Chapter 6 Products and Quotients
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ELEMENTARY TOPOLOGY I 1. Introduction 3 2. Metric Spaces 4 2.1
ELEMENTARY TOPOLOGY I ALEX GONZALEZ 1. Introduction3 2. Metric spaces4 2.1. Continuous functions8 2.2. Limits 10 2.3. Open subsets and closed subsets 12 2.4. Continuity, convergence, and open/closed subsets 15 3. Topological spaces 18 3.1. Interior, closure and boundary 20 3.2. Continuous functions 23 3.3. Basis of a topology 24 3.4. The subspace topology 26 3.5. The product topology 27 3.6. The quotient topology 31 3.7. Other constructions 33 4. Connectedness 35 4.1. Path-connected spaces 40 4.2. Connected components 41 5. Compactness 43 5.1. Compact subspaces of Rn 46 5.2. Nets and Tychonoff’s Theorem 48 6. Countability and separation axioms 52 6.1. The countability axioms 52 6.2. The separation axioms 54 7. Urysohn metrization theorem 61 8. Topological manifolds 65 8.1. Compact manifolds 66 REFERENCES 67 Contents 1 2 ALEX GONZALEZ ELEMENTARY TOPOLOGY I 3 1. Introduction When we consider properties of a “reasonable” function, probably the first thing that comes to mind is that it exhibits continuity: the behavior of the function at a certain point is similar to the behavior of the function in a small neighborhood of the point. What’s more, the composition of two continuous functions is also continuous. Usually, when we think of a continuous functions, the first examples that come to mind are maps f : R ! R: • the identity function, f(x) = x for all x 2 R; • a constant function f(x) = k; • polynomial functions, for instance f(x) = xn, for some n 2 N; • the exponential function g(x) = ex; • trigonometric functions, for instance h(x) = cos(x). -
MTH 304: General Topology Semester 2, 2017-2018
MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds.......................... -
Chapter 7 Separation Properties
Chapter VII Separation Axioms 1. Introduction “Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology.. We have already met some simple separation properties of spaces: the XßX!"and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As “more separation” is added to spaces, they generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the older literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , , and X %, each stronger than its predecessors in the list. Once these were common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: XÞ"" It turns out that the X spaces (also called $$## Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X! space if, whenever BÁC−\, there either exists an open set Y with B−Y, CÂY or there exists an open set ZC−ZBÂZwith , 2) X" space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set ZBÂYßC−Zwith 3) XBÁC−\Y# space (or, Hausdorff space) if, whenever , there exist disjoint open sets and Z\ in such that B−YC−Z and . -
On Compactness in Locally Convex Spaces
Math. Z. 195, 365-381 (1987) Mathematische Zeitschrift Springer-Verlag 1987 On Compactness in Locally Convex Spaces B. Cascales and J. Orihuela Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Murcia, E-30.001-Murcia-Spain 1. Introduction and Terminology The purpose of this paper is to show that the behaviour of compact subsets in many of the locally convex spaces that usually appear in Functional Analysis is as good as the corresponding behaviour of compact subsets in Banach spaces. Our results can be intuitively formulated in the following terms: Deal- ing with metrizable spaces or their strong duals, and carrying out any of the usual operations of countable type with them, we ever obtain spaces with their precompact subsets metrizable, and they even give good performance for the weak topology, indeed they are weakly angelic, [-14], and their weakly compact subsets are metrizable if and only if they are separable. The first attempt to clarify the sequential behaviour of the weakly compact subsets in a Banach space was made by V.L. Smulian [26] and R.S. Phillips [23]. Their results are based on an argument of metrizability of weakly compact subsets (see Floret [14], pp. 29-30). Smulian showed in [26] that a relatively compact subset is relatively sequentially compact for the weak to- pology of a Banach space. He also proved that the concepts of relatively countably compact and relatively sequentially compact coincide if the weak-* dual is separable. The last result was extended by J. Dieudonn6 and L. Schwartz in [-9] to submetrizable locally convex spaces. -
