United States Patent Office Patented Feb

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Feb 3,305,508 United States Patent Office Patented Feb. 21, 1967 2 3,305,508 EMULSIFICATION IN PRESENCE OF AN AL standing the reduced foam formation the losses of co PHATC OXYGEN COMPOUND . agulum are high. This is because coagulation is then Gerardus E. La Hei and Jacques A. Waterman, Amster caused by the comparatively large amount of highly water dam, Netherlands, assignors to Shell Oil Company, New soluble organic oxygen compounds that is needed, even York, N.Y., a corporation of Delaware when the concentration of emulsifier is but low, for Sup No Drawing. Filed Dec. 13, 1963, Ser. No. 330,266 pressing troublesome foam formation. Moreover, these Claims priority, application Netherlands, Feb. 5, 1963, processes are not sufficiently flexible, because, on the one 288,572 hand, enlargement of the latex particles through reduc 6 Claims. (Cl. 260-29.7) tion of the emulsifier concentration does not permit of a The invention relates to a process for the preparation O proportional reduction in quantity of organic oxygen com of aqueous dispersions of homopolymeric or copolymeric pounds and hence involves greater coagulum losses, and, macromolecular substances obtained by polymerization, on the other, reduction of particle size by raising the polycondensation or polyaddition of vinylidene com emulsifier content cannot be achieved without sacrificing pounds. More in particular, the preparation of artificial the advantage of suppressing troublesome foam forma latices is contemplated. 5 tion, or without increasing the quantity of organic oxygen If necessary, increased temperature and/or pressure can compoundsagulum losses. and hence also further increasing the co be applied in preparing the solutions of the macromolec Because of this the particle size is often too small for ular substances. the preparation of good macromolecular foams and too If in preparing artificial latices, one fails to take special 20 large for preparing latices of the quality that is the most measures during and/or after emulsification, very trouble desirable for dipping processes. some foam formation occurs when the solvent is removed It has now been found that not only can the aforesaid via the vapor phase, even if the concentration of emulsifier troublesome foam and slime formation be avoided, but is quite low, and this is accompanied by partial coagula the losses through coagulation can also be obviated en tion and often by the formation of “slime.” By "slime' 25 is understood a slimy mixture, presumably consisting of tirely or almost entirely, while, in addition, within cer a continuous solvent phase in which droplets of water tain limits the particle size of the latices can be con are dispersed, which contain polymer particles that have trolled by adjusting the emulsifier concentration, without been only partially freed of solvent and are hence in a sacrificing the advantages mentioned before. strongly swollen state. Moreover, if high emulsifier con 30 Now in accordance with this invention, the process is centrations are not applied, the latices thus obtained are carried out in the presence of certain aliphatic organic very coarse, which makes them unsuitable for being con oxygen compounds, which are in this case, too, brought centrated to what are called foam latices, from which into contact with the other substances exclusively before foam rubbers can be manufactured. In addition, such vaporization of the polymer solvent and which coarse dispersions, when concentrated, do not produce 35 (a) In the conditions under which the solvent for the latices that are suitable for dipping processes. If this polymer is removed, do not have an acid reaction process is carried out with higher emulsifier concentra towards the water phase (which therefore rules out, tions and/or if pressure is reduced during the removal of for instance, esters that are hydrolyzed under such con the solvent, surface dehydration of the foam formed will ditions and also phenols), and further increase the losses due to coagulation and slime 40 (b) In the quantity applied, are completely miscible at formation. The latices of non-rubberlike polymers, such 30 C, with the quantity of solvent applied. as those of polystyrene or of styrene/butadiene copoly The distinctive features are now, however: mers with a high styrene content, can very suitably be (1) That the organic oxygen compounds applied are mixed with, say, foam rubber latices, in order to prepare poorly soluble in water, that is to say, that at 30 C. therefromproperties. foam rubbers having improved mechanical their solubility in water is less than 20 g. per 100 ml., Processes are known for the preparation of artificial and latices from diene polymers or copolymers, in which the (2) That the quantity of oxygen compounds applied, as emulsification of the solutions of such polymers can be referred to water phase, is 0.5-30% by