Manuscript Revised 30 07 2014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bacterial Biofilms on Microplastics in the Baltic Sea – Composition, Influences, and Interactions with Their Environment
Bacterial biofilms on microplastics in the Baltic Sea – Composition, influences, and interactions with their environment kumulative Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock vorgelegt von Katharina Kesy, geb. am 06.11.1985 in Berlin aus Rostock Rostock, 17.09.2019 https://doi.org/10.18453/rosdok_id00002636 Gutachter: Prof. Dr. Matthias Labrenz, Sektion Biologische Meereskunde, Leibniz-Institut für Ostseeforschug Warnemünde Assist. Prof. Dr. Melissa Duhaime, Department of Computational Medicine and Bioinformatics, University of Michigan, USA Jahr der Einreichung: 2019 Jahr der Verteidigung: 2020 Table of contents i Table of contents Summary/Zusammenfassung ............................................................................................. 1 General introduction ........................................................................................................... 6 Biofilms, their formation, and influential factors ............................................................. 6 The ecological importance of biofilms in aquatic systems ............................................... 8 Microplastics in aquatic environments: a newly available habitat for surface associated microorganisms and possible vector for potential pathogens ........................................... 9 Description of research aims ............................................................................................ 15 Summary -
Architecture, Component, and Microbiome of Biofilm Involved In
www.nature.com/npjbiofilms ARTICLE OPEN Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors Tomohiro Inaba1, Tomoyuki Hori1, Hidenobu Aizawa1, Atsushi Ogata1 and Hiroshi Habe1 Biofilm formation on the filtration membrane and the subsequent clogging of membrane pores (called biofouling) is one of the most persistent problems in membrane bioreactors for wastewater treatment and reclamation. Here, we investigated the structure and microbiome of fouling-related biofilms in the membrane bioreactor using non-destructive confocal reflection microscopy and high-throughput Illumina sequencing of 16S rRNA genes. Direct confocal reflection microscopy indicated that the thin biofilms were formed and maintained regardless of the increasing transmembrane pressure, which is a common indicator of membrane fouling, at low organic-loading rates. Their solid components were primarily extracellular polysaccharides and microbial cells. In contrast, high organic-loading rates resulted in a rapid increase in the transmembrane pressure and the development of the thick biofilms mainly composed of extracellular lipids. High-throughput sequencing revealed that the biofilm microbiomes, including major and minor microorganisms, substantially changed in response to the organic-loading rates and biofilm development. These results demonstrated for the first time that the architectures, chemical components, and microbiomes of the biofilms on fouled membranes were tightly associated with one another and differed considerably depending on the organic-loading conditions in the membrane bioreactor, emphasizing the significance of alternative indicators other than the transmembrane pressure for membrane biofouling. npj Biofilms and Microbiomes (2017) 3:5 ; doi:10.1038/s41522-016-0010-1 INTRODUCTION improvement of confocal reflection microscopy (CRM).9, 10 This Membrane bioreactors (MBRs) have been broadly exploited for the unique analytical technique uses a special installed beam splitter treatment of municipal and industrial wastewaters. -
Research Collection
Research Collection Doctoral Thesis Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil Author(s): Ragot, Sabine A. Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010630685 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO.23284 DEVELOPMENT AND APPLICATION OF MOLECULAR TOOLS TO INVESTIGATE MICROBIAL ALKALINE PHOSPHATASE GENES IN SOIL A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by SABINE ANNE RAGOT Master of Science UZH in Biology born on 25.02.1987 citizen of Fribourg, FR accepted on the recommendation of Prof. Dr. Emmanuel Frossard, examiner PD Dr. Else Katrin Bünemann-König, co-examiner Prof. Dr. Michael Kertesz, co-examiner Dr. Claude Plassard, co-examiner 2016 Sabine Anne Ragot: Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil, c 2016 ⃝ ABSTRACT Phosphatase enzymes play an important role in soil phosphorus cycling by hydrolyzing organic phosphorus to orthophosphate, which can be taken up by plants and microorgan- isms. PhoD and PhoX alkaline phosphatases and AcpA acid phosphatase are produced by microorganisms in response to phosphorus limitation in the environment. In this thesis, the current knowledge of the prevalence of phoD and phoX in the environment and of their taxonomic distribution was assessed, and new molecular tools were developed to target the phoD and phoX alkaline phosphatase genes in soil microorganisms. -
