Unusual Macrocyclic Lactone Sex Pheromone of Parcoblatta

Total Page:16

File Type:pdf, Size:1020Kb

Unusual Macrocyclic Lactone Sex Pheromone of Parcoblatta Unusual macrocyclic lactone sex pheromone of PNAS PLUS Parcoblatta lata, a primary food source of the endangered red-cockaded woodpecker Dorit Eliyahua,b,1,2, Satoshi Nojimaa,b,1,3, Richard G. Santangeloa,b, Shannon Carpenterc,4, Francis X. Websterc, David J. Kiemlec, Cesar Gemenoa,b,5, Walter S. Leald, and Coby Schala,b,6 aDepartment of Entomology and bW. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695; cDepartment of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210; and dDepartment of Entomology, University of California, Davis, CA 95616 AUTHOR SUMMARY Wood cockroaches in the genus for highly sensitive NMR ex- Parcoblatta, comprising 12 spe- periments, we turned to a home- cies endemic to North America, made preparative GC apparatus are highly abundant in south- (4). In this procedure, each ap- eastern pine forests and repre- plication of an extract into the sent an important prey of the GC column was followed by endangered red-cockaded collection of the pheromone as woodpecker, Picoides borealis. it eluted out of the column. The The broad wood cockroach, procedure we developed allows Parcoblatta lata, is among the the accumulation of successive largest and most abundant of trappings of the pheromone the wood cockroaches, consti- from multiple GC separations. tuting >50% of the biomass of Finally, the trap, containing less the woodpecker’s diet (1). Be- Fig. P1. Field trapping of Parcoblatta species using synthetic than 2 μg of the pheromone, was parcoblattalactone loaded in rubber septa dispensers. The septa were cause reproduction in red- positioned in the center of adhesive-coated traps vertically attached to transferred directly into an cockaded woodpeckers is af- pine trees, and trapping was conducted overnight in a mixed pine- NMR microcapillary tube, using fected dramatically by seasonal hardwood forest at Lake Johnson, Wake County, NC. Six transects of only about 7 μL of solvent. This and spatial changes in arthropod the five treatments were set with traps 12–15 m apart. To evaluate the sample was flown immediately prey availability, monitoring P. species specificity of their sex pheromonal signal, lures baited with from North Carolina State Uni- lata populations could serve as volatile collections of virgin P. lata females were included also. versity to the State University of a useful index of habitat suit- New York in Syracuse, NY for ability for woodpecker conservation and forest management hand-delivery directly to the NMR instrument. The spectra we efforts. Current efforts to assess habitat quality and prey avail- obtained were remarkably clean and permitted us to propose the ability entail exceptional investment in broad-scale monitoring structure of the pheromone as (4Z,11Z)-oxacyclotrideca-4,11- with nonselective traps such as burlap bands on trees or card- dien-2-one [synonym, (3Z,10Z)-dodecadienolide], which we board, pitfall, and light traps. A synthetic sex pheromone of named “parcoblattalactone” because of its origin from Parco- P. lata, a major prey, holds promise as an important economically blatta and its macrocyclic lactone structure. This compound was and ecologically sound tool to monitor the quality and suit- synthesized and was confirmed unambiguously to be the same as ability of foraging habitats for red-cockaded woodpeckers. We the natural pheromone by comparing the two NMR spectra. describe here the identification, synthesis, and confirmation of The male cockroach, however, is the best judge whether we the chemical structure of this pheromone. successfully deciphered its sexual communication code. We first Our previous analysis showed that the sex pheromone is pro- tested the synthetic parcoblattalactone by monitoring the elec- duced in the anterior seven segments of sexually mature virgin trophysiological responses of isolated antennae of adult male females (2). We extracted 1,400 virgin females in hexane, and, ECOLOGY while separating the extract by gas chromatography (GC), we also coupled the effluent of the GC to an isolated male antenna, Author contributions: D.E., S.N., F.X.W., D.J.K., C.G., W.S.L., and C.S. designed research; D.E., which was used as a biological detector (electroantennographic S.N., R.G.S., S.C., F.X.W., D.J.K., W.S.L., and C.S. performed research; S.N., S.C., and F.X.W. contributed new reagents/analytic tools; D.E., S.N., F.X.W., D.J.K., W.S.L., and C.S. analyzed detection; GC-EAD) (3). Sensilla on the male antennae house data; and D.E., S.N., R.G.S., S.C., F.X.W., D.J.K., C.G., W.S.L., and C.S. wrote the paper. highly specialized receptors that are exquisitely sensitive to the The authors declare no conflict of interest. female pheromone. GC-EAD analyses revealed four electro- This article is a PNAS Direct Submission. physiologically active compounds. We concentrated on the most Freely available online through the PNAS open access option. abundant compound, which also stimulated strong behavioral CHEMISTRY 1 responses (upwind running and correct choice in a two-choice D.E. and S.N. contributed equally to this work. 2 maze) from males. Analysis by GC coupled to a mass spec- Present address: Center for Insect Science, University of Arizona, Tucson, AZ 85721. trometer (GC-MS) showed that this compound did not match 3Present address: Shin-Etsu Chemical Co., Ltd. Tokyo, Japan. any of the hundreds of thousands of compounds in the MS li- 4Present address: Department of Chemistry, Yale University, New Haven, CT 06520. brary. Although it gave us important clues as to the molecular 5Present address: Departament de Producció Vegetal i Ciència Forestal, Universitat de formula and its molecular weight, MS was not sufficient to de- Lleida, Lleida, Spain. cipher the full chemical structure. Likewise, infrared spectros- 6To whom correspondence should be addressed. E-mail: [email protected]. copy coupled to the GC yielded some more clues but not the full See full research article on page E490 of www.pnas.org. structure. To obtain a tiny amount of absolutely pure pheromone Cite this Author Summary as: PNAS 10.1073/pnas.1111748109. www.pnas.org/cgi/doi/10.1073/pnas.1111748109 PNAS | February 21, 2012 | vol. 109 | no. 8 | 2705–2706 Downloaded by guest on September 24, 2021 P. lata, Parcoblatta virginica,andParcoblatta pennsylvanica that The Parcoblatta species complex, consisting of 12 species en- were freshly collected in the same pine forest in Raleigh, NC. demic to North America, constitutes excellent material for future Both P. lata and P. virginica responded to as little as ∼0.1 ng of the studies of premating reproductive isolation. The compound we pheromone, but P. pennsylvanica antennae responded only isolated from P. lata attracted males of some other Parcoblatta to very large amounts of parcoblattalactone. These results were species but not others. This observation suggests that Parcoblatta confirmed with traps baited with parcoblattalactone that we species likely use species-specific multicomponent pheromone deployed overnight in a mixed pine-hardwood forest in Raleigh. blends, as do many other insects. Some species that were not Sticky traps baited with 10, 100, and 1,000 ng parcoblattalactone attracted to parcoblattalactone may have greater fidelity to their attracted large numbers of adult males of four Parcoblatta species, multicomponent pheromone blend, or they may use a different most commonly P. lata, P. virginica,andP. caudelli,butnota major component, not parcoblattalactone, in their pheromone single P. pennsylvanica, even though that species was clearly found blend. Interestingly, however, P. virginica and P. caudelli males in this forest (Fig. P1). No immature Parcoblatta were found also were attracted to volatile emissions of P. lata females that on any of the traps; one or two adult females