From Hollongapar Gibbon Wildlife Sanctuary, Assam, India

Total Page:16

File Type:pdf, Size:1020Kb

From Hollongapar Gibbon Wildlife Sanctuary, Assam, India Hindawi Publishing Corporation Journal of Mycology Volume 2014, Article ID 490847, 8 pages http://dx.doi.org/10.1155/2014/490847 Research Article Some New Records of Stinkhorns (Phallaceae) from Hollongapar Gibbon Wildlife Sanctuary, Assam, India Girish Gogoi and Vipin Parkash Rain Forest Research Institute, AT Road, Sotai, Post Box No. 136, Jorhat, Assam 785001, India Correspondence should be addressed to Girish Gogoi; [email protected] Received 11 October 2013; Revised 28 December 2013; Accepted 3 February 2014; Published 17 March 2014 Academic Editor: Leo Van Griensven Copyright © 2014 G. Gogoi and V. Parkash. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This research paper represents for the first time an updated list of stinkhorn family, Phallaceae, in Hollongapar Gibbon Wildlife Sanctuary, Jorhat, Assam, India. There are seven species of stinkhorns naturally present in the study area. A description of all the species is given along with images of fruiting bodies of the fungi and their microstructures; information on the ecology and general distribution and data on the literature have been documented. The seven species of stinkhorns were found in and around area of the sanctuary which include Phallus indusiatus, Phallus duplicatus, Phallus cinnabarinus, Phallus merulinus, Phallus atrovolvatus, Mutinus bambusinus,andClathrus delicatus. 1. Introduction East India as a part of Indo Burma biodiversity hotspot [9]of the world, few number of wild edible macrofungi have been Fungi are some of the most important organisms in the world, reported by Sarma et al. [10], Tanti et al. [11], Khaund and becauseoftheirvitalroleinecosystemfunctionandinfluence Joshi, [12], Baruah et al. [13],andN.I.SingandS.M.Sing[14]. on humans and human-related activities as discussed by The stinkhorns are easily identified due to their fetid Mueller and Bills [1]. Fungi are not only beautiful but play a smelling,stickysporemasses,orgleba,borneontheend significant role in the daily life of human beings besides their of a stalk called the receptaculum or cap. The characteristic utilization in industry, agriculture, and medicine as discussed fruiting-body structure, a single, unbranched receptaculum by Cowan [2] and Chang and Miles [3]. Moreover, fungi help with an externally attached gleba on the upper part, distin- in bioremediation, in recycling nutrients, and in decompos- guishes the Phallaceae from other families in the Phallales. As ing the dead organic matter in soil and litter, as biofertilizers discussed by Tuno [15],stinkhornsareshort-lived,typically and in many other ways (Gadd [4]). It is necessary to estimate lasting not more than a few days. The spore mass typically the taxonomic diversity for fungi that will enable fungi to smells of carrion or dung and attracts flies and other insects be included in considerations of biodiversity conservation to help disperse the spores. All species under this family and land-use planning and management as discussed by begin their development as oval or round structures known as Mueller and Schmit [5]. The number of fungi recorded in “eggs” (young stage of basidiocarp); however, their developed India exceeds 27,000 species, the largest biotic community structures show drastic variations in pattern and color, as dis- after insects (Sarbhoy et al. [6]). Recent estimates of the global cussed by Mohanan [16].Similarly,thestructureandcolorof species numbers of fungi suggest that the much-used