volume. effected. For instance, they may be formed in the pres 50 As a rule the emulsification takes place under normal ence of organic oxygen compounds that are highly soluble temperature and pressure conditions, but in certain cases in water, such as readily water-soluble alcohols, ketones it may be carried out at higher or lower temperature or ethers. Under the conditions at which the solvent is and/or pressure. removed, the oxygen compounds previously used are gen The aliphatic oxygen compounds useful for this pur erally completely miscible, at the emulsification temper 55 pose include especially alcohols and ketones having 4-10 ature and pressure, with the quantities of solvent used for carbon atoms per molecule. Carbinols are preferred, as the polymer and with water. The application of the well as ketones in which at least one of the alkyl radicals aforesaid organic oxygen compounds aimed at improv attached to the DCFO group has a branched structure. ing the emulsification. The entire quantity of such com Examples of organic oxygen compounds that have a pounds was therefore admixed before emulsification. 60 solubility in water of less than 20 g. per 100 ml. at 30° C. It was found that in the processes just described, during are n-butyl alcohol, isobutyl alcohol, secondary butyl the removal of the solvent for the polymer via the vapor alcohol, the various amyl alcohols, methyl isobutyl car phase, there is no longer troublesome foaming, while no binol, the hexanols, heptanols and octanols, methyl iso "slime,” or scarcely any, is formed, provided the ratio by butyl ketone, diethyl ketone, methyl n-butyl ketone, di volume of the sum of polymer and solvent to the sum 65 isobutyl ketone. of water and organic oxygen compounds is not too high Application of the limited classes of organic oxygen and the quantity of these oxygen compounds is not too compounds according to the invention has the advantage low. Applying equal emulsifier concentrations, the aver that such compounds cause a greater reduction of surface age particle size of the resultant latices is then consider tension than do those of higher solubility in water. Con ably smaller than when the processes are carried out in 70 sequently, insofar as better emulsification is the objective, the absence of organic oxygen compounds, but notwith in the present process Smaller quantities may suffice. Be sides, such organic oxygen compounds generally have 3,305,508 3 4 higher boiling points than those of good solubility in prene, polypiperylene, copolymers of dienes with each water, owing to which they can longer continue to exert other or of dienes with monovinyl aromatic compounds, their anti-foaming effect when the solvent is being re such as the butadiene/styrene copolymers (in which moved. For this reason, too, a smaller quantity of this either the butadiene content or the styrene content may category of substances is needed than of the readily predominate), or from mixtures of such polymers and/or water-soluble organic oxygen compounds. copolymers with each other. The treatment of polymers In consequence, and also because only a very small of vinylpyridines, acrylic esters, methacrylic esters, hydro proportion of the poorly water-soluble organic oxygen genated derivatives of the foregoing polymers, and the compounds will get into the water phase, the process con like also is contemplated. cerned has the important advantage that the risk of the O The polymers that can be applied in the process ac occurrence of coagulum losses through the presence of cording to the invention also comprise the block polymers too much organic oxygen compound is Substantially less and copolymers, as well as the graft polymers and co than in the known processes. On this account, it is pos polymers. - sible to control the particle size of the latex within cer In many cases polymers or copolymers will be applied tain limits, and without any appreciable coagulation, by in the form of the solution in which they were formed modifying the concentration of the emulsifier, for instance during their preparation. between 1 and 20% w. (on polymer). According to the viscosity of the solution, the concen An additional advantage is that as a rule the difference tration of the solutions to be emulsified according to the in boiling point between the organic oxygen compounds invention may vary within wide limits, for instance from and the customary solvents for the macromolecular sub 20 3% w. to 70% w. of macromolecular substance. As a stances is large and that no azeotropes are formed between rule, however, concentrations between 5 and 20% w, will these two types of components, so that these components be the most suitable. do not pass over together. For this reason it will almost The solvents that can be used in the present process invariably be possible easily to recover the solvents free depend, among other factors, on the nature of the from, or virtually free from, organic oxygen compounds.