were trapped in contained the full blend of pheromone components. This un- some traps but were found equally in baited and unbaited traps. usual observation suggests that other species-isolating mecha- These results show that parcoblattalactone can attract not nisms may operate in this genus, such as temporal and spatial partitioning of sexual activity of different species within the only P. lata but also several other Parcoblatta species, empha- fi sizing its utility in monitoring several endemic wood cockroach forest. Parcoblatta females also may use species-speci c contact sex pheromones to elicit courtship only from conspecific males. species in red-cockaded woodpecker habitats. This macrocyclic lactone is a previously unidentified natural product and a pre- 1. Hanula JL, Lipscomb D, Franzreb KE, Loeb SC (2000) Diet of nestling red-cockaded viously unknown pheromonal structure for cockroaches, high- woodpeckers at three locations. J Field Ornithol 71:126–134. lighting the great chemical diversity that characterizes olfactory 2. Gemeno C, Snook K, Benda N, Schal C (2003) Behavioral and electrophysiological communication in cockroaches—each long-range sex phero- evidence for volatile sex pheromones in Parcoblatta wood cockroaches. J Chem Ecol 29: fi 37–54. mone identi ed to date from different genera belongs to a dif- 3. Nojima S, Schal C, Webster FX, Santangelo RG, Roelofs WL (2005) Identification of the ferent chemical class. As innovative natural product chemists, sex pheromone of the German cockroach, Blattella germanica. Science 307:1104–1106. cockroaches have undergone adaptive radiations in their sexual 4. Nojima S, Kiemle DJ, Webster FX, Apperson CS, Schal C (2011) Nanogram-scale communication signals, producing highly diverse and often preparation and NMR analysis for mass-limited small volatile compounds. PLoS ONE 6: e18178. unique sexual attractants and consequently fashioning relatively 5. Gemeno C, Schal C (2004) Sex pheromones of cockroaches. Advances in Insect Chemical “private” channels of olfactory communication (5). Ecology, eds Cardé RT, Millar JG (Cambridge Univ Press, Cambridge, UK), pp 179–247. 2706 | www.pnas.org/cgi/doi/10.1073/pnas.1111748109 Eliyahu et al.
Recommended publications
  • Cockroach Marion Copeland
    Cockroach Marion Copeland Animal series Cockroach Animal Series editor: Jonathan Burt Already published Crow Boria Sax Tortoise Peter Young Ant Charlotte Sleigh Forthcoming Wolf Falcon Garry Marvin Helen Macdonald Bear Parrot Robert E. Bieder Paul Carter Horse Whale Sarah Wintle Joseph Roman Spider Rat Leslie Dick Jonathan Burt Dog Hare Susan McHugh Simon Carnell Snake Bee Drake Stutesman Claire Preston Oyster Rebecca Stott Cockroach Marion Copeland reaktion books Published by reaktion books ltd 79 Farringdon Road London ec1m 3ju, uk www.reaktionbooks.co.uk First published 2003 Copyright © Marion Copeland All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publishers. Printed and bound in Hong Kong British Library Cataloguing in Publication Data Copeland, Marion Cockroach. – (Animal) 1. Cockroaches 2. Animals and civilization I. Title 595.7’28 isbn 1 86189 192 x Contents Introduction 7 1 A Living Fossil 15 2 What’s in a Name? 44 3 Fellow Traveller 60 4 In the Mind of Man: Myth, Folklore and the Arts 79 5 Tales from the Underside 107 6 Robo-roach 130 7 The Golden Cockroach 148 Timeline 170 Appendix: ‘La Cucaracha’ 172 References 174 Bibliography 186 Associations 189 Websites 190 Acknowledgements 191 Photo Acknowledgements 193 Index 196 Two types of cockroach, from the first major work of American natural history, published in 1747. Introduction The cockroach could not have scuttled along, almost unchanged, for over three hundred million years – some two hundred and ninety-nine million before man evolved – unless it was doing something right.
    [Show full text]
  • Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
    Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi.
    [Show full text]
  • Hanula Cover and Spine.Indd
    DE- AI09-00SR22188 Proceedings 2006 06-18-P THE ROLE OF DEAD WOOD IN MAINTAINING ARTHROPOD DIVERSITY ON THE FOREST FLOOR James L. Hanula, Scott Horn, and Dale D. Wade1 Abstract—Dead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burned pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthro- pods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. The results of these and other studies show that dead wood can influence the abun- dance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees. INTRODUCTION (Picoides borealis), which forages for prey on live trees, its Large dead wood or coarse woody debris (CWD) with a prey, and dead wood in the forest.
    [Show full text]
  • Cockroach Control Manual
    COCKROACHCOCKROACH CONTROLCONTROL MANUALMANUAL (Photo by J. Kalisch) Barb Ogg, Extension Educator, Lancaster County Clyde Ogg, Extension Educator, Pesticide Safety Education Program Dennis Ferraro, Extension Educator, Douglas & Sarpy Counties Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska–Lincoln cooperating with the Counties and the United States Department of Agriculture. ® University of Nebraska–Lincoln Extension’s educational programs abide with the nondiscrimination policies of the University of Nebraska–Lincoln and the United States Department of Agriculture. Table of Contents 1 Chapter 1: Introduction 5 Chapter 2: Know Your Enemy 9 Chapter 3: Cockroach Biology 15 Chapter 4: Locate Problem Areas 23 Chapter 5: Primary Control Strategies: Modify Resources 31 Chapter 6: Low-Risk Control Strategies 37 Chapter 7: Insecticide Basics 45 Chapter 8: Insecticides and Your Health 53 Chapter 9: Insecticide Applications 59 Chapter 10: Putting a Management Plan Together i Cockroach Control Manual Preface It has been more than 10 years since the first edition of the Cockroach Control Manual was completed. While the basic steps for effective and safe cockroach control are still the same, there are more types of control products available than there were 10 years ago. This means you have even more choices in your arsenal to help fight roaches. The Cockroach Control Manual is a practical reference for persons who have had little or no training in insect identification, biology or control methods. We know most people want low toxic methods used inside their homes so we are emphasizing low-risk strategies even more than in the original edition.
    [Show full text]
  • General Pest Management: a Guide for Commercial Applicators, Category 7A, and Return It to the Pesticide Education Program Office, Michigan State University Extension
    General Pest Management A Guide for Commercial Applicators Extension Bulletin E -2048 • October 1998, Major revision-destroy old stock • Michigan State University Extension General Pest Management A Guide for Commercial Applicators Category 7A Editor: Carolyn Randall Extension Associate Pesticide Education Program Michigan State University Technical Consultants: Melvin Poplar, Program Manager John Haslem Insect and Rodent Management Pest Management Supervisor Michigan Department of Agriculture Michigan State University Adapted from Urban Integrated Pest Management, A Guide for Commercial Applicators, written by Dr. Eugene Wood, Dept. of Entomology, University of Maryland; and Lawrence Pinto, Pinto & Associates; edited by Jann Cox, DUAL & Associates, Inc. Prepared for the U.S. Environmental Protection Agency Certification and Training Branch by DUAL & Associates, Arlington, Va., February 1991. General Pest Management i Preface Acknowledgements We acknowledge the main source of information for Natural History Survey for the picture of a mole (Figure this manual, the EPA manual Urban Integrated Pest 19.8). Management, from which most of the information on structure-infesting and invading pests, and vertebrates We acknowledge numerous reviewers of the manu- was taken. script including Mark Sheperdigian of Rose Exterminator Co., Bob England of Terminix, Jerry Hatch of Eradico We also acknowledge the technical assistance of Mel Services Inc., David Laughlin of Aardvark Pest Control, Poplar, Program Manager for the Michigan Department Ted Bruesch of LiphaTech, Val Smitter of Smitter Pest of Agriculture’s (MDA) Insect and Rodent Management Control, Dan Lyden of Eradico Services Inc., Tim Regal of and John Haslem, Pest Management Supervisor at Orkin Exterminators, Kevin Clark of Clarks Critter Michigan State University.
    [Show full text]
  • Article Full Text
    PROTOZOAN PARASITES OF THE ORTHOPTERA, WITH SPECIAL REFERENCE TO THOSE OF OHIO IV.1 CLASSIFIED LIST OF THE PROTOZOAN PARASITES OF THE ORTHOPTERA OF THE WORLD. CLASSES MASTIGOPHORA, SARCODINA, AND SPOROZOA FRANK MERRICK SEMANS The Ohio State University and Youngstown College This classified list of all protozoan parasites thus far reported for Orthoptera lias been assembled for the purpose of making available from one source much information which formerly has been obtainable only by consulting and com- paring a large number of books and papers.2 Beginning with class, and continuing down through genus, a short, char- acterizing description is given for each group. That these descriptions are mutually exclusive will be seen by comparing two groups of the same level, i.e., two classes, two orders, etc. Under species, certain symbols have been used to relate the data under the various headings. Each reference is numbered and this is the number which is used to refer to that author under the other headings for that species. For example, a synonym followed by (1) indicates that author number (1), above, used that name for the parasite. Further, each host is indicated by a letter and followed by one or more numbers. The numbers, of course, again refer to the authors who studied that host, and the letter is used to refer to the host in the following data. For example, under Leptomonas blaberae, the first parasite listed, we find under distribution "Catuche, Venezuela" followed by "(la)." This means that author (1) above (Tejera) found L. blaberae in host "a" (Blabera sp.) captured in Catuche, Venezuela.
    [Show full text]
  • A Dichotomous Key for the Identification of the Cockroach Fauna (Insecta: Blattaria) of Florida
    Species Identification - Cockroaches of Florida 1 A Dichotomous Key for the Identification of the Cockroach fauna (Insecta: Blattaria) of Florida Insect Classification Exercise Department of Entomology and Nematology University of Florida, Gainesville 32611 Abstract: Students used available literature and specimens to produce a dichotomous key to species of cockroaches recorded from Florida. This exercise introduced students to techniques used in studying a group of insects, in this case Blattaria, to produce a regional species key. Producing a guide to a group of insects as a class exercise has proven useful both as a teaching tool and as a method to generate information for the public. Key Words: Blattaria, Florida, Blatta, Eurycotis, Periplaneta, Arenivaga, Compsodes, Holocompsa, Myrmecoblatta, Blatella, Cariblatta, Chorisoneura, Euthlastoblatta, Ischnoptera,Latiblatta, Neoblatella, Parcoblatta, Plectoptera, Supella, Symploce,Blaberus, Epilampra, Hemiblabera, Nauphoeta, Panchlora, Phoetalia, Pycnoscelis, Rhyparobia, distributions, systematics, education, teaching, techniques. Identification of cockroaches is limited here to adults. A major source of confusion is the recogni- tion of adults from nymphs (Figs. 1, 2). There are subjective differences, as well as morphological differences. Immature cockroaches are known as nymphs. Nymphs closely resemble adults except nymphs are generally smaller and lack wings and genital openings or copulatory appendages at the tip of their abdomen. Many species, however, have wingless adult females. Nymphs of these may be recognized by their shorter, relatively broad cerci and lack of external genitalia. Male cockroaches possess styli in addition to paired cerci. Styli arise from the subgenital plate and are generally con- spicuous, but may also be reduced in some species. Styli are absent in adult females and nymphs.
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/145941 Please be advised that this information was generated on 2021-10-09 and may be subject to change. w Refined CO-Laser Photoacoustic Trace Gas Detection; Observation of Anaerobic Processes in Insects, Soil and Fruit Frans Bijnen Refined CO-laser Photoacoustic Trace Gas Detection; Observation of Anaerobic Processes in Insects, Soil and Fruit CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG Bijnen, Franciscus Godefridus Casper Refined CO-laser photoacoustic trace gas detection; observation of anaerobic processes in insects, soil and fruit Franciscus Godefridus Casper Bijnen. - [S.l. : s.n.]. - 111. Proefschrift Nijmegen. - Met lit. opg. - Met samenvatting in het Nederlands. ISBN 90-9008120-8 Trefw.: laser spectroscopy / laser techniques / trace gas detection / entomology / plant physiology / microbiology Refined CO-Laser Photoacoustic Trace Gas Detection; Observation of Anaerobic Processes in Insects, Soil and Fruit een wetenschappelijke proeve op het gebied van de Natuurwetenschappen PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Katholieke Universiteit Nijmegen, volgens besluit van het College van Decanen in het openbaar te verdedigen op vrijdag 17 maart 1995, des namiddags te 1.30 uur precies door Franciscus Godefridus Casper Bijnen geboren op 10 januari 1965 te Waalre Promotor : Prof. Dr. J. Reuss Co-Promotores : Dr. F.J.M. Harren Dr. J.H.P. Hackstein This work has been made possible through the financial support of the Catholic University of Nijmegen (KUN), the European Union (EU) and the Dutch Technology Foundation (STW).
    [Show full text]
  • Thesis (PDF, 13.51MB)
    Insects and their endosymbionts: phylogenetics and evolutionary rates Daej A Kh A M Arab The University of Sydney Faculty of Science 2021 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Authorship contribution statement During my doctoral candidature I published as first-author or co-author three stand-alone papers in peer-reviewed, internationally recognised journals. These publications form the three research chapters of this thesis in accordance with The University of Sydney’s policy for doctoral theses. These chapters are linked by the use of the latest phylogenetic and molecular evolutionary techniques for analysing obligate mutualistic endosymbionts and their host mitochondrial genomes to shed light on the evolutionary history of the two partners. Therefore, there is inevitably some repetition between chapters, as they share common themes. In the general introduction and discussion, I use the singular “I” as I am the sole author of these chapters. All other chapters are co-authored and therefore the plural “we” is used, including appendices belonging to these chapters. Part of chapter 2 has been published as: Bourguignon, T., Tang, Q., Ho, S.Y., Juna, F., Wang, Z., Arab, D.A., Cameron, S.L., Walker, J., Rentz, D., Evans, T.A. and Lo, N., 2018. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. Molecular Biology and Evolution, 35(4), pp.970-983. The chapter was reformatted to include additional data and analyses that I undertook towards this paper. My role was in the paper was to sequence samples, assemble mitochondrial genomes, perform phylogenetic analyses, and contribute to the writing of the manuscript.
    [Show full text]
  • Unusual Macrocyclic Lactone Sex Pheromone of Parcoblatta Lata, a Primary Food Source of the Endangered Red-Cockaded Woodpecker
    Unusual macrocyclic lactone sex pheromone of Parcoblatta lata, a primary food source of the endangered red-cockaded woodpecker Dorit Eliyahua,b,1,2, Satoshi Nojimaa,b,1,3, Richard G. Santangeloa,b, Shannon Carpenterc,4, Francis X. Websterc, David J. Kiemlec, Cesar Gemenoa,b,5, Walter S. Leald, and Coby Schala,b,6 aDepartment of Entomology and bW. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695; cDepartment of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210; and dDepartment of Entomology, University of California, Davis, CA 95616 Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved November 28, 2011 (received for review July 20, 2011) Wood cockroaches in the genus Parcoblatta, comprising 12 species Identification of the sex pheromone of P. lata has important endemic to North America, are highly abundant in southeastern implications in biological conservation and forest management pine forests and represent an important prey of the endangered practices. This species and seven related species in the genus red-cockaded woodpecker, Picoides borealis. The broad wood cock- Parcoblatta inhabit standing pines, woody debris, logs, and snags roach, Parcoblatta lata, is among the largest and most abundant of in pine forests of the southeastern United States, and they rep- the wood cockroaches, constituting >50% of the biomass of the resent the most abundant arthropod biomass in this habitat (4). woodpecker’s diet. Because reproduction in red-cockaded wood- Most importantly, P. lata constitutes a significant portion peckers is affected dramatically by seasonal and spatial changes (>50%) of the diet of the endangered red-cockaded wood- P.
    [Show full text]
  • New Canadian and Ontario Orthopteroid Records, and an Updated Checklist of the Orthoptera of Ontario
    Checklist of Ontario Orthoptera (cont.) JESO Volume 145, 2014 NEW CANADIAN AND ONTARIO ORTHOPTEROID RECORDS, AND AN UPDATED CHECKLIST OF THE ORTHOPTERA OF ONTARIO S. M. PAIERO1* AND S. A. MARSHALL1 1School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1 email, [email protected] Abstract J. ent. Soc. Ont. 145: 61–76 The following seven orthopteroid taxa are recorded from Canada for the first time: Anaxipha species 1, Cyrtoxipha gundlachi Saussure, Chloroscirtus forcipatus (Brunner von Wattenwyl), Neoconocephalus exiliscanorus (Davis), Camptonotus carolinensis (Gerstaeker), Scapteriscus borellii Linnaeus, and Melanoplus punctulatus griseus (Thomas). One further species, Neoconocephalus retusus (Scudder) is recorded from Ontario for the first time. An updated checklist of the orthopteroids of Ontario is provided, along with notes on changes in nomenclature. Published December 2014 Introduction Vickery and Kevan (1985) and Vickery and Scudder (1987) reviewed and listed the orthopteroid species known from Canada and Alaska, including 141 species from Ontario. A further 15 species have been recorded from Ontario since then (Skevington et al. 2001, Marshall et al. 2004, Paiero et al. 2010) and we here add another eight species or subspecies, of which seven are also new Canadian records. Notes on several significant provincial range extensions also are given, including two species originally recorded from Ontario on bugguide.net. Voucher specimens examined here are deposited in the University of Guelph Insect Collection (DEBU), unless otherwise noted. New Canadian records Anaxipha species 1 (Figs 1, 2) (Gryllidae: Trigidoniinae) This species, similar in appearance to the Florida endemic Anaxipha calusa * Author to whom all correspondence should be addressed.
    [Show full text]
  • A Study of the Biology and Life History of Prosevania
    A STUDY OF THE BIOLOGY AND LIFE HISTORY OF PROSEVANIA PUNCTATA (BRULLE) WITH NOTES ON ADDITIONAL SPECIES (HYMENOPTERA : EVANilDAE) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Lafe R^ Edmunds,n 77 B.3., M.S. The Ohio State University 1952 Approved by: Adviser Table of Contents Introduction...................................... 1 The Family Evaniidae.............................. *+ Methods of Study...... 10 Field Studies. ........... .»..... 10 Laboratory Methods......... l*f Culturing of Blattidae.............. lU- Culturing of Evaniidae.............. 16 Methods of Studying the Immature Stages of Evaniidae............... 18 Methods for Handling Parasites Other than Evaniidae.............. 19 Biology of the Evaniidae.......................... 22 The Adult......................... 22 Emergence from the Ootheca.......... 22 Mating Behavior......... 2b Oviposition. ............ 26 Feeding Habits of Adults............ 29 Parthenogenetic Reproduction......... 30 Overwintering and Group Emergence.... 3b The Evaniidae as Household Pests*.... 36 General Adult Behavior.............. 37 The Immature Stages.......... 39 The Egg..... *f0 Larval Stages........... *+1 Pupal Stages ....... b$ 1 S29734 Seasonal Abundance. ••••••••••••••••...... ^9 Effect of Parasitism on the Host................. 52 Summary..................................... ...... 57 References. ...................... 59 Plates .......... 63 Biography........................................
    [Show full text]