figure glebaalsodifferfromoneanother.Accordingtoanestimate, of 1.5 million is low, and figures up to 5.1 million have been the family comprises 21 genera and 77 species (Kirk et al. [17]). proposed in the last few years (Hawksworth [7]). The litera- ture survey revealed that only a fraction of total fungal wealth 2. Materials and Methods has been subjected to scientific scrutiny till date. The first list onIndianfungiwaspublishedbyButlerandBisbyin1931[8] 2.1. Study Area. Hollongapar Gibbon Wildlife Sanctuary andthenlateronrevisedbyVasudevain1960[8]. In North (HGWLS) (Figure 1), more popularly known as Gibbon 2 Journal of Mycology Table 1: Compartment wise distribution of stinkhorns in the Hollongapar Gibbon Wildlife Sanctuary. Number of fruit bodies in each compartment Sl. number Name of Stinkhorn species Total number Count Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 I P. indu si atu s —201010— 403 II P. dupli catu s —9—— 6 152 III P. c innab ar inu s —4 1 —— 5 2 IV P. me r u linu s 32——1 6 3 V P. atrovolvatus —4——— 4 1 VI M. bambusinus 825151215755 VII C. delicatus —2——— 2 1 Totalnumber 11 66 26 22 22 147 Count 2 7 3 3 3 Size of Comp. in km2 2 6.98 5 4 3 20.98 NumbersofTransects 4 14 10 8 6 42 Note. Comp.: compartment; km2: kilometers square. E E E E E E E E E E E E E E E E E size but also different in vegetation composition, topography, 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 0 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 16 ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ and soil nutrients. The size of compartments is given in 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 ∘ Table 1. Stratified random sampling technique is used to ∘ 26 44 0 26 44 0 N N ∘ collect data from different compartments of the sanctuary. ∘ 26 43 30 26 43 30 N N ∘ A total of 42 transects have been studied in the sanctuary ∘ 26 43 0 26 43 0 N N measuring 50 m × 20 m for each transect and considering ∘ ∘ 26 42 30 26 42 30 N N two transects for 1 km square area. The total number of fruit ∘ ∘ 26 42 0 26 42 0 N N bodies in each compartment as well as in the whole sanctuary ∘ 26∘4130 26 41 30 N N has been extrapolated with the help of data collected from ∘ 26∘410 26 41 0 N N different transects (Table 1). ∘ 26∘4030 26 40 30 N N The sampling and collections of stinkhorns were done ∘ 26∘400 26 40 0 N N from April 2012 to September 2013 as suggested by Largent ∘ 26∘3930 26 39 30 N N [19].Fieldcharacterssuchashabit,habitat,odour,colour, ∘ 26∘390 26 39 0 N N and size of the pileus (cap), veil, stipe, and volva presence, E E E E E E E E E E E E E E E E E 0 0 0 0 0 0 0 0 0 or absence of indusium or veil and so forth were noted from 30 30 30 30 30 30 30 30 16 17 18 19 20 21 22 23 24 ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ 16 17 18 19 20 21 22 23 ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ 94 94 94 94 94 94 94 94 94 thefreshmaterialandphotographsweretakeninitsnatural 94 94 94 94 94 94 94 94 habitat. The colour terminology was used for identification N as suggested by Kornerup and Wanscher [20]. The specimens Sanctuary boundary Railway track ∘ Sanctuary compartment Places weredriedinhotairovenat40–50Candstoredinair Sanctuary drainage Road tight plastic containers with some naphthalene balls and Bhogdoi River (km) the samples of the same species were also preserved in 0 0.5 1 2 FAA (formalin acetic acid) for further microscopic studies. The help of authentic internet website also accessed for Figure 1: Map of study site within red boundary line. identification of all the collected species that are cited in the reference. ∘ Wildlife Sanctuary, lies between 26.40–26.45 Nlatitudeand ∘ 2 94.18–94.23 E longitude and it covers an area of 20.98 km . 