3Rd French National Report on Implementation of the Obligations of The

Total Page:16

File Type:pdf, Size:1020Kb

3Rd French National Report on Implementation of the Obligations of The 3rd French national report on implementation of the obligations of the Convention on nuclear safety - Issued for the 2005 Peer review meeting - English version – Original report in French July 2004 Content Table of contents INTRODUCTION ......................................................................................................................................5 1. General introduction.............................................................................................................................5 2. Main changes with respect to the 2nd French report.............................................................................7 2.1 Changes in nuclear safety supervision in 2002 .............................................................................7 2.2 Changes in the content of the third report with respect to the second report.................................7 2.3 Topical safety issues in France in 2004.........................................................................................7 3. Nuclear national policy and practices.................................................................................................12 3.1 General policy..............................................................................................................................12 3.2 Nuclear power plants...................................................................................................................12 3.3 Nuclear research reactors ...........................................................................................................13 3.4 Regulatory framework..................................................................................................................13 A. GENERAL PROVISIONS..................................................................................................................15 4. Article 4 : Implementing measures.....................................................................................................15 5. Article 5 : Reporting ...........................................................................................................................15 6. Article 6 : Existing nuclear installations ..............................................................................................15 6.1 Nuclear installation in France ......................................................................................................15 6.2 Safety assessments.....................................................................................................................15 6.3 Main safety improvements to nuclear power reactors..................................................................16 6.4 Main safety improvement for nuclear research reactors..............................................................20 B. LEGISLATION AND REGULATION.................................................................................................23 7. Article 7 : Legislative and regulatory framework.................................................................................23 7.1 Legislative and regulatory framework ..........................................................................................23 7.2 Basic Nuclear Installations regulations ........................................................................................25 7.3 Basic Nuclear Installation supervision .........................................................................................28 8. Article 8 : Regulatory body.................................................................................................................37 8.1 The Nuclear Safety Authority (ASN) ............................................................................................37 8.2 The other supervision players......................................................................................................43 9. Article 9 : Responsibility of the licence holder....................................................................................46 C. GENERAL SAFETY CONSIDERATION...........................................................................................47 10. Article 10 : Priority to safety .............................................................................................................47 10.1 Regulatory requests...................................................................................................................47 10.2 Measures taken for power reactors ...........................................................................................47 10.3 Measures taken for research reactors .......................................................................................49 10.4 Analysis by the regulator ...........................................................................................................50 11. Article 11 : Financial and human resources .....................................................................................51 11.1 Regulatory request ....................................................................................................................51 11.2 Resources allocated to safety in nuclear power plants..............................................................51 11.3 Resources allocated to safety in research reactors ...................................................................52 11.4 Analysis by the regulator ...........................................................................................................53 12. Article 12 : Human factors................................................................................................................55 12.1 Regulatory requests...................................................................................................................55 12.2 Steps taken concerning human factors in EDF nuclear power plants........................................55 12.3 Steps taken concerning human factors in research reactors .....................................................57 12.4 Analysis by the regulator ...........................................................................................................58 France third report under the CNS - July 2004 - 3 Content 13. Article 13 : Quality assurance.......................................................................................................... 61 13.1 Regulatory requests.................................................................................................................. 61 13.2 EDF's quality assurance policy and programme ....................................................................... 61 13.3 Quality assurance policy and programme in research reactors ................................................ 63 13.4 Analysis by the regulator........................................................................................................... 