Spatial Environmental Heterogeneity Determines Young Biofilm
fmicb-10-01665 August 8, 2019 Time: 16:47 # 1 ORIGINAL RESEARCH published: 09 August 2019 doi: 10.3389/fmicb.2019.01665 Spatial Environmental Heterogeneity Determines Young Biofilm Assemblages on Microplastics in Baltic Sea Mesocosms Katharina Kesy1, Sonja Oberbeckmann1, Bernd Kreikemeyer2 and Matthias Labrenz1* 1 Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany, 2 Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany Microplastics in aquatic environments provide novel habitats for surface-colonizing microorganisms. Given the continuing debate on whether substrate-specific properties or environmental factors prevail in shaping biofilm assemblages on microplastics, we examined the influence of substrate vs. spatial factors in the development of bacterial assemblages on polyethylene (PE), polystyrene (PS), wood, and seston and in the free-living fraction. Further, the selective colonization of microplastics by potential pathogens was investigated because among the bacterial species found in microplastic- Edited by: associated biofilms are potentially pathogenic Vibrio spp. Due to their persistence Marcelino T. Suzuki, and great dispersal potential, microplastics could act as vectors for these potential Sorbonne Universités, France pathogens and for biofilm assemblages in general. Incubation experiments with these Reviewed by: Sandi Orlic, substrates were conducted for 7 days during a summer cruise along the eastern Institut Ruder¯ Boškovic,´ Croatia Baltic Sea coastline in waters covering a salinity gradient of 4.5–9 PSU. Bacterial Anne-Leila Meistertzheim, UMR 7621 Laboratoire assemblages were analyzed using 16S rRNA-gene amplicon sequencing, distance- d’Océanographie Microbienne based redundancy analyses, and the linear discriminant analysis effect size method to (LOMIC), France identify taxa that were significantly more abundant on the plastics. -
Evolution of Methanotrophy in the Beijerinckiaceae&Mdash
The ISME Journal (2014) 8, 369–382 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis Ivica Tamas1, Angela V Smirnova1, Zhiguo He1,2 and Peter F Dunfield1 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada and 2Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT. -
Phylogenomic Analyses of Bradyrhizobium Reveal Uneven Distribution of the Lateral and Subpolar Flagellar Systems, Which Extends to Rhizobiales
microorganisms Article Phylogenomic Analyses of Bradyrhizobium Reveal Uneven Distribution of the Lateral and Subpolar Flagellar Systems, Which Extends to Rhizobiales Daniel Garrido-Sanz 1 , Miguel Redondo-Nieto 1, Elías Mongiardini 2, Esther Blanco-Romero 1, David Durán 1, Juan I. Quelas 2, Marta Martin 1, Rafael Rivilla 1 , Aníbal R. Lodeiro 2 and M. Julia Althabegoiti 2,* 1 Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain; [email protected] (D.G.-S.); [email protected] (M.R.-N.); [email protected] (E.B.-R.); [email protected] (D.D.); [email protected] (M.M.); [email protected] (R.R.) 2 Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina; [email protected] (E.M.); [email protected] (J.I.Q.); [email protected] (A.R.L.) * Correspondence: [email protected] Received: 19 December 2018; Accepted: 11 February 2019; Published: 13 February 2019 Abstract: Dual flagellar systems have been described in several bacterial genera, but the extent of their prevalence has not been fully explored. Bradyrhizobium diazoefficiens USDA 110T possesses two flagellar systems, the subpolar and the lateral flagella. The lateral flagellum of Bradyrhizobium displays no obvious role, since its performance is explained by cooperation with the subpolar flagellum. In contrast, the lateral flagellum is the only type of flagella present in the related Rhizobiaceae family. In this work, we have analyzed the phylogeny of the Bradyrhizobium genus by means of Genome-to-Genome Blast Distance Phylogeny (GBDP) and Average Nucleotide Identity (ANI) comparisons of 128 genomes and divided it into 13 phylogenomic groups. -
Maxbin: an Automated Binning Method to Recover Individual
Wu et al. Microbiome 2014, 2:26 http://www.microbiomejournal.com/content/2/1/26 METHODOLOGY Open Access MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm Yu-Wei Wu1,2*, Yung-Hsu Tang1,3, Susannah G Tringe4,5, Blake A Simmons1,6 and Steven W Singer1,7 Abstract Background: Recovering individual genomes from metagenomic datasets allows access to uncultivated microbial populations that may have important roles in natural and engineered ecosystems. Understanding the roles of these uncultivated populations has broad application in ecology, evolution, biotechnology and medicine. Accurate binning of assembled metagenomic sequences is an essential step in recovering the genomes and understanding microbial functions. Results: We have developed a binning algorithm, MaxBin, which automates the binning of assembled metagenomic scaffolds using an expectation-maximization algorithm after the assembly of metagenomic sequencing reads. Binning of simulated metagenomic datasets demonstrated that MaxBin had high levels of accuracy in binning microbial genomes. MaxBin was used to recover genomes from metagenomic data obtained through the Human Microbiome Project, which demonstrated its ability to recover genomes from real metagenomic datasets with variable sequencing coverages. Application of MaxBin to metagenomes obtained from microbial consortia adapted to grow on cellulose allowed genomic analysis of new, uncultivated, cellulolytic bacterial populations, including an abundant myxobacterial population distantly related to Sorangium cellulosum that possessed a much smaller genome (5 MB versus 13 to 14 MB) but has a more extensive set of genes for biomass deconstruction. For the cellulolytic consortia, the MaxBin results were compared to binning using emergent self-organizing maps (ESOMs) and differential coverage binning, demonstrating that it performed comparably to these methods but had distinct advantages in automation, resolution of related genomes and sensitivity. -
Structure and Variation of Root-Associated Bacterial Communities of Cyperus Rotundus L
Structure and variation of root-associated bacterial communities of Cyperus rotundus L. in the contaminated soils around Pb/Zn mine sites Pin Gao Guangdong Institute of Eco-Environmental and Soil Sciences Benru Song Guangdong Institute of Eco-Environmental and Soil Sciences Rui Xu Guangdong Institute of Eco-Environmental and Soil Sciences Xiaoxu Sun Guangdong Institute of Eco-Environmental and Soil Sciences Hanzhi Lin Guangdong Institute of Eco-Environmental and Soil Sciences Fuqing Xu Guangdong Institute of Eco-Environmental and Soil Sciences Baoqin Li Guangdong Institute of Eco-Environmental and Soil Sciences Weimin Sun ( [email protected] ) Guangdong Institute of Eco-Environmental and Soil Sciences Research Article Keywords: mining contaminated soils, rhizosphere, root endosphere, bacterial community, Cyperus rotundus L. Posted Date: March 18th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-277968/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Soil contamination due to mining activities is a great concern in China. Although the effects of mining pollution resulting in changes of soil characteristics and the microbiome have been documented, studies on the responses of plant root-associated microbial assemblages remain scarce. In this work, we collected bulk soil, rhizosphere soil, and root endosphere samples of Cyperus rotundus L (Cyp) plants from two Pb/Zn mines, of which, one was abandoned (SL) and the other was active (GD), to investigate the bacterial community responses across different site contamination levels and Cyp plant compartments. For comparison, one unpolluted site (SD) was included. Results revealed that soils from the SL and GD sites were seriously contaminated by metal(loid)s, including Pb, Zn, As, and Sb. -
Proteobacterial Gene Transfer Agents
bioRxiv preprint doi: https://doi.org/10.1101/189738; this version posted October 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Insights into Origin and Evolution of a- 2 proteobacterial Gene Transfer Agents 3 Migun Shakya1,2, Shannon M. Soucy1, and Olga Zhaxybayeva1,3,* 4 1Department of Biological Sciences, Dartmouth College, Hanover NH 03755, USA 5 2Present address: Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544 6 3Department of Computer Science, Dartmouth College, Hanover NH 03755, USA 7 *Corresponding author, E-mail: [email protected]; Tel: (603) 646-8616 8 9 Research Paper 10 Keywords: exaptation, domestication, horizontal gene transfer, bacterium-virus co-evolution, 11 bacteriophage 12 1 bioRxiv preprint doi: https://doi.org/10.1101/189738; this version posted October 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 Several bacterial and archaeal lineages produce nanostructures that morphologically resemble 3 small tailed viruses, but, unlike most viruses, contain apparently random pieces of the host 4 genome. Since these elements can deliver the packaged DNA to other cells, they were dubbed 5 Gene Transfer Agents (GTAs). Because many genes involved in GTA production have viral 6 homologs, it has been hypothesized that the GTA ancestor was a virus. -
Dynamic Alterations of the Distal Intestinal Microbiota, Transcriptome, and Metabolome of Hybrid Grouper by Β-Conglycinin With