Recommended publications
  • Effect of Nitrogen/Oxygen Substances on the Pyrolysis of Alkane-Rich Gases to Acetylene by Thermal Plasma
    energies Article Effect of Nitrogen/Oxygen Substances on the Pyrolysis of Alkane-Rich Gases to Acetylene by Thermal Plasma Wei Huang, Junkui Jin, Guangdong Wen, Qiwei Yang * ID , Baogen Su * and Qilong Ren Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; [email protected] (W.H.); [email protected] (J.J.); [email protected] (G.W.); [email protected] (Q.R.) * Correspondence: [email protected] (Q.Y.); [email protected] (B.S.); Tel.: +86-571-87951125 (Q.Y.) Received: 23 December 2017; Accepted: 29 January 2018; Published: 2 February 2018 Abstract: It is important to convert alkane-rich gases, such as coke oven gas, to value-added chemicals rather than direct emission or combustion. Abundant nitrogen/oxygen substances are present in the actual alkane-rich gases. However, the research about how they influence the conversion in the pyrolysis process is missing. In this work, a systematic investigation on the effect of various nitrogen/oxygen-containing substances, including N2, CO, and CO2,on the pyrolysis of CH4 to C2H2 was performed by a self-made 50 kW rotating arc thermal plasma reactor, and the pyrolysis of a simulated coke oven gas as a model of alkane-rich mixing gas was conducted as well. It was found that the presence of N2 and CO2 was not conducive to the main reaction of alkane pyrolysis for C2H2, while CO, as a stable equilibrium product, had little effect on the cracking reaction. Consequently, it is suggested that a pretreatment process of removing N2 and CO2 should be present before pyrolysis.
    [Show full text]
  • United States Patent Office
    Patented Feb. 21, 1928, 1,660,220 UNITED STATES PATENT OFFICE. ANTHONY-G. DE GOLYER, OF BROOKYN, NEW YORK. CoPPER BEFINING. NoDrawing. Application filed April 16, 1927. serial No. 184,443. My present invention relates to a new and copper, cement copper, scrap copper, etc. It improved process for the refining of copper, is also adapted for use in both the produc-65 and relates particularly to methods for the tion of cast shapes to be used in the produc production of copper which is entirely free tion of wire, tubes, sheets and other wrought from dissolved and occluded gas and from articles, and for the production of finished oxygen. or semi-finished castings in sand or other In response to industrial and technical de molds, PE, castings having high 60 mands, many attempts have been made to electrical conductivity, high tensile strength produce oxygen free copper by direct refin and excellent machining qualities. O ing methods and otherwise. While it has Before describing my invention I will been possible heretofore to produce oxygen give, for the purpose of comparison, an out free copper by means of previously proposed line of the pyrometallurgical method which 05 methods, copper so produced did not have has heretofore been generally used for the the necessary additional qualities of high refining of copper, and the aii Opera 5 metallic copper content, high electrical con tions required for the production of deoxi ductivity, and freedom from dissolved or dized copper. occluded gas which, latter, resulted in gas or Electrolytic copper in the form of cath-0 “blow holes in the solid copper.
    [Show full text]
  • AP42 Chapter 9 Reference
    AP42 Section: 9.2.1 Backaround Ch 4 Reference: 28 Title: "Effect of Increased Nitrogen Fixation on Stratospheric Ozone: Report 53, Iowa State University," Council for Agricultural Science and Technology, Ames, IA, 1976. I "Effect of Increased Nitrogen Fixation on Stratospheric Ozone: Report 53, Iowa State University", Council for Agricultural Science and Technology, Ames. 1976. mCCtFns whr!ws MAY p~rrreclt~ By c9eyglcH.I IAlY U&E A2 U S. CODU ea FOREWORD . 5,' .. ' This report was developed by eleven scientists representing the subject- matter areas of atmospheric chemistry, chemical engineering, environmental c science and chemistry, microbiology, oceanography, plant genetics, soil bio- chemistry, soil physics, and soil chemistry. The task force met in Denver from October 23 to 25 to prepare a first draft of the report. The chairman then prepared a revised version and returned it to members of the task force for re- view and coment. A second revision was then prepared and returned for further comment. Finally, the report was edited and reproduced for transmittal to the Congressional committees concerned with the matter of ozone depletion. -iii- c , -iv- ~ SUMMARY .. Nitrogen compounds are produced by biological reactions and by industrial processes from the abundant nitrogen gas (N2) in the atmosphere. The formation of compounds from atmospheric nitrogen is called fixation. In nature, nitrogen compounds undergo many conversions, but under aerobic conditions, characterized by the presence of oxygen, they tend to be converted to the nitrate (NOI) form. Under anaerobic conditions, characterized by the absence of oxygen, the nitrate is deni- trified, and the nitrogen contained therein is converted into nitrogen gas (N2) and nitrous oxide (N20).