65 14. Article 14 : Assessment and verification of safety ........................................................................... 67 14.1 Regulatory requests.................................................................................................................. 67 14.2 Safety reviews and verifications carried out at nuclear power plants ........................................ 69 14.3 Safety reviews and verifications carried out on research reactors ............................................ 72 14.4 Analysis by the regulator........................................................................................................... 73 15. Article 15 : Radiation protection ...................................................................................................... 75 15.1 Radiation protection regulation ................................................................................................. 75 15.2 Measures taken by EDF in the field of radiation protection....................................................... 80 15.3 Measure taken in the field of radiation protection for research reactors.................................... 83 15.4 Regulatory surveillance in the radiation protection field ............................................................ 85 15.5 Summary of regulatory monitoring and checks......................................................................... 86 16. Article 16 : Emergency preparedness ............................................................................................. 88 16.1 General emergency response provisions.................................................................................. 88 16.2 The role and organisation of the ASN....................................................................................... 91 16.3 The role and organisation of the operators ............................................................................... 94 16.4 Accident simulation drills......................................................................................................... 100 16.5 Lessons learned : development in nuclear emergency provisions.......................................... 101 D. SAFETY OF INSTALLATIONS...................................................................................................... 105 17. Article 17 : Siting ........................................................................................................................... 105 17.1 Regulatory request.................................................................................................................. 105 17.2 The situation during
Recommended publications
  • Jules Horowitz Reactor (JHR), a High-Performance Material Test Reactor in Cadarache, France
    The Swedish-French collaboration on the research reactors ASTRID & JHR Prof. Christophe Demazière Chalmers University of Technology Department of Applied Physics Division of Nuclear Engineering [email protected] Background − the ESS project • ESS: European Spallation Source – a European Union facility. • Will be built in Lund. • Participation of France is formalized in a contract between France and Sweden. • Sweden has to spend 400 MSEK on joint research in subjects relevant to France (energy and environment). • Out of this, 100 MSEK is devoted to fission-based nuclear energy. Background – the European research program • Vision: Sustainable Nuclear Energy Technology Platform (SNETP). • Planned facilities: – Jules Horowitz Reactor (JHR), a high-performance material test reactor in Cadarache, France. Start of operation: 2014. – MYRRHA facility in Mol, Belgium, a fast spectrum irradiation facility working as an ADS. Start of operation: ca. 2023. – ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a prototype Gen-IV sodium-cooled fast reactor to be built in France. Start of operation: ca. 2020. – VHTR, a first-of-a kind Very High Temperature Reactor for, among others, hydrogen production. VR Multi-project Grant in Nuclear Energy Research • 3 multi-grant projects granted by the Swedish Research Council in the spring of 2012 (projects in collaboration with CEA, France – French Alternative Energies and Atomic Energy Commission): – DEMO-JHR (coordinator: Prof. Christophe Demazière, Chalmers): 3 PhD projects. – ASTRID
    [Show full text]
  • The Jules Horowitz Reactor Project, a Driver for Revival of the Research Reactor Community
    THE JULES HOROWITZ REACTOR PROJECT, A DRIVER FOR REVIVAL OF THE RESEARCH REACTOR COMMUNITY P. PERE, C. CAVAILLER, C. PASCAL AREVA TA CEA Cadarache - Etablissement d'AREVA TA - Chantier RJH - MOE - BV2 - BP n° 9 – 13115 Saint Paul lez Durance - France CS 50497 - 1100, rue JR Gauthier de la Lauzière, 13593 Aix en Provence cedex 3 – France ABSTRACT The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first -rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x1014 n.cm-2/sec-1 E> 1 MeV in core and 3,6x1014 n.cm-2/sec-1 E<0.625 eV in the reflector) and the JHR’s considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960s, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015.
    [Show full text]
  • Les Réacteurs Expérimentaux Et Leur Contrôle ▼ Les Réacteurs Expérimentaux Et Leur Contrôle Experimental Reactors and Their Regulation
    Dossier: Les réacteurs expérimentaux et leur contrôle ▼ Les réacteurs expérimentaux et leur contrôle Experimental reactors and their regulation Chargement de la cuve du réacteur à haut flux (RHF). 2 Dossier: Les réacteurs expérimentaux et leur contrôle ▼ Éditorial 4 Foreword Le contrôle des réacteurs expérimentaux : la démarche de l’Autorité de sûreté nucléaire 5 Experimental reactor regulation: the Nuclear Safety Authority’s approach LE RÔLE DES RÉACTEURS EXPÉRIMENTAUX Le poids des réacteurs expérimentaux dans les programmes de recherche : l’exemple de l’énergie nucléaire 15 The importance of experimental reactors for research programs: The example of nuclear energy Les réacteurs expérimentaux 20 The experimental nuclear reactors La contribution des réacteurs d’expérimentation aux recherches sur la sûreté 27 Contribution of research reactors to the programmes for research and technological development on the safety LES SPÉCIFICITÉS DU CONTRÔLE DES RÉACTEURS EXPÉRIMENTAUX La spécificité du contrôle des réacteurs expérimentaux: le point de vue de l’inspecteur de l’ASN 35 The specific nature of experimental reactor regulation: the viewpoint of ASN’s inspectors La sûreté des réacteurs de recherche vue du Groupe permanent réacteurs 41 Research reactor safety from the advisory committee for nuclear reactors standpoint Les facteurs organisationnels et humains et la sûreté des réacteurs d’expérimentation 47 The human factors and the safety of experimentation reactors Les réexamens de sûreté des réacteurs d’expérimentation en France 52 Periodic safety review management for french research reactors CONCILIER RECHERCHE ET SÛRETÉ: LES RÉPONSES DES EXPLOITANTS ET DES CONCEPTEURS Un enjeu majeur: concilier recherche et sûreté. Le point de vue du CEA 58 A major issue: reconciling research and safety.