fmars-08-705332 July 13, 2021 Time: 16:51 # 1 ORIGINAL RESEARCH published: 19 July 2021 doi: 10.3389/fmars.2021.705332 Dynamic Alterations of the Distal Intestinal Microbiota, Transcriptome, and Metabolome of Hybrid Grouper by b -Conglycinin With Reconciliations by Sodium Butyrate in Feed Bin Yin1,2,3, Hongyu Liu1,2,3*, Beiping Tan1,2,3*, Xiaohui Dong1,2,3, Shuyan Chi1,2,3, Qihui Yang1,2,3 and Shuang Zhang1,2,3 1 Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China, Edited by: 2 Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Ikram Belghit, Zhanjiang, China, 3 Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry Norwegian Institute of Marine of Agriculture, Zhanjiang, China Research (IMR), Norway Reviewed by: Different doses of b-conglycinin produce different regulations on the intestinal health Fotini Kokou, Wageningen University and Research, of aquatic animals, affecting the absorption of nutrients, indirectly changing water Netherlands quality. Sodium butyrate (NaB) can effectively alleviate the negative effects caused Seyyed Morteza Hoseini, Iranian Fisheries Science Research by high-dose b-conglycinin. We investigated the positive response to low-dose Institute (IFSRI), Iran (1.5%, bL) and negative response to high-dose (6.0%, bH) b-conglycinin and *Correspondence: supplementation with NaB (6.0% b-conglycinin + 0.13% NaB, bHNaB) in terms of water Hongyu Liu pollutants, microbiota, transcriptome, and metabolome in hybrid grouper (Epinephelus [email protected] Beiping Tan fuscoguttatus × E. lanceolatus ). The ammonia nitrogen, nitrite, total nitrogen, and [email protected] total phosphorus♀ contents were♂ significantly higher in the water from bH than from FMb, bL, and bHNaB. -
1 TITLE an Updated Phylogeny of the Alphaproteobacteria
1 TITLE 2 An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales 3 and Holosporales have independent origins 4 AUTHORS 5 Sergio A. Muñoz-Gómez1,2, Sebastian Hess1,2, Gertraud Burger3, B. Franz Lang3, 6 Edward Susko2,4, Claudio H. Slamovits1,2*, and Andrew J. Roger1,2* 7 AUTHOR AFFILIATIONS 8 1 Department of Biochemistry and Molecular Biology; Dalhousie University; Halifax, 9 Nova Scotia, B3H 4R2; Canada. 10 2 Centre for Comparative Genomics and Evolutionary Bioinformatics; Dalhousie 11 University; Halifax, Nova Scotia, B3H 4R2; Canada. 12 3 Department of Biochemistry, Robert-Cedergren Center in Bioinformatics and 13 Genomics, Université de Montréal, Montreal, Quebec, Canada. 14 4 Department of Mathematics and Statistics; Dalhousie University; Halifax, Nova Scotia, 15 B3H 4R2; Canada. 16 17 *Correspondence to: Department of Biochemistry and Molecular Biology; Dalhousie 18 University; Halifax, Nova Scotia, B3H 4R2; Canada; 1 902 494 2881, [email protected] 1 19 ABSTRACT 20 The Alphaproteobacteria is an extraordinarily diverse and ancient group of bacteria. 21 Previous attempts to infer its deep phylogeny have been plagued with methodological 22 artefacts. To overcome this, we analyzed a dataset of 200 single-copy and conserved 23 genes and employed diverse strategies to reduce compositional artefacts. Such 24 strategies include using novel dataset-specific profile mixture models and recoding 25 schemes, and removing sites, genes and taxa that are compositionally biased. We 26 show that the Rickettsiales and Holosporales (both groups of intracellular parasites of 27 eukaryotes) are not sisters to each other, but instead, the Holosporales has a derived 28 position within the Rhodospirillales. -
Crystal Structure of Pelagibacterium Halotolerans PE8: New Insight
www.nature.com/scientificreports OPEN Crystal structure of Pelagibacterium halotolerans PE8: New insight into its substrate-binding pattern Received: 9 August 2016 Ying-Yi Huo1, Suhua Li2, Jing Huang2, Zhen Rong1, Zhao Wang3, Zhengyang Li2, Rui Ji2, Siyun Accepted: 17 May 2017 Kuang2, Heng-Lin Cui3, Jixi Li2 & Xue-Wei Xu1 Published: xx xx xxxx Lysophospholipase_carboxylesterase (LPCE) has highly conserved homologs in many diverse species ranging from bacteria to humans, as well as substantial biological significance and potential therapeutic implications. However, its biological function and catalytic mechanism remain minimally investigated because of the lack of structural information. Here, we report the crystal structure of a bacterial esterase PE8 belonging to the LPCE family. The crystal structure of PE8 was solved with a high resolution of 1.66 Å. Compared with other homologs in the family, significant differences were observed in the amino acid sequence, three-dimensional structure, and substrate-binding pattern. Residue Arg79 undergoes configuration switching when binding to the substrate and forms a unique wall, leading to a relatively closed cavity in the substrate-binding pocket compared with the relatively more open and longer clefts in other homologs. Moreover, the mutant Met122Ala showed much stronger substrate affinity and higher catalytic efficiency because less steric repulsion acted on the substrates. Taken together, these results showed that, in PE8, Arg79 and Met122 play important roles in substrate binding and the binding pocket shaping, respectively. Our study provides new insight into the catalytic mechanism of LPCE, which may facilitate the development of structure-based therapeutics and other biocatalytic applications. Esterases have important physiological roles and biotechnological applications because they can catalyze the hydrolysis of short-chain ester-containing molecules and produce carboxylates and alcohols1–3.