    [Show full text]
  • Seem to Me to Be Very Convincing, but in a Recent Paper Garrison, Morrison, Hamilton, Benson and Calvin,3 While Referring To
    VOL. 38, 1952 GEOPHYSICS: H. C. UREY 351 * This work was done under contract N7-onr 434 Task Order III, Naval Department, Office of Naval Research. 1 Cartan, H., "Algebraic Topology," Harvard Univ., 1949; Wallace, A. D. "Outline for Algebraic Topology I," Tulane Univ., 1949-1950; and Wallace A. D., "Map Exci- sion Theorem," Duke Math. J., 19 (1952). 2 Cf. Tukey, J. W., "Convergence and Uniformity in General Topology," Ann. Math. Studies, Princeton, 1940, p. 53. 3 Cf. Tukey, J. W., loc. cit. 4 See Stone, A. H., "Paracompactness and Product Spaces," Bull. Am. Math. Soc., 54, 977-982 (1948). 6 Cf. Spanier, E. H., "Cohomology Theory for General Spaces," Ann. Math. (2), 49, 407-427 (1948). 6 Cf. Wallace, A. D., loc. cit. 7 See Dowker, C. H., "t2ech Cohomology Theory and the Axioms," Ibid. (2) 51, 278-292 (1950). 8 Cf. Spanier, E. H., loc. cit. ' Cf. Wallace, A. D., loc. cit. 10 Spanier, E. H., loc. cit. and Dowker, C. H., loc. cit. (2) 51, 418. 11 Cf. Eilenberg, S., "Singular Homology Theory," Ibid., (1944), Cor. 9.3. 12P2 A A = fUn Al UE P21. 13 Make use of a homotopy lemma similar to Spanier, loc. cit., Lemma 9.1. ON THE EARLY CHEMICAL HISTORY OF THE EARTH AND THE ORIGIN OF LIFE By HAROLD C. UREY INSTITUTE FOR NUCLEAR STUDIES, UNIVERSITY OF CHICAGO Communicated January 26, 1952 In the course of an extended study on the origin of the planets1 I have come to certain definite conclusions relative to the early chemical condi- tions on the earth and their bearing on the origin of life.
    [Show full text]
  • Staging Category Base Rate Article Description HTS Heading
    HTS Heading/Article Subheading description Base Rate Staging Category I. CHEMICAL ELEMENTS 2801 Fluorine, chlorine, bromine and iodine: 28011000 -Chlorine Free E 28012000 -Iodine Free E 280130 -Fluorine; bromine: 28013010 --Fluorine 3.7% A 28013020 --Bromine 5.5% A 28020000 Sulfur, sublimed or precipitated; colloidal sulfur Free E Carbon (carbon blacks and other forms of carbon not 28030000 elsewhere specified or included) Free E 2804 Hydrogen, rare gases and other nonmetals: 28041000 -Hydrogen 3.7% A -Rare gases: 28042100 --Argon 3.7% A 28042900 --Other 3.7% A 28043000 -Nitrogen 3.7% A 28044000 -Oxygen 3.7% A 28045000 -Boron; tellurium Free E -Silicon: --Containing by weight not less than 99.99 percent of 28046100 silicon Free E 280469 --Other: ---Containing by weight less than 99.99 percent but not 28046910 less than 99 percent of silicon 5.3% B 28046950 ---Other 5.5% B 28047000 -Phosphorus Free E 28048000 -Arsenic Free E 28049000 -Selenium Free E Alkali or alkaline-earth metals; rare-earth metals, scandium and yttrium, whether or not intermixed or 2805 interalloyed; mercury: -Alkali metals: 28051100 --Sodium 5.3% B 28051900 --Other 5.5% B -Alkaline-earth metals: 28052100 --Calcium 3% A 280522 --Strontium and barium: 28052210 ---Strontium 3.7% A 28052220 ---Barium Free E -Rare-earth metals, scandium and yttrium, whether or 28053000 not intermixed or interalloyed 5% A 28054000 -Mercury 1.7% A II. INORGANIC ACIDS AND INORGANIC OXYGEN COMPOUNDS OF NONMETALS Hydrogen chloride (Hydrochloric acid); chlorosulfuric 2806 acid: 28061000 -Hydrogen
    [Show full text]
  • Surface and Corrosion Chemistry of PLUTONIUM
    Surface and Corrosion Chemistry of PLUTONIUM John M. Haschke, Thomas H. Allen, and Luis A. Morales s 252 Los Alamos Science Number 26 2000 Surface and Corrosion Chemistry of Plutonium Elemental plutonium, the form in which most of the weapons-grade material exists, is a reactive metal. When exposed to air, moisture, and common elements such as oxygen and hydrogen, the metal surface readily corrodes and forms a powder of small plutonium-containing particles. Being easily airborne and inhaled, these particles pose a much greater risk of dispersal during an accident than the original metal. The present emphasis on enhancing nuclear security through safe mainte- nance of the nuclear stockpile and safe recovery, handling, and storage of surplus plutonium makes it more imperative than ever that the corrosion of plutonium be understood in all its manifestations. etallic plutonium was first a Los Alamos pioneer in plutonium initiated spontaneously at room temper- prepared at Los Alamos in corrosion, was prescient when he ature and advanced into the plutonium M1944, during the Manhattan wrote, “Most investigators are inclined metal at a rate of more than 1 centime- 10 Project. After samples became avail- to concentrate their attention on PuO2, ter per hour (cm/h), or a factor of 10 able, scientists studied the properties which can be well characterized, and faster than the corrosion rate in dry of the metal, including its reactions to ignore other compounds that may air. The reaction generated excessive with air, moisture, oxygen, and hydro- contribute to the overall corrosion temperatures and started under condi- gen. Extensive investigation of pluto- behavior” (Wick 1980).
    [Show full text]
  • (A) Goods (Other Than Radioactive Ores) Answering to a Descripti
    SECTION VI 165 CHAPTER 28 SECTION VI PRODUCTS OF THE CHEMICAL OR ALLIED INDUSTRIES NOTES 1. (A) Goods (other than radioactive ores) answering to a description in heading 2844 or 2845 are to be classified in those headings and in no other heading of this Schedule. (B) Subject to paragraph (A) above, goods answering to a description in heading 2843, 2846 or 2852 are to be classified in those headings and in no other heading of this Section. 2. Subject to Note 1 above, goods classifiable in heading 3004, 3005, 3006, 3212, 3303, 3304, 3305, 3306, 3307, 3506, 3707 or 3808 by reason of being put up in measured doses or for retail sale are to be classified in those headings and in no other heading of this Schedule. 3. Goods put up in sets consisting of two or more separate constituents, some or all of which fall in this Section and are intended to be mixed together to obtain a product of Section VI or VII, are to be classified in the heading appropriate to that product, provided that the constituents are: (a) having regard to the manner in which they are put up, clearly identifiable as being intended to be used together without first being repacked; (b) presented together; and (c) identifiable, whether by their nature or by the relative proportions in which they are present, as being complementary one to another. CHAPTER 28 Inorganic chemicals, organic or inorganic compounds of precious metals, of rare-earth metals, of radioactive elements or of isotopes NOTES 1. Except where the context otherwise requires, the headings of this Chapter apply
    [Show full text]
  • Origin of Oxygen Species in Titan's Atmosphere
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, E10006, doi:10.1029/2008JE003135, 2008 Click Here for Full Article Origin of oxygen species in Titan’s atmosphere S. M. Ho¨rst,1 V. Vuitton,1,2 and R. V. Yelle1 Received 3 March 2008; revised 9 May 2008; accepted 18 May 2008; published 7 October 2008. + [1] The detection of O precipitating into Titan’s atmosphere by the Cassini Plasma Spectrometer (CAPS) represents the discovery of a previously unknown source of oxygen in Titan’s atmosphere. The photochemical model presented here shows that those oxygen ions are incorporated into CO and CO2. We show that the observed abundances of CO, CO2 and H2O can be simultaneously reproduced using an oxygen flux consistent with the CAPS observations and an OH flux consistent with predicted production from micrometeorite ablation. It is therefore unnecessary to assume that the observed CO abundance is the remnant of a larger primordial CO abundance or to invoke outgassing of CO from Titan’s interior as a source of CO. Citation: Ho¨rst, S. M., V. Vuitton, and R. V. Yelle (2008), Origin of oxygen species in Titan’s atmosphere, J. Geophys. Res., 113, E10006, doi:10.1029/2008JE003135. 1. Introduction evolved from gases trapped in clathrates that were incorpo- rated into Titan as it accreted [Owen, 1982]. This hypothesis [2] The Saturnian system is oxygen rich. Observations also implies that CO was the main carbon-bearing species at from Earth-based observatories and planetary missions have + + the time of accretion and Titan should have had a primordial detected O ,O2, O, OH, and H2O near Saturn [Esposito et abundance of CO larger than observed today.
    [Show full text]
  • Comparative Analysis of the Combustion Stability of Diesel-Methanol and Diesel-Ethanol in a Dual Fuel Engine
    energies Article Comparative Analysis of the Combustion Stability of Diesel-Methanol and Diesel-Ethanol in a Dual Fuel Engine Arkadiusz Jamrozik * , Wojciech Tutak, Renata Gnatowska and Łukasz Nowak Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42-201 Czestochowa, Poland; [email protected] (W.T.); [email protected] (R.G.); [email protected] (Ł.N.) * Correspondence: [email protected] Received: 1 February 2019; Accepted: 6 March 2019; Published: 13 March 2019 Abstract: The co-combustion of diesel with alcohol fuels in a compression ignition dual fuel engine is one of the ways of using alternative fuels to power combustion engines. Scientific explorations in this respect should not only concern the combustion process in one engine cycle, which is most often not representative for a longer engine life, but should also include an analysis of multiple cycles, which would allow for indicating reliable parameters of engine operation and its stability. This paper presents experimental examinations of a CI engine with a dual fuel system, in which co-combustion was performed for diesel and two alcohol fuels (methanol and ethanol) with energy contents of 20%, 30%, 40% and 50%. The research included the analysis of the combustion process and the analysis of cycle-by-cycle variation of the 200 subsequent engine operation cycles. It was shown that the presence and increase in the share of methanol and ethanol used for co-combustion with diesel fuel causes an increase in ignition delay and increases the heat release rate and maximum combustion pressure values. A larger ignition delay is observed for co-combustion with methanol.
    [Show full text]
  • Oxygen Radical Character in Group 11 Oxygen Fluorides
    ARTICLE DOI: 10.1038/s41467-018-03630-0 OPEN Oxygen radical character in group 11 oxygen fluorides Lin Li1, Tony Stüker1, Stefanie Kieninger2, Dirk Andrae 2, Tobias Schlöder3, Yu Gong4, Lester Andrews4, Helmut Beckers1 & Sebastian Riedel 1 Transition metal complexes bearing terminal oxido ligands are quite common, yet group 11 terminal oxo complexes remain elusive. Here we show that excited coinage metal atoms M 1234567890():,; (M = Au, Ag, Cu) react with OF2 to form hypofluorites FOMF and group 11 oxygen metal fluorides OMF2, OAuF and OAgF. These compounds have been characterized by IR matrix- isolation spectroscopy in conjunction with state-of-the-art quantum-chemical calculations. The oxygen fluorides are formed by photolysis of the initially prepared hypofluorites. The linear molecules OAgF and OAuF have a 3Σ − ground state with a biradical character. Two unpaired electrons are located mainly at the oxygen ligand in antibonding O−M π* orbitals. 2 III For the B2 ground state of the OM F2 compounds only an O−M single bond arises and a significant spin-density contribution was found at the oxygen atom as well. 1 Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34/36, 14195 Berlin, Germany. 2 Institut für Chemie und Biochemie, Theoretische Chemie, Freie Unversität Berlin, Takustrasse 3, 14195 Berlin, Germany. 3 Physikalisch-Chemisches Institut, Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany. 4 Department of Chemistry, University of Virginia, Charlottesville, VA 22904-431, USA. Correspondence and requests for materials should be addressed to S.R. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:1267 | DOI: 10.1038/s41467-018-03630-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03630-0 ransition metal complexes bearing terminal oxido 2− a (O , oxo) ligands are quite common.