3. Results and Discussion The sanctuary is situated at 100–130 m asl (meters above sea level) and the average annual rainfall is 249 cm. It is in Seven species of stinkhorns were collected and identified. All the tract of rich loamy alluvial formation in the foothills of thespecieswerefoundtobeanewrecordforthestudyarea, Nagaland having soil pH ranging between 5.2 and 5.5. The as well as North East India, which are described below. forest of the area as per Champion and Seth [18]isAssam Plain Alluvial Semi Evergreen Forest with pockets of Wet 3.1. Phallus indusiatus. Vent. Mem.Inst.Natl.Sci.,Sci.Math.´ Evergreen. The vegetation is typically a tree forest mixed with 1:520 (1798) [21]. bamboos and canes. 2.2. Collection, Preservation, and Examination. Gibbon 3.1.1. Material Examined. India, North East India (New ∘ Wildlife Sanctuary is composed of five compartments record), Assam, Jorhat, HGWLS, 26 41 48.57 Nlatitudeand ∘ (Figure 1) and these compartments are not only different in 94 213 0.53 E longitude, 123 m asl, on soil of bamboo thicket Journal of Mycology 3 (Comp.2–4, Table 1), G. Gogoi, 27.7.2012, Accession number: it differs in size of indusium and cap texture. In P. indu si atu s HGWLS/C4/004. indusium is long and big which reaches the ground and cap is highly pitted but in P. duplicatus and P. atrovolvatus indusium 3.1.2. Habit and Distribution. P. indusiatus is commonly is short and small which covers 2/3 of the stipe from the cap called the bamboo fungus, bamboo pith, long net stinkhorn, and the cap is somewhat smooth. Hence, P. indu si atu s is a new crinoline stinkhorn, or veiled lady stinkhorns. It grows on record for Assam as well as for North East India. dead tree trunk and beneath the soil intermittently with the formation of reproductive structures called “eggs” with a con- 3.2. Phallus duplicatus. Bosc, Magazin der Gesellschaft spicuous rhizomorph at the base existing in the substratum. Naturforschenden Freunde Berlin 5:86, t. 6:7 (1811) [30].
Recommended publications
  • Redalyc.Novelties of Gasteroid Fungi, Earthstars and Puffballs, from The
    Anales del Jardín Botánico de Madrid ISSN: 0211-1322 [email protected] Consejo Superior de Investigaciones Científicas España da Silva Alfredo, Dönis; de Oliveira Sousa, Julieth; Jacinto de Souza, Elielson; Nunes Conrado, Luana Mayra; Goulart Baseia, Iuri Novelties of gasteroid fungi, earthstars and puffballs, from the Brazilian Atlantic rainforest Anales del Jardín Botánico de Madrid, vol. 73, núm. 2, 2016, pp. 1-10 Consejo Superior de Investigaciones Científicas Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=55649047009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anales del Jardín Botánico de Madrid 73(2): e045 2016. ISSN: 0211-1322. doi: http://dx.doi.org/10.3989/ajbm.2422 Novelties of gasteroid fungi, earthstars and puffballs, from the Brazilian Atlantic rainforest Dönis da Silva Alfredo1*, Julieth de Oliveira Sousa1, Elielson Jacinto de Souza2, Luana Mayra Nunes Conrado2 & Iuri Goulart Baseia3 1Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Campus Universitário, 59072-970, Natal, RN, Brazil; [email protected] 2Curso de Graduação em Ciências Biológicas, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, Rio Grande do Norte, Brazil 3Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072970, Natal, Rio Grande do Norte, Brazil Recibido: 24-VI-2015; Aceptado: 13-V-2016; Publicado on line: 23-XII-2016 Abstract Resumen Alfredo, D.S., Sousa, J.O., Souza, E.J., Conrado, L.M.N.
    [Show full text]
  • Forest Fungi in Ireland
    FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix
    [Show full text]
  • Mycology from the Library of Nils Fries
    CENTRALANTIKVARIATET catalogue 82 MYCOLOGY from the library of nils fries CENTRALANTIKVARIATET catalogue 82 MYCOLOGY from the library of nils fries stockholm mmxvi 15 centralantikvariatet österlånggatan 53 111 31 stockholm +46 8 411 91 36 www.centralantikvariatet.se e-mail: [email protected] bankgiro 585-2389 medlem i svenska antikvariatföreningen member of ilab grafisk form och foto: lars paulsrud tryck: eo grafiska 2016 Vignette on title page from 194 PREFACE It is with great pleasure we are now able to present our Mycology catalogue, with old and rare books, many of them beautifully illustrated, about mushrooms. In addition to being fine mycological books in their own right, they have a great provenance, coming from the libraries of several members of the Fries family – the leading botanist and mycologist family in Sweden. All of the books are from the library of Nils Fries (1912–94), many from that of his grandfather Theodor (Thore) M. Fries (1832–1913), and a few from the library of Nils’ great grandfather Elias M. Fries (1794–1878), “fa- ther of Swedish mycology”. All three were botanists and professors at Uppsala University, as were many other members of the family, often with an orientation towards mycology. Nils Fries field of study was the procreation of mushrooms. Furthermore, Nils Fries has had a partiality for interesting provenances in his purchases – and many international mycologists are found among the former owners of the books in the catalogue. Four of the books are inscribed to Elias M. Fries, and it is probable that more of them come from his collection. Thore M.
    [Show full text]
  • Biodiversity and Threats in Non-Protected Areas: a Multidisciplinary and Multi-Taxa Approach Focused on the Atlantic Forest
    Heliyon 5 (2019) e02292 Contents lists available at ScienceDirect Heliyon journal homepage: www.heliyon.com Biodiversity and threats in non-protected areas: A multidisciplinary and multi-taxa approach focused on the Atlantic Forest Esteban Avigliano a,b,*, Juan Jose Rosso c, Dario Lijtmaer d, Paola Ondarza e, Luis Piacentini d, Matías Izquierdo f, Adriana Cirigliano g, Gonzalo Romano h, Ezequiel Nunez~ Bustos d, Andres Porta d, Ezequiel Mabragana~ c, Emanuel Grassi i, Jorge Palermo h,j, Belen Bukowski d, Pablo Tubaro d, Nahuel Schenone a a Centro de Investigaciones Antonia Ramos (CIAR), Fundacion Bosques Nativos Argentinos, Camino Balneario s/n, Villa Bonita, Misiones, Argentina b Instituto de Investigaciones en Produccion Animal (INPA-CONICET-UBA), Universidad de Buenos Aires, Av. Chorroarín 280, (C1427CWO), Buenos Aires, Argentina c Grupo de Biotaxonomía Morfologica y Molecular de Peces (BIMOPE), Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina d Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET), Av. Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina e Laboratorio de Ecotoxicología y Contaminacion Ambiental, Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina f Laboratorio de Biología Reproductiva y Evolucion, Instituto de Diversidad
    [Show full text]
  • Download Chapter
    7 State of the World’s Fungi State of the World’s Fungi 2018 7. Country focus: China 方睿 (Rui Fang)a, Paul Kirka,b, 魏江春 (Jiang-Chun Wei)c, 李玉 (Yu Li)d, 蔡磊 (Lei Cai)b, 范黎 (Li Fan)e, 魏铁铮 (Tie-Zheng Wei)b, 赵瑞琳 (Rui-Lin Zhao)b, 王科 (Ke Wang)b, 杨祝良 (Zhu-Liang Yang)f, 李泰辉 (Tai-Hui Li)g, 李熠 (Yi Li)h, 普布多吉 (Phurbu-Dorji)i, 姚一建 (Yi-Jian Yao)b a Royal Botanic Gardens, Kew, UK; b Institute of Microbiology, Chinese Academy of Sciences, China; c University of Chinese Academy of Sciences, China; d Jilin Agricultural University, China; e Capital Normal University, China; f Kunming Institute of Botany, Chinese Academy of Sciences, China; g Guandong Institute of Microbiology, China; h College of Food Science and Engineering, Yangzhou University, China; i Tibet Plateau Institute of Biology, China 48 Positive interactions and insights Country focus: China What is the current status of knowledge of fungi in China? How many different Chinese fungal species are currently known, where are they distributed, which are most important economically, and how do they help combat the effects of desertification? stateoftheworldsfungi.org/2018/country-focus.html Country focus: China 49 THERE ARE 1,789 EDIBLE and 798 medicinal fungi reported from China 50 Positive interactions and insights century that Chinese authors started to publish their ARCHAEOLOGICAL EVIDENCE INDICATES research on fungi in China[4]. Since then, a large amount of THAT THE USE OF FUNGI BY HUMANS work has been carried out by Chinese mycologists, resulting in published studies on more than 6,700 species[5].
    [Show full text]
  • A REVIEW on ANTITUMOR ACTIONS of POLYSACCHARIDE ISOLATED from MEDICINAL MUSHROOMS Noure AL ALI ZIDAN* and Heba ALNEAMEH**
    IJASR International Journal of Academic Scientific Research ISSN: 2272-6446 Volume 2, Issue 1 (February-March 2014), PP 14-20 www.ijasrjournal.org A REVIEW ON ANTITUMOR ACTIONS OF POLYSACCHARIDE ISOLATED FROM MEDICINAL MUSHROOMS Noure AL ALI ZIDAN* and Heba ALNEAMEH** *Faculty of Biotechnology, Aleppo University, Aleppo, Syria ** Faculty of Pharmacy, Damascus University, Damascus, Syria ABSTRACT Mushrooms have long been attracting a great deal of interest in many areas of foods and biopharmaceuticals. They are well known for their nutritional and medicinal values. Mushrooms comprise a vast and yet largely untapped source of powerful new pharmaceutical products. In particular, and most importantly for modern medicine, they represent an unlimited source of polysaccharides with antitumor and immunostimulating properties. Recently, basidiomycete fungi have been used for the treatment of cancer. Many, if not all, Basidiomycetes mushrooms contain biologically active polysaccharides in fruit bodies, cultured mycelium, culture broth. Polysaccharides and polysaccharide-protein complexes from medicinal mushrooms may enhance innate immune responses, resulting in antitumor activities. In this review, in the search for the development of new anticancer drugs, the effects of polysaccharides isolated from medicinal mushrooms on tumor were studied. Keywords: Antitumor activity; polysaccharide; medicinal mushrooms INTRODUCTION Cancer is the largest single cause of death in both men and women, claiming over 6 million lives each year worldwide. Cancer chemotherapy drugs such as 5-fluorouracil derivatives, cisplatin , mitomycin, adriamycin, taxol, etc., have been used extensively for the treatment of certain types of cancer.However, with these treatments, severe gastrointestinal toxicity, with diarrhea and mucosis and hematological toxicity, with leucopenia and immune suppression, appear to be dose-limiting factors.
    [Show full text]
  • The Correspondence of Peter Macowan (1830 - 1909) and George William Clinton (1807 - 1885)
    The Correspondence of Peter MacOwan (1830 - 1909) and George William Clinton (1807 - 1885) Res Botanica Missouri Botanical Garden December 13, 2015 Edited by P. M. Eckel, P.O. Box 299, Missouri Botanical Garden, St. Louis, Missouri, 63166-0299; email: mailto:[email protected] Portrait of Peter MacOwan from the Clinton Correspondence, Buffalo Museum of Science, Buffalo, New York, USA. Another portrait is noted by Sayre (1975), published by Marloth (1913). The proper citation of this electronic publication is: "Eckel, P. M., ed. 2015. Correspondence of Peter MacOwan(1830–1909) and G. W. Clinton (1807–1885). 60 pp. Res Botanica, Missouri Botanical Garden Web site.” 2 Acknowledgements I thank the following sequence of research librarians of the Buffalo Museum of Science during the decade the correspondence was transcribed: Lisa Seivert, who, with her volunteers, constructed the excellent original digital index and catalogue to these letters, her successors Rachael Brew, David Hemmingway, and Kathy Leacock. I thank John Grehan, Director of Science and Collections, Buffalo Museum of Science, Buffalo, New York, for his generous assistance in permitting me continued access to the Museum's collections. Angela Todd and Robert Kiger of the Hunt Institute for Botanical Documentation, Carnegie-Melon University, Pittsburgh, Pennsylvania, provided the illustration of George Clinton that matches a transcribed letter by Michael Shuck Bebb, used with permission. Terry Hedderson, Keeper, Bolus Herbarium, Capetown, South Africa, provided valuable references to the botany of South Africa and provided an inspirational base for the production of these letters when he visited St. Louis a few years ago. Richard Zander has provided invaluable technical assistance with computer issues, especially presentation on the Web site, manuscript review, data search, and moral support.
    [Show full text]
  • Gasteroid Mycobiota (Agaricales, Geastrales, And
    Gasteroid mycobiota ( Agaricales , Geastrales , and Phallales ) from Espinal forests in Argentina 1,* 2 MARÍA L. HERNÁNDEZ CAFFOT , XIMENA A. BROIERO , MARÍA E. 2 2 3 FERNÁNDEZ , LEDA SILVERA RUIZ , ESTEBAN M. CRESPO , EDUARDO R. 1 NOUHRA 1 Instituto Multidisciplinario de Biología Vegetal, CONICET–Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina. 2 Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, CP 5000, Córdoba, Argentina. 3 Cátedra de Diversidad Vegetal I, Facultad de Química, Bioquímica y Farmacia., Universidad Nacional de San Luis, CP 5700 San Luis, Argentina. CORRESPONDENCE TO : [email protected] *CURRENT ADDRESS : Centro de Investigaciones y Transferencia de Jujuy (CIT-JUJUY), CONICET- Universidad Nacional de Jujuy, CP 4600, San Salvador de Jujuy, Jujuy, Argentina. ABSTRACT — Sampling and analysis of gasteroid agaricomycete species ( Phallomycetidae and Agaricomycetidae ) associated with relicts of native Espinal forests in the southeast region of Córdoba, Argentina, have identified twenty-nine species in fourteen genera: Bovista (4), Calvatia (2), Cyathus (1), Disciseda (4), Geastrum (7), Itajahya (1), Lycoperdon (2), Lysurus (2), Morganella (1), Mycenastrum (1), Myriostoma (1), Sphaerobolus (1), Tulostoma (1), and Vascellum (1). The gasteroid species from the sampled Espinal forests showed an overall similarity with those recorded from neighboring phytogeographic regions; however, a new species of Lysurus was found and is briefly described, and Bovista coprophila is a new record for Argentina. KEY WORDS — Agaricomycetidae , fungal distribution, native woodlands, Phallomycetidae . Introduction The Espinal Phytogeographic Province is a transitional ecosystem between the Pampeana, the Chaqueña, and the Monte Phytogeographic Provinces in Argentina (Cabrera 1971). The Espinal forests, mainly dominated by Prosopis L.