14. Arbitrary Products
14. Arbitrary products Contents 1 Motivation 2 2 Background and preliminary definitions2 N 3 The space Rbox 4 N 4 The space Rprod 6 5 The uniform topology on RN, and completeness 12 6 Summary of results about RN 14 7 Arbitrary products 14 8 A final note on completeness, and completions 19 c 2018{ Ivan Khatchatourian 1 14. Arbitrary products 14.2. Background and preliminary definitions 1 Motivation In section 8 of the lecture notes we discussed a way of defining a topology on a finite product of topological spaces. That definition more or less agreed with our intuition. We should expect products of open sets in each coordinate space to be open in the product, for example, and the only issue that arises is that these sets only form a basis rather than a topology. So we simply generate a topology from them and call it the product topology. This product topology \played nicely" with the topologies on each of the factors in a number of ways. In that earlier section, we also saw that every topological property we had studied up to that point other than ccc-ness was finitely productive. Since then we have developed some new topological properties like regularity, normality, and metrizability, and learned that except for normality these are also finitely productive. So, ultimately, most of the properties we have studied are finitely productive. More importantly, the proofs that they are finitely productive have been easy. Look back for example to your proof that separability is finitely productive, and you will see that there was almost nothing to do. -
September 2020 INTRODUCTION to TOPOLOGY (SOME ADDITIONAL
September 2020 INTRODUCTION TO TOPOLOGY (SOME ADDITIONAL BASIC EXERCISES) MICHAEL MEGRELISHVILI Abstract. We provide some additional exercises in the course Topology-8822205 (Bar-Ilan University). We are going to update this file several times (during the current semester). Contents 1. Metric spaces 1 2. Topological spaces 5 3. Topological products 8 4. Compactness 9 5. Quotients 11 6. Hints and solutions 12 References 25 1. Metric spaces Exercise 1.1. Give an example of a metric space (X; d) containing two balls such that B(a1; r1) ( B(a2; r2) but r2 < r1: Hint: think about metric subspaces of R. Exercise 1.2. Let (X; d) be a metric space and 0 < r + d(a; b) < R: Prove that B(b; r) ⊆ B(a; R). Conclude that the ball B(a; R) is an open subset of X. Exercise 1.3. Let X be a set. Define ( 0 for x = y d (x; y) := ∆ 1 for x 6= y Show that (X; d∆) is an ultrametric space and describe the balls and spheres according to their radii. Date: September 14, 2020. 1 2 Exercise 1.4. Find non-isometric metric spaces X; Y such that there exist isometric embeddings f : X,! Y , g : Y,! X. Exercise 1.5. Let (V; jj · jj) be a normed space. Show that every translation Tz : V ! V; Tz(x) = z + x is an isometry. Conclude that all open balls B(a; r) with the same radius r (and a 2 V ) are isometric. Exercise 1.6. Give geometric descriptions of B[v; r];B(v; r);S(v; r) in R2 for v = (1; 2), r = 3 with respect to the following metrics: (a) Euclidean d; (b) d1; (c) dmax. -
Section 11.3. Countability and Separability
11.3. Countability and Separability 1 Section 11.3. Countability and Separability Note. In this brief section, we introduce sequences and their limits. This is applied to topological spaces with certain types of bases. Definition. A sequence {xn} in a topological space X converges to a point x ∈ X provided for each neighborhood U of x, there is an index N such that n ≥ N, then xn belongs to U. The point x is a limit of the sequence. Note. We can now elaborate on some of the results you see early in a senior level real analysis class. You prove, for example, that the limit of a sequence of real numbers (under the usual topology) is unique. In a topological space, this may not be