    [Show full text]
  • Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries
    Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux cèdres Tél: 01 69 83 23 79 91210 Draveil (Paris) Fax: 01 69 40 98 75 France e-mail: [email protected] Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research was carried out with the support of The Centre for International Governance Innovation (CIGI) in Waterloo, Ontario, Canada (www.cigionline.org) V5 About the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983 and April 2003 Mycle Schneider was executive director of the energy information service WISE-Paris. Since 2000 he has been an advisor to the German Ministry for the Environment, Nature Conservation and Reactor Safety. Since 2004 he has also been in charge of the Environment and Energy Strategies Lecture of the International Master of Science for Project Management for Environmental and Energy Engineering at the French Ecole des Mines in Nantes, France. In 2007 he was appointed as a member of the International Panel on Fissile Materials (IPFM), based at Princeton University, USA (www.fissilematerials.org). In 2006-2007 Mycle Schneider was part of a consultants’ consortium that assessed nuclear decommissioning and waste management funding issues on behalf of the European Commission. In 2005 he was appointed as nuclear security specialist to advise the UK Committee on Radioactive Waste Management (CoRWM). Mycle Schneider has given evidence and held briefings at Parliaments in Australia, Belgium, France, Germany, Japan, South Korea, Switzerland, UK and at the European Parliament.
    [Show full text]
  • The Jules Horowitz Reactor Core and Cooling System Design
    The Jules Horowitz Reactor core and cooling system design M. Boyard*, JM. Cherel**, C. Pascal*, B. Guigon*** * AREVA-Technicatome, 1100 rue Jean René Guillibert Gautier de la Lauzière 13100 Aix en Provence, FRANCE ** AREVA-Framatome-ANP, 9-10 rue Juliette Récamier 69006 Lyon, FRANCE *** Commissariat à l’Energie Atomique, 13108 Saint-Paul-lez-Durance cedex, FRANCE ABSTRACT The CEA (Commissariat à l’Energie Atomique) is planning to build a new MTR called the Jules Horowitz Reactor (JHR). JHR at Cadarache will become by 2014 and for decades a major research infrastructure in Europe for supporting existing power plants operation and lifetime extension as well as future reactor developments [1]. AREVA (Technicatome and Framatome- ANP) and EDF are performing the design studies. The JHR will be a tank pool type reactor using light water as coolant and moderator. The reactor has been designed to provide a neutron flux strong enough to carry out irradiation relevant for generations 2, 3 and 4 power plants: flexibility and adaptability, high neutron flux, instrumented experiments, loops to reproduce environments representatives of the different power plant technologies . Updated safety requirements and LEU fuel elements have been taken into account in the design of this high flux reactor. This paper presents the guidelines for the design of the main items, the various options considered and the choices made at the end of the detailed studies phase regarding: − Core shape, − Fuel element and core pitch, − Reflector and core-reflector interface, − Normal and emergency cooling systems, − Reactivity control system. MAIN OBJECTIVES OF THE REACTOR The “Jules Horowitz Reactor” (JHR) will be a structuring infrastructure of the European research area.
    [Show full text]
  • The Future Jules Horowitz Material Testing Reactor: an Opportunity for Developing International Collaborations on a Major European Irradiation Infrastructure
    The Future Jules Horowitz Material Testing Reactor: An Opportunity for Developