Crop Pests and Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Crop Pests and Diseases Crop pests and diseases A manual on the most important pests and diseases of the major food crops grown by smallholder farmers in Africa August 2015 Africa Soil Health Consortium: Crop pests and diseases © CAB International 2015 Please cite this publication as: Pest and disease manual. Africa Soil Health Consortium, Nairobi, August 2015. This publication is licensed under a Creative Commons Attribution 3.0 Unported License. Creative Commons License: You are free: • to share – to copy, distribute and transmit the work • to remix – to adapt the work • to make commercial use of the work Under the following conditions: • Attribution – You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). With the understanding that: • Waiver – Any of the above conditions can be waived if you get permission from the copyright holder. • Public Domain – Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license. • Other Rights – In no way are any of the following rights affected by the license: • Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations; • The author’s moral rights; • Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. Notice – For any reuse or distribution, you must make clear to others the license terms of this work (http://creativecommons.org/licenses/by/3.0/). Limits of liability Although the authors have used their best efforts to ensure that the contents of this book are correct at the time of printing, it is impossible to cover all situations. The information is distributed on an ‘as is’ basis, without warranty. Neither the authors nor the publisher shall be liable for any liability, loss of profit, or other damages caused or alleged to have been caused directly or indirectly by following the guidelines in this book. About the publisher The Africa Soil Health Consortium (ASHC) mission is to improve the livelihoods of smallholder farmers through adoption of integrated soil fertility management (ISFM) approaches that optimize fertilizer use efficiency and effectiveness. ASHC books are available at special discounts for bulk purchases. Special editions, foreign language translations and excerpts, can also be arranged. ISBN (e-book): 9781780648194 ISBN (paperback): 9781780648187 Typeset by Sarah Twomey 2 Acknowledgements The preparation of this manual was supported by the Bill & Melinda Gates Foundation. We would also like to thank: Eric Boa, Erica Chernoh and Grahame Jackson who wrote the pest and disease factsheets this manual is based upon. The many photographers who allowed us to use their excellent photographs. Individual credits and copyright status are given under each photograph. The Africa Soil Health Consortium delivery team: Keith Sones, Dannie Romney, Victor Clottey, James Watiti, Abigael Mchana and George Oduor. 3 Contents 1. Introduction ....................................................................................................................................................... 6 2. Integrated pest management ............................................................................................................................ 7 3. Pesticide use and safety ................................................................................................................................... 8 4. The major pests and diseases of cereals ...................................................................................................... 10 Pests Maize stalk borers ........................................................................................................................................................ 13 Larger grain borer ........................................................................................................................................................ 15 Cotton bollworm ........................................................................................................................................................... 17 Millet stem borer ......................................................................................................................................................... 19 Sorghum midge ........................................................................................................................................................... 21 Sorghum stem borers .................................................................................................................................................. 23 African rice gall midge ................................................................................................................................................. 25 Diseases Grey leaf spot of maize ................................................................................................................................................ 27 Maize ear rots and mycotoxins .................................................................................................................................... 29 Maize lethal necrosis disease ...................................................................................................................................... 31 Pearl millet downy mildew ............................................................................................................................................ 33 Rust of pearl millet ....................................................................................................................................................... 35 Sorghum downy mildew .............................................................................................................................................. 37 Bacterial leaf blight of rice ........................................................................................................................................... 39 Rice blast ..................................................................................................................................................................... 41 Rice yellow mottle disease .......................................................................................................................................... 43 Birds Red-billed quelea ........................................................................................................................................................ 45 Weeds Striga or witchweed ..................................................................................................................................................... 47 5. The major pests and diseases of legumes .................................................................................................... 49 Pests Bean bruchid .............................................................................................................................................................. 53 Legume pod borer ..................................................................................................................................................... 55 Pod-sucking bugs of cowpea ...................................................................................................................................... 57 Bean flower thrips ....................................................................................................................................................... 59 Cotton bollworm ........................................................................................................................................................ 61 Diseases Bean anthracnose ........................................................................................................................................................ 63 Bean blight ................................................................................................................................................................... 65 Common mosaic of bean ........................................................................................................................................... 67 Halo blight of beans ..................................................................................................................................................... 69 Early and late leaf spot of groundnut........................................................................................................................... 71 Stem and pod rot of groundnut ................................................................................................................................... 73 Groundnut rosette disease ......................................................................................................................................... 75 Groundnut rust ............................................................................................................................................................. 77 Anthracnose of cowpea .............................................................................................................................................. 79 Cercospora leaf spot of cowpea ................................................................................................................................ 81 Mosaic diseases of cowpea ......................................................................................................................................
Recommended publications
  • Jordan Beans RA RMO Dir
    Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation.
    [Show full text]
  • The Complete Mitochondrial Genome of Anoplocnemis Curvipes F. (Coreinea, Coreidae, Heteroptera), a Pest of Fresh Cowpea Pods
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CGSpace Mitochondrial DNA Part B Resources ISSN: (Print) 2380-2359 (Online) Journal homepage: http://www.tandfonline.com/loi/tmdn20 The complete mitochondrial genome of Anoplocnemis curvipes F. (Coreinea, Coreidae, Heteroptera), a pest of fresh cowpea pods M. Carmen Valero, James Adebayo Ojo, Weilin Sun, Manuele Tamò, Brad S. Coates & Barry R. Pittendrigh To cite this article: M. Carmen Valero, James Adebayo Ojo, Weilin Sun, Manuele Tamò, Brad S. Coates & Barry R. Pittendrigh (2017) The complete mitochondrial genome of Anoplocnemis curvipes F. (Coreinea, Coreidae, Heteroptera), a pest of fresh cowpea pods, Mitochondrial DNA Part B, 2:2, 421-423, DOI: 10.1080/23802359.2017.1347829 To link to this article: http://dx.doi.org/10.1080/23802359.2017.1347829 This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. Published online: 18 Jul 2017. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tmdn20 Download by: [Michigan State University] Date: 07 August 2017, At: 14:02 MITOCHONDRIAL DNA PART B: RESOURCES, 2017 VOL. 2, NO. 2, 421–423 https://doi.org/10.1080/23802359.2017.1347829 MITOGENOME ANNOUNCEMENT The complete mitochondrial genome of Anoplocnemis curvipes F.
    [Show full text]
  • (US) 38E.85. a 38E SEE", A
    USOO957398OB2 (12) United States Patent (10) Patent No.: US 9,573,980 B2 Thompson et al. (45) Date of Patent: Feb. 21, 2017 (54) FUSION PROTEINS AND METHODS FOR 7.919,678 B2 4/2011 Mironov STIMULATING PLANT GROWTH, 88: R: g: Ei. al. 1 PROTECTING PLANTS FROM PATHOGENS, 3:42: ... g3 is et al. A61K 39.00 AND MMOBILIZING BACILLUS SPORES 2003/0228679 A1 12.2003 Smith et al." ON PLANT ROOTS 2004/OO77090 A1 4/2004 Short 2010/0205690 A1 8/2010 Blä sing et al. (71) Applicant: Spogen Biotech Inc., Columbia, MO 2010/0233.124 Al 9, 2010 Stewart et al. (US) 38E.85. A 38E SEE",teWart et aal. (72) Inventors: Brian Thompson, Columbia, MO (US); 5,3542011/0321197 AllA. '55.12/2011 SE",Schön et al.i. Katie Thompson, Columbia, MO (US) 2012fO259101 A1 10, 2012 Tan et al. 2012fO266327 A1 10, 2012 Sanz Molinero et al. (73) Assignee: Spogen Biotech Inc., Columbia, MO 2014/0259225 A1 9, 2014 Frank et al. US (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CA 2146822 A1 10, 1995 patent is extended or adjusted under 35 EP O 792 363 B1 12/2003 U.S.C. 154(b) by 0 days. EP 1590466 B1 9, 2010 EP 2069504 B1 6, 2015 (21) Appl. No.: 14/213,525 WO O2/OO232 A2 1/2002 WO O306684.6 A1 8, 2003 1-1. WO 2005/028654 A1 3/2005 (22) Filed: Mar. 14, 2014 WO 2006/O12366 A2 2/2006 O O WO 2007/078127 A1 7/2007 (65) Prior Publication Data WO 2007/086898 A2 8, 2007 WO 2009037329 A2 3, 2009 US 2014/0274707 A1 Sep.
    [Show full text]
  • Fungal Diversity and Mycotoxin Contamination of Some Selected Food Commodities from Ivory Coast
    COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012). Title of the thesis or dissertation (Doctoral Thesis / Master’s Dissertation). Johannesburg: University of Johannesburg. Available from: http://hdl.handle.net/102000/0002 (Accessed: 22 August 2017). Fungal Diversity and Mycotoxin Contamination of some selected Food Commodities from Ivory Coast A dissertation submitted to the Faculty of Science, University of Johannesburg, South Africa, In fulfilment of the Requirement of an award of Masters of Science: Biotechnology By Adeola Oluwakemi Aasa Student number: 218088043 Supervisor: Prof. PB Njobeh Co-supervisor: Dr. FF Fru March, 2021 ABSTRACT This study surveyed fungi and mycotoxins in important food crops consumed in Ivory Coast. To achieve this, the following local food items (attieke, cassava flakes, chilli, gnangnan, haricot, melon, millet, okra, rice, white maize and yellow maize) were sampled from local markets (Adjame, Cocody and Youpougon) in Abidjan, Ivory Coast. They were screened for fungal contamination based on morphological characters and confirmed by PCR using the internal transcribed spacer 1 and 4 primers (ITS1 and ITS4). A total of 227 isolates were morphologically identified withisolates dominated by species within the genera Aspegillus (54.9 %) followed by Penicillium (23.3 %) and Fusarium (14.3 %).
    [Show full text]
  • Cowpea Cercospora Leaf Spot (303)
    Pacific Pests and Pathogens - Mini Fact Sheet Edition https://apps.lucidcentral.org/ppp/ Cowpea Cercospora leaf spot (303) Photo 1. Top and underside of a cowpea leaf showing the large reddish brown spots Pseudocercospora Photo 2. As the spots caused by Pseudocercospora cruenta, mostly restricted by the veins. cruenta enlarge and merge, the leaves yellow and die. Photo 3. Powdery spores form on the spots on the underside of leaves infected by Pseudocercospora cruenta. Summary Worldwide distribution. On food legume, e.g., cowpea, French and mung beans. Pod numbers and seeds reduced on susceptible varieties. Reddish-brown fungal spots, up to 15 mm diameter, circular to angular, merging, often with a yellow halo. Leaves fall early. Spread by spores blown in wind, and splashed in rain. Survival is in debris left after harvest, and on alternative hosts. Cultural control: certified seed or seed with plant debris removed; interplant e.g., cowpea with maize or sorghum; remove volunteers; plant away from diseased crops; collect and destroy debris after harvest; resistant varieties. Chemical control: use mancozeb after flowering and when pods start to develop. Use 2-3 sprays per crop. Common Name Cowpea Cercospora leaf spot Scientific Name Pseudocercospora cruenta. Previous names are Cercospora cruenta and Mycosphaerella cruenta (the sexual state). Note that some taxonomists consider that this fungus is the same as Cercospora canescens (see Fact sheet no. 301). AUTHORS Grahame Jackson & Eric McKenzie Information from Cercospera leaf spot of cowpea Mycosphaerella cruenta. Africa Soil Health Consortium. Plantwise. (http://africasoilhealth.cabi.org/wpcms/wp-content/uploads/2015/02/38-legumes-cercospora-leaf-spot.pdf).
    [Show full text]
  • Distribution Maps of Plant Diseases
    Distribution Maps of Plant Diseases Mycosphaerella cruenta Latham Fungi: Ascomycota: Capnodiales Compiled by CABI in association with EPPO www.cabi.org/dmpd Hosts: beans (Phaseolus) and cowpea (Vigna). Map No. 655 Edition 2 Issued April 2012 Present: national record Present: subnational record CABI/EPPO (2012) Mycosphaerella cruenta. Distribution Maps of Plant Diseases No. 655. CABI Head Office, Wallingford, UK. ISSN 0012-396X ©CAB International 2012 CABI is a trading name of CAB International April 2012 Mycosphaerella cruenta Map No. 655 (Edition 2) Note: Syn. Pseudocercospora cruenta (Sacc.) Deighton (anamorph); Cercospora cruenta Sacc. See CM! Descriptions of Pathogenic Fungi and Bacteria No. 985. Records are based on bibliographic data from the CAB ABSTRACTS database, specimens in the IMI fungus collection and plant quarantine information compiled by EPPO X: Present, no details A: Present: widespread B: Present, restricted distribution C: Present, few occurrences (D): Absent, formerly present (E): Eradicated (F): Intercepted only ASIA Shanxi X Zhang, B. C.; Huang, Y. C. (1990) Review of Plant Pathology 69 (3), 97-118. Bangladesh XKhalil, M. I.; Jalaluddin, M. (2004) Bangladesh Journal of Plant Pathology 20, 63-66. Sichuan X Zhang, B. C.; Huang, Y. C. (1990) Review of Plant Pathology 69 (3), 97-118. Shaikh, M. A. Q.; Ahmed, Z. U.; Oram, R. N. (1988) Mungbean: Proceedings 2nd International Yunnan X Zhang, B. C.; Huang, Y. C. (1990) Review of Plant Pathology 69 (3), 97-118. Symposium, Bangkok, Thailand, 16-20 November 1987, 124-129. AVRDC, Taipei, Taiwan. Zhejiang X Zhang, B. C.; Huang, Y. C. (1990) Review of Plant Pathology 69 (3), 97-118.
    [Show full text]
  • Genes De Resistência a Patógenos Em Feijão- Caupi E Em Outras Leguminosas: Caracterização E Diversidade
    UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA FLÁVIA TADEU DE ARAÚJO Genes de resistência a patógenos em feijão- caupi e em outras leguminosas: caracterização e diversidade RECIFE 2015 i FLÁVIA TADEU DE ARAÚJO Genes de resistência a patógenos em feijão-caupi e em outras leguminosas: caracterização e diversidade Dissertação apresentada ao Programa de Pós- Graduação em Genética da Universidade Federal de Pernambuco como parte dos requisitos exigidos para obtenção do título de Mestre em Genética. Orientadora: Profª Drª Ana Maria Benko Iseppon Coorientadora: Profª Drª Lidiane L. Barbosa Amorim RECIFE 2015 Catalogação na fonte Elaine Barroso CRB 1728 Araújo, Flávia Tadeu de Genes de resistência a patógenos em feijão-caupi e em outras leguminosas: caracterização e diversidade/ Flávia Tadeu de Araújo– Recife: O Autor, 2015 146 folhas : il., fig., tab. Orientadora: Ana Maria Benko Iseppon Coorientadora: Lidiane L. Barbosa Amorim Dissertação (mestrado) – Universidade Federal de Pernambuco. Centro de Ciências Biológicas. Genética, 2015 Inclui bibliografia e anexos 1. Genética vegetal 2. Feijão-caupi I. Iseppon, Ana Maria Benko (orientadora) II. Amorim, Lidiane L. Barbosa (coorientadora) III. Título 581.35 CDD (22.ed.) UFPE/CCB-2015-204 ii FLÁVIA TADEU DE ARAÚJO Genes de resistência a patógenos em feijão-caupi e em outras leguminosas: caracterização e diversidade Aprovada em 02 / 03 / 2015 Banca Examinadora: ____________________________________________ Profa. Drª. Ana Maria Benko-Iseppon Universidade Federal de Pernambuco ____________________________________________ Prof. Dr. Éderson Akio Kido Universidade Federal de Pernambuco ____________________________________________ Dr. José Ribamar Ferreira Neto Universidade Federal de Pernambuco ____________________________________________ Drª. Valesca Pandolfi Universidade Federal de Pernambuco RECIFE 2015 iii À minha querida Mãe, Maria Czekalski, fonte diária de inspiração.