the case. For example, under the trivial topology every sequence converges to every point (at the other extreme, under the discrete topology, the only convergent sequences are those which are eventually constant). For an ad- ditional example, see Bonus 1 in my notes for Analysis 1 (MATH 4217/5217) at: http://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf. In a Hausdorff space (as in a metric space), points can be separated and limits of sequences are unique. Definition. A topological space (X, T ) is first countable provided there is a count- able base at each point. The space (X, T ) is second countable provided there is a countable base for the topology. 11.3. Countability and Separability 2 Example. Every metric space (X, ρ) is first countable since for all x ∈ X, the ∞ countable collection of open balls {B(x, 1/n)}n=1 is a base at x for the topology induced by the metric. -
CLASS NOTES MATH 551 (FALL 2014) 1. Wed, Aug. 27 Topology Is the Study of Shapes. (The Greek Meaning of the Word Is the Study Of
CLASS NOTES MATH 551 (FALL 2014) BERTRAND GUILLOU 1. Wed, Aug. 27 Topology is the study of shapes. (The Greek meaning of the word is the study of places.) What kind of shapes? Many are familiar objects: a circle or triangle or square. From the point of view of topology, these are indistinguishable. Going up in dimension, we might want to study a sphere or box or a torus. Here, the sphere is topologically distinct from the torus. And neither of these is considered to be equivalent to the circle. One standard way to distinguish the circle from the sphere is to see what happens when you remove two points. One case gives you two disjoint intervals, whereas the other gives you an (open) cylinder. The two intervals are disconnected, whereas the cylinder is not. This then implies that the circle and the sphere cannot be identified as topological spaces. This will be a standard line of approach for distinguishing two spaces: find a topological property that one space has and the other does not. In fact, all of the above examples arise as metric spaces, but topology is quite a bit more general. For starters, a circle of radius 1 is the same as a circle of radius 123978632 from the eyes of topology. We will also see that there are many interesting spaces that can be obtained by modifying familiar metric spaces, but the resulting spaces cannot always be given a nice metric. ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? As we said, many examples that we care about are metric spaces, so we'll start by reviewing the theory of metric spaces. -
On Separability of the Functional Space with the Open-Point and Bi-Point-Open Topologies, Arxiv:1602.02374V2[Math.GN] 12 Feb 2016
On separability of the functional space with the open-point and bi-point-open topologies, II Alexander V. Osipov Ural Federal University, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaja street, 620219, Ekaterinburg, Russia Abstract In this paper we continue to study the property of separability of functional space C(X) with the open-point and bi-point-open topologies. We show that for every perfect Polish space X a set C(X) with bi-point-open topology is a separable space. We also show in a set model (the iterated perfect set model) that for every regular space X with countable network a set C(X) with bi-point-open topology is a separable space if and only if a dispersion character ∆(X)= c. Keywords: open-point topology, bi-point-open topology, separability 2000 MSC: 54C40, 54C35, 54D60, 54H11, 46E10 1. Introduction The space C(X) with the topology of pointwise convergence is denoted by Cp(X). It has a subbase consisting of sets of the form [x, U]+ = {f ∈ C(X): f(x) ∈ U}, where x ∈ X and U is an open subset of real line R. arXiv:1604.04609v1 [math.GN] 15 Apr 2016 In paper [3] was introduced two new topologies on C(X) that we call the open-point topology and the bi-point-open topology. The open-point topology on C(X) has a subbase consisting of sets of the form [V,r]− = {f ∈ C(X): f −1(r) V =6 ∅}, where V is an open subset ofTX and r ∈ R. -
Which Topologies Can Have Immediate Successors in the Lattice of T1-Topologies?
Applied General Topology c Universidad Polit´ecnica de Valencia @ Volume 5, No. 2, 2004 pp. 231-242 Which topologies can have immediate successors in the lattice of T 1-topologies? Ofelia T. Alas and Richard G. Wilson∗ Abstract. We give a new characterization of those topologies which have an immediate successor or cover in the lattice of T1-topologies on a set and show that certain classes of compact and countably compact topologies do not have covers. Keywords: lattice of T1-topologies, maximal point, KC-space, cover of a topology, upper topology, lower topology 2000 AMS Classification: Primary 54A10; Secondary 06A06 1. Introduction and Preliminary Results The lattice L1(X) of T1-topologies on a set X has been studied, with differing emphasis, by many authors. Most articles on the subject have considered com- plementation in the lattice and properties of mutually complementary spaces (see for example, [12, 13, 15]. Here we consider a facet of the order structure of the lattice L1(X), specifically the problem of when a jump can occur in the order; that is to say, when there exist topologies τ and τ + on a set X such that whenever µ is a topology on X such that τ ⊆ µ ⊆ τ + then µ = τ or µ = τ +. The existence of jumps in L1(X) has been studied in [10] and [16] where the immediate successor τ + was said to be a cover of (or simply to cover) τ. We prefer order-theoretic terminology and then call τ a lower topology for X; the topology τ + will then be termed an upper topology. -
Math 131: Introduction to Topology 1
Math 131: Introduction to Topology 1 Professor Denis Auroux Fall, 2019 Contents 9/4/2019 - Introduction, Metric Spaces, Basic Notions3 9/9/2019 - Topological Spaces, Bases9 9/11/2019 - Subspaces, Products, Continuity 15 9/16/2019 - Continuity, Homeomorphisms, Limit Points 21 9/18/2019 - Sequences, Limits, Products 26 9/23/2019 - More Product Topologies, Connectedness 32 9/25/2019 - Connectedness, Path Connectedness 37 9/30/2019 - Compactness 42 10/2/2019 - Compactness, Uncountability, Metric Spaces 45 10/7/2019 - Compactness, Limit Points, Sequences 49 10/9/2019 - Compactifications and Local Compactness 53 10/16/2019 - Countability, Separability, and Normal Spaces 57 10/21/2019 - Urysohn's Lemma and the Metrization Theorem 61 1 Please email Beckham Myers at [email protected] with any corrections, questions, or comments. Any mistakes or errors are mine. 10/23/2019 - Category Theory, Paths, Homotopy 64 10/28/2019 - The Fundamental Group(oid) 70 10/30/2019 - Covering Spaces, Path Lifting 75 11/4/2019 - Fundamental Group of the Circle, Quotients and Gluing 80 11/6/2019 - The Brouwer Fixed Point Theorem 85 11/11/2019 - Antipodes and the Borsuk-Ulam Theorem 88 11/13/2019 - Deformation Retracts and Homotopy Equivalence 91 11/18/2019 - Computing the Fundamental Group 95 11/20/2019 - Equivalence of Covering Spaces and the Universal Cover 99 11/25/2019 - Universal Covering Spaces, Free Groups 104 12/2/2019 - Seifert-Van Kampen Theorem, Final Examples 109 2 9/4/2019 - Introduction, Metric Spaces, Basic Notions The instructor for this course is Professor Denis Auroux. His email is [email protected] and his office is SC539. -
TOPOLOGICAL SPACES DEFINITIONS and BASIC RESULTS 1.Topological Space
PART I: TOPOLOGICAL SPACES DEFINITIONS AND BASIC RESULTS 1.Topological space/ open sets, closed sets, interior and closure/ basis of a topology, subbasis/ 1st ad 2nd countable spaces/ Limits of sequences, Hausdorff property. Prop: (i) condition on a family of subsets so it defines the basis of a topology on X. (ii) Condition on a family of open subsets to define a basis of a given topology. 2. Continuous map between spaces (equivalent definitions)/ finer topolo- gies and continuity/homeomorphisms/metric and metrizable spaces/ equiv- alent metrics vs. quasi-isometry. 3. Topological subspace/ relatively open (or closed) subsets. Product topology: finitely many factors, arbitrarily many factors. Reference: Munkres, Ch. 2 sect. 12 to 21 (skip 14) and Ch. 4, sect. 30. PROBLEMS PART (A) 1. Define a non-Hausdorff topology on R (other than the trivial topol- ogy) 1.5 Is the ‘finite complement topology' on R Hausdorff? Is this topology finer or coarser than the usual one? What does lim xn = a mean in this topology? (Hint: if b 6= a, there is no constant subsequence equal to b.) 2. Let Y ⊂ X have the induced topology. C ⊂ Y is closed in Y iff C = A \ Y , for some A ⊂ X closed in X. 2.5 Let E ⊂ Y ⊂ X, where X is a topological space and Y has the Y induced topology. Thenn E (the closure of E in the induced topology on Y ) equals E \ Y , the intersection of the closure of E in X with the subset Y . 3. Let E ⊂ X, E0 be the set of cluster points of E.