    [Show full text]
  • OBJ (Application/Pdf)
    i7961 ~ar vio~aoao ‘va~triiv ioo’IoIa ~o Vc!~ ~tVITII~ MOflt~W ~IVJs~OO ~31~E~IO~ ~O ~J~V1AI dTO ~O~K~t ~HJ, ~!O~ ~ ~ ~o j~N~rniflflA ‘wIJ~vc! MI ISH~KAIMf1 VJ~t~tWI1V ~O Nh1flDY~ ~H~Ii OJ~ iwan~ ~I~H~L V IOMEM ~nO~oV~IHawIo ~IO V~T~N~fJ !‘O s~aictn~ ~ tt 017 ‘. ~I~LIO aUfl1V~EJ~I’I ...•...•...••• .c.~IVWJT~flS A ii: ••••••••~•‘••••‘‘ MOIS~flO~I~ ~INY sMoI~vA~asaO A1 9 ~ ~OH ~t1~W VI~~1Th 111 . ‘ . ~ ~o ~tIA~U • II t ••••••••••••• ..•.•s•e•e•••q••••• NoI~OfltO~~LNI i At •••••••••••••••••••••••••~••••••••••• ~Unott~ ~ao ~~i’i ttt ...........................~!aV1 ~O J~SI’I gJ~N~J~NOO ~O ~‘I~VJi ttt 91 ‘‘~~‘ ~ ~flOQO t~.8tO .XU03 JO ~tU~OJ Ot~o!ot~&OW ~ue~t~ jo ~o~-~X~dWOO peq.~~uc~~1 j 9 tq~ a ri~i~ ~o ~r~r’r LIST OF FIGURES Figure Page 1. Photograph of sporophore of C1ath~ fisoberi.... 12 2. Photograph of sporophore of Colus hirudinOsUs ... 12 3. Photograph of sporophore of Colonnarià o olumnata. • • • • • • • • • • . • , • • . • . 20 4. “Latern&t glebal position of Colozinarla ......... 23 5. Photograph of sporophore of Pseudooo~ ~~y~nicuS ~ 29 6. Photograph of transect ions of It~gg~tt of pseudooo1~ javanious showing three arms ........ 34 7. PhotographS of transactions of Itegg&t of Pseudocolus javanicUs showing four arms ......... 34 8. Basidia and basidiospOres of Pseudoco].uS j aVafliCUs . 35 iv CHAPTER I INTRODU~flON Several collections of a elath~aceous fungus were made during the summer of 1963 in a wooded area off Boulder Park Drive just outside the city limits of Atlanta, Georgia.
    [Show full text]
  • Stinkhorns of the Ns of the Hawaiian Isl Aiian Isl Aiian Islands
    StinkhorStinkhornsns ofof thethe HawHawaiianaiian IslIslandsands Don E. Hemmes1* and Dennis E. Desjardin2 Abstract: Additional members of the Phallales are recorded from the Hawaiian Islands. Aseroë arachnoidea, Phallus atrovolvatus, and a Protubera sp. have been collected since the publication of the field guide Mushrooms of Hawaii in 2002. A complete list of species and their distribution on the various islands is included. Figure 1. Aseroë rubra is commonly encountered in Eucalyptus plantations Key Words: Phallales, Aseroë, Phallus, Mutinus, Dictyophora, in Hawai’i but these fruiting bodies are growing in wood chip mulch surrounding landscape plants in a park. Pseudocolus, Protubera, Hawaii. Roger Goos made the earliest comprehensive record of mem- bers of the Phallales in the Hawaiian Islands (Goos, 1970) and listed Anthurus javanicus (Penzig.) G. Cunn., Aseroë rubra Labill.: Fr., Dictyophora indusiata (Vent.: Pers.) Desv., Linderiella columnata (Bosc) G. Cunn., and Phallus rubicundus (Bosc) Fr. Later, Goos, along with Dring and Meeker, described the unique Clathrus spe- cies, C. oahuensis Dring (Dring et al., 1971) from the Koko Head Desert Botanical Gardens on Oahu. The records of Dictyophora indusiata and Linderiella columnata in Goos’s paper actually came from observations by N. A. Cobb in the early 1900’s (Cobb, 1906; Cobb, 1909) who reported these two species in sugar cane fields on Hawai’i Island (also known as the Big Island) and Kaua’i, re- spectively, and thought they might be parasitic on sugar cane. To our knowledge, neither Linderiella columnata (now known as Figure 2. Aseroë arachnoidea forming fairy rings on a lawn in Hilo. Clathrus columnatus Bosc) nor Clathrus oahuensis has been seen in the islands since these early observations.