    [Show full text]
  • H4O and Other Hydrogen-Oxygen Compounds at Giant-Planet Core Pressures
    H4O and other hydrogen-oxygen compounds at giant-planet core pressures Shuai Zhang,1, ∗ Hugh F. Wilson,1 Kevin P. Driver,1 and Burkhard Militzer1, 2 1Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA 2Department of Astronomy, University of California, Berkeley, California 94720, USA Water and hydrogen at high pressure make up a substantial fraction of the interiors of giant planets. Using ab initio random structure search methods we investigate the ground-state crystal structures of water, hydrogen, and hydrogen-oxygen compounds. We find that, at pressures beyond 14 Mbar, excess hydrogen is incorporated into the ice phase to form a novel structure with H4O stoichiometry. We also predict two new ground state structures, P 21=m and I4=mmm, for post- C2=m water ice. PACS numbers: 64.70.K-, 61.50.Ah, 62.50.-p, 96.15.Nd using density functional theory. In the AIRSS process, randomly generated unit cells are filled with randomly positioned atoms, and the structures are geometrically As one of the most abundant substances in the solar relaxed to the targeted pressure. Structures with com- system, water ice at high pressure [1, 2] is of fundamen- petitive enthalpy are picked out and re-evaluated with tal importance in planetary science [3]. Over the last more accurate thermodynamic calculations, from which two years, a significant effort has been devoted to finding the most stable structure can be determined. Although the ground-state structures of ice at the multimegabar the AIRSS is not guaranteed to find the most stable pressures corresponding to the cores of gas giant planets phase, it has achieved remarkable success in discovering (15-20 Mbar for Saturn and 40-60 Mbar for Jupiter).
    [Show full text]
  • Aeronomica Acta
    INSTITUT D'AERONOMIE SPATIALE DE BELGIQUE 3 - Avenue Circulaire B • 1180 BRUXELLES AERONOMICA ACTA A - l\l° 118 - 1973 Chemical kinetics in the stratosphere by G. BRASSEUR BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE 3 - Ringlaan B - 1180 BRUSSEL FOREWORD This paper has been presented at the AGARD meeting on "Atmospheric Pollution by Aircraft Engines" held in London, April 9-13, 1973. It will be published in the conference proceedings. AVANT-PROPOS Ce texte a été présenté à la 41ème réunion du groupe de travail "propulsion et énergé- tique" de l'AGARD qui s'est tenu à Londres du 9 au 13 avril 1973 et qui avait pour thème "la pollution atmosphérique par les moteurs d'avions". Cette communication sera publiée dans le compte rendu de la réunion. VOORWOORD Deze tekst werd voorgedragen tijdens de "AGARD meeting on Atmospheric Pollution by Aircraft Engines", 9-13 April 1973, te Londen. Hij zal in the "Conference Proceedings" uitgegeven worden. VORWORT Dieser Text wurde zum "AGARD meeting on Atmospheric Pollution by Aircraft Engines", 9-13 April 1973, in London vorgestellt. Er wird in den "Conference Proceedings" herausgegeben werden. CHEMICAL KINETICS IN THE STRATOSPHERE by G. BRASSEUR Summary Ozone is produced by the photodissociation of molecular oxygen and can be destroyed by several reactions involving the nitrogen - hydrogen -oxygen atmosphere. In the lower part of the stratosphere and for photochemical conditions, an important loss of ozone is due to the NOx reactions. Nitric oxide is formed in the stratosphere after dissociation of nitrous oxide by the excited oxygen atom 0(lD). The formation of nitric acid is possible by the presence of hydroxyl radicals.
    [Show full text]