telah dianalisis.
    [Show full text]
  • Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part I Cunninghamioideae, Athrotaxoideae, Taiwanioideae, Sequoioideae, Taxodioideae
    1 2 Bull. CCP 3 (3): 117-136. (12.2014) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part I Cunninghamioideae, Athrotaxoideae, Taiwanioideae, Sequoioideae, Taxodioideae Summary Seed cone morphology of the basal Cupressaceae (Cunninghamia, Athrotaxis, Taiwania, Metasequoia, Sequoia, Sequoiadendron, Cryptomeria, Glyptostrobus and Taxodium) is presented at pollination time and at maturity. These genera are named here taxodiaceous Cupressaceae (= the former family Taxodiaceae, except for Sciadopitys). Some close relationships exist between genera within the Sequoioideae and Taxodioideae. Seed cones of taxodiaceous Cupressaceae consist of several bract-/seed scale-complexes. The cone scales represent aggregation of both scale types on different levels of connation. Within Cunninghamia and Athrotaxis the bulges growing out of the cone scales represents the distal tip of the seed scale, which has been fused recaulescent with the adaxial part of the bract scale. In Athrotaxis a second bulge, emerging on the distal part of the cone scale, closes the cone. This bulge is part of the bract scale. Related conditions are found in the seed cones of Taiwania and Sequoioideae, but within these taxa bract- and seed scales are completely fused with each other so that vegetative parts of the seed scale are not recognizable. The ovules represent the only visible part of the seed scale. Within taxodiaceous Cupressaceae the number of ovules is increased compared to taxa of other conifer families. It is developed most distinctly within the Sequoioideae, where furthermore more than one row of ovules appears. The rows develop centrifugally and can be interpreted as short-shoots which are completely reduced to the ovules in the sense of ascending accessory shoots.
    [Show full text]
  • An Overview of Extant Conifer Evolution from the Perspective of the Fossil Record
    Louisiana State University LSU Digital Commons Faculty Publications Department of Biological Sciences 9-1-2018 An overview of extant conifer evolution from the perspective of the fossil record Andrew B. Leslie Brown University Jeremy Beaulieu University of Arkansas - Fayetteville Garth Holman University of Maine Christopher S. Campbell University of Maine Wenbin Mei University of California, Davis See next page for additional authors Follow this and additional works at: https://digitalcommons.lsu.edu/biosci_pubs Recommended Citation Leslie, A., Beaulieu, J., Holman, G., Campbell, C., Mei, W., Raubeson, L., & Mathews, S. (2018). An overview of extant conifer evolution from the perspective of the fossil record. American Journal of Botany, 105 (9), 1531-1544. https://doi.org/10.1002/ajb2.1143 This Article is brought to you for free and open access by the Department of Biological Sciences at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Authors Andrew B. Leslie, Jeremy Beaulieu, Garth Holman, Christopher S. Campbell, Wenbin Mei, Linda R. Raubeson, and Sarah Mathews This article is available at LSU Digital Commons: https://digitalcommons.lsu.edu/biosci_pubs/2619 RESEARCH ARTICLE An overview of extant conifer evolution from the perspective of the fossil record Andrew B. Leslie1,7, Jeremy Beaulieu2, Garth Holman3, Christopher S. Campbell3, Wenbin Mei4, Linda R. Raubeson5, and Sarah Mathews6 Manuscript received 2 October 2017; revision accepted 29 May 2018. PREMISE OF THE STUDY: Conifers are an important living seed plant lineage with an 1 Department of Ecology and Evolutionary Biology, Brown University, extensive fossil record spanning more than 300 million years.
    [Show full text]
  • TAXODIACEAE.Publishe
    Flora of China 4: 54–61. 1999. 1 TAXODIACEAE 杉科 shan ke Fu Liguo (傅立国 Fu Li-kuo)1, Yu Yongfu (于永福)2; Robert R. Mill3 Trees evergreen, semievergreen, or deciduous, monoecious; trunk straight; main branches ± whorled. Leaves spirally arranged or scattered (decussate in Metasequoia), monomorphic, dimorphic, or trimorphic on same tree, lanceolate, subulate, scalelike, or linear. Microsporophylls and cone scales spirally arranged (decussate in Metasequoia). Pollen cones borne in panicles, or solitary or clustered at branch apices, or axillary, small; microsporangia with (2 or)3 or 4(–9) pollen sacs; pollen nonsaccate. Seed cones terminal or borne near apex of previous year’s growth, ripening in 1st year, persistent or late deciduous; cone scales developing after ovules originate in bract axils; bracts and cone scales usually spirally aranged (decussate in Metasequoia), sessile, opening when ripe (falling in Taxodium), semiconnate and free only at apex, or completely united; bracts occasionally rudimentary (in Taiwania); ovules 2–9 per bract axil, erect or pendulous; cone scales of mature cones flattened or shield-shaped, woody or leathery, 2–9-seeded on abaxial side. Seeds flat or triangular, wingless (in Taxodium), narrowly winged all round or on 2 sides, or with a long wing on proximal part. Cotyledons 2–9. 2n = 22*. Nine genera and 12 species: Asia, North America, and (Athrotaxis D. Don) Tasmania; eight genera (one endemic, three introduced) and nine species (one endemic, four introduced) in China. A merger of the Taxodiaceae and Cupressaceae is increasingly supported by both morphological and molecular evidence (see note under Cupressaceae). However, the two groups are kept as separate families here for pragmatic reasons.
    [Show full text]