    [Show full text]
  • <I>Clathrus Delicatus</I>
    ISSN (print) 0093-4666 © 2010. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON doi: 10.5248/114.319 Volume 114, pp. 319–328 October–December 2010 Development and morphology of Clathrus delicatus (Phallomycetidae, Phallaceae) from India S. Swapna1, S. Abrar1, C. Manoharachary2 & M. Krishnappa1* [email protected], [email protected] cmchary@rediffmail.com & *[email protected] 1Department of Post Graduate Studies and Research in Applied Botany Jnana Sahyadri, Kuvempu University, Shankaraghatta-577451, Karnataka, India 2Mycology and Plant Pathology Laboratory, Department of Botany Osmania University, Hyderabad-500007, Andhra Pradesh, India Abstract — During fieldwork, Clathrus delicatus was collected from the Muthodi forest range in the Bhadra Wildlife Sanctuary in the state of Karnataka, India. Although this species was previously recorded from India, these reports did not include detailed morphological descriptions. Here we describe C. delicatus and provide illustrations and notes on fruitbody development, which has not been well characterized in the past. Key words — Phallaceae, peridial suture, primordia, sporoma, volva-gel Introduction Members of Phallales, commonly called stinkhorns, produce foul-smelling fruitbodies that attract insects. Their distinctive odor is produced by a combination of chemicals such as hydrogen sulfide and methyl mercaptan (List & Freund 1968). Stinkhorns typically develop very quickly, often within few hours, with the spore bearing structures (receptacles) emerging from globose to ovoid structures called ‘myco-eggs’ (Lloyd 1906, Pegler et al. 1995). The order Phallales comprises 2 families, 26 genera, and 88 species (Kirk et al. 2008). Clathroid members of family Phallaceae form multipileate receptacles (Gäumann 1952) with beautiful and bright colored sporomata. Clathrus is unique in having latticed, hollow, spherical or stellate receptacles with slimy glebae (spore masses) borne on their inner surfaces (Pegler et al.
    [Show full text]
  • Immunopharmacological Evaluation of Phallus Impudicus Against Specific Protein Antigen
    MicroMedicine ISSN 2449-8947 RESEARCH ARTICLE Immunopharmacological evaluation of Phallus impudicus against specific protein antigen Amit Gupta 1*, Bharat Shinde 1,2 1 Department of Immunology and Virology, Vidya Pratishthan’s School of Biotechnology (VSBT, Research Centre affiliated to Savitribai Phule Pune University) Baramati, Maharashtra, India 2 Vidya Pratishthan’s (Principal) Arts, Science and Commerce College, Baramati, Maharashtra, India *Corresponding Author: Amit Gupta, Ass. Prof., Senior Scientist, E-mail: [email protected]; [email protected] ABSTRACT The objective of our study is to examined its immunopharmacological property of stinkhorn i.e. Phallus impudicus against hepatitis B vaccine containing surface antigen (HBsAg; 20 µg/ml) and weak antigen ovalbumin (OVA; 100 µg/well). For these studies, Phallus impudicus were macerated in liquid nitrogen to prepare fine powder and measured its protein content in presence and absence (using Tris HCl and ice cold acetone) of phosphate buffered saline Citation: Gupta A, Shinde B. (PBS) which is determined through Nanodrop method. In addition, aqueous Immunopharmacological evaluation of Phallus solution and protein of Phallus impudicus were used for determining antibody impudicus against specific protein antigen. MicroMed. 2016; 4(2): 55-59. (IgG) production through indirect Elisa and also examined Th1 (TNF alpha) and DOI: http://dx.doi.org/10.5281/zenodo.163673 Th2 (IL-4) cytokines in animal (especially Swiss mice) model studies. The results Received: August 19, 2016 showed that Phallus impudicus showed more protein content in case of Revised: September 20, 2016 aqueous solution containing PBS as compared to Tris HCl and ice cold acetone. In continuation of these studies, the results showed that aqueous solution Accepted: October 05, 2016 containing PBS and protein (using Tris HCl and ice cold acetone) showed Copyright: © 2016 Gupta A, et al.
    [Show full text]