    [Show full text]
  • Phylogenetic Analysis of Cercospora and Mycosphaerella Based on the Internal Transcribed Spacer Region of Ribosomal DNA
    Ecology and Population Biology Phylogenetic Analysis of Cercospora and Mycosphaerella Based on the Internal Transcribed Spacer Region of Ribosomal DNA Stephen B. Goodwin, Larry D. Dunkle, and Victoria L. Zismann Crop Production and Pest Control Research, U.S. Department of Agriculture-Agricultural Research Service, Department of Botany and Plant Pathology, 1155 Lilly Hall, Purdue University, West Lafayette, IN 47907. Current address of V. L. Zismann: The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850. Accepted for publication 26 March 2001. ABSTRACT Goodwin, S. B., Dunkle, L. D., and Zismann, V. L. 2001. Phylogenetic main Cercospora cluster. Only species within the Cercospora cluster analysis of Cercospora and Mycosphaerella based on the internal produced the toxin cercosporin, suggesting that the ability to produce this transcribed spacer region of ribosomal DNA. Phytopathology 91:648- compound had a single evolutionary origin. Intraspecific variation for 658. 25 taxa in the Mycosphaerella clade averaged 1.7 nucleotides (nts) in the ITS region. Thus, isolates with ITS sequences that differ by two or more Most of the 3,000 named species in the genus Cercospora have no nucleotides may be distinct species. ITS sequences of groups I and II of known sexual stage, although a Mycosphaerella teleomorph has been the gray leaf spot pathogen Cercospora zeae-maydis differed by 7 nts and identified for a few. Mycosphaerella is an extremely large and important clearly represent different species. There were 6.5 nt differences on genus of plant pathogens, with more than 1,800 named species and at average between the ITS sequences of the sorghum pathogen Cercospora least 43 associated anamorph genera.
    [Show full text]
  • EU Project Number 613678
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................
    [Show full text]
  • DOI: 10.18697/Ajfand.87.17830 14873 EFFECTS of COWPEA (VIGNA
    Afr. J. Food Agric. Nutr. Dev. 2019; 19(4): 14873-14888 DOI: 10.18697/ajfand.87.17830 EFFECTS OF COWPEA (VIGNA UNGUICULATA (L) WALP FARMING SYSTEMS ON ARTHROPOD COMMUNITY STRUCTURE IN A GRASSLAND AGRO-ECOSYSTEM, SOUTH AFRICA Mbappe T1 and AS Niba2* Mbappe Tanga *Corresponding author e-mail: [email protected] 1Department of Biological Sciences and Environmental Sciences, Faculty of Natural Science, Walter Sisulu University, P/B XI Nelson Mandela Drive, Mthatha 5117, South Africa 2Department of Biological Sciences and Environmental Sciences, Faculty of Natural Science, Walter Sisulu University, P/B XI Nelson Mandela Drive, Mthatha 5117 South Africa DOI: 10.18697/ajfand.87.17830 14873 ABSTRACT Cowpea (Vigna unguiculata (L) is an important grain legume cultivated in tropical and subtropical regions of the world for its high nutritive value and nitrogen-fixing potential. Since cowpea utilization patterns, seed preferences, and cropping system vary from one region to another, constraints to its optimal production by subsistence farmers such as cropping practices and insect pest infestation continue to pose challenges at various spatial and temporal scales. To maximize crop yield quality and quantity, various communities use or practice farming systems that are adapted to their climate, agro-ecology, socio-cultural and economic needs. These practices are being adopted as part of an integrated strategy, aimed at minimizing adverse effects of excessive pesticide usage while encouraging sustainable ecological pest control and higher crop yield. Field experiments were undertaken in the Mhlontlo Municipality, Transkei region of Eastern Cape Province, South Africa during the 2014-2015 cropping season to determine the effects of cowpea farming system on arthropod communities.
    [Show full text]
  • Cowpea Cercospora Leaf Spot (303)
    Pacific Pests, Pathogens and Weeds - Online edition Cowpea Cercospora leaf spot (303) Common Name Cowpea Cercospora leaf spot Scientific Name Pseudocercospora cruenta. Previous names are Cercospora cruenta and Mycosphaerella cruenta (the sexual state). Note that some taxonomists consider that this fungus is the same as Cercospora canescens (see Fact sheet no. 301). Distribution Photo 1. Top and underside of a cowpea leaf Asia, Africa, North, South and Central America, the Caribbean, Oceania. It is recorded from showing the large reddish brown spots Pseudocercospora cruenta, mostly restricted by Australia, American Samoa, Fiji, Nauru, New Caledonia, Niue, Papua New Guinea, Samoa, the veins. Solomon Islands, and Tonga. Hosts Many legumes, e.g., Canavalia galeata (sword bean), Lablab purpureus (hyacinth bean), Mucuna aterrima (Mauritius bean), Mucuna puriens (velvet bean), Phaseous lunatus (lima bean). Phaseoulus vulgaris (French bean), Vigna marina (sea bean), Vigna radiata (mung bean), Vigna unguiculata ssp. sesquipedalis (long bean), Vigna unguiculata ssp. unguiculata (cowpea). In Africa, bambara groundnut (Vigna subterranea) is also a host. Symptoms & Life Cycle Photo 2. As the spots caused by Pseudocercospora cruenta enlarge and merge, A serious leaf disease of cowpea, but also a problem on bambara groundnut (West Africa), the leaves yellow and die. mung and French (or common) beans. Reddish-brown fungal spots occur, up to 15 mm diameter, circular to angular, merging, often with a yellow halo (Photo 1). Sometimes the spots are limited by the veins. Infected leaves yellow and fall prematurely (Photo 2). On mung bean, the centres of the spots become grey or white. Spread is by spores blown in the wind, and splashed in rain.
    [Show full text]
  • Heteroptera Coreidae (Anoplocnemis Curvipes, Homoeocerus Pallens, Leptoglossus Membranaceus Et Pseudotheraptus Devastans) : Four Crop Pest and Their Wild Host Plants
    American Research Journal of Agriculture Original Article ISSN 2378-9018 Volume 1, Issue 4, 2015 Heteroptera Coreidae (Anoplocnemis curvipes, Homoeocerus pallens, Leptoglossus membranaceus et Pseudotheraptus devastans) : Four crop pest and their wild host plants YEBOUE N’Guessan Lucie1*, SORO Senan12, TRA BI Crolaud Sylvain1 1Université Jean Lorougnon Guédé, UFR Agroforesterie et UFR Environnement, BP 150 Daloa, Côte d’Ivoire 2Centre Suisse de Recherches Scientifiques en Côte d’Ivoire Abstract: Heteroptera Coreidae are all phytophagous insects. They are both meet on cultivated and wild plants. The objective of this study was to identify the Coreinae on the different crops grown in Côte d’Ivoire, evaluate the damage on these plants and identify wild plants that serve as their refuge in the absence of crops. The samplings were carried out in areas cultivated across different regions and in the reserve of Lamto. The insects were captured using a sweep net, a harvesting cage and threshing technics. The catching were once a week in different areas during one year. The results indicate that among Coreinae harvested, Anoplocnemis curvipes, Homoeocerus pallens, Leptoglossus membranaceus and Pseudotheraptus devastans were the mostly encountered on the prospected plants. The polyphagous species was A. curvipes with over than 60 host plants identified. Gossypium barbadense was the most infected by the Coreinae, followed by Cocos nucifera and Vigna unguiculata. The damage caused by these insects on the plants and the yields are function of their number in the field. Keywords: Heteroptera, Coreinae, pests, Côte d’Ivoire I. INTRODUCTION Heteroptera family contain a great number of tropical species (Chaudonneret 1990). They are divided into more than 70 families (Capsidae Miridae, Coreidae, Lygeidae, Pentatomidae, Pyrrochoridae, Tingidae, etc.).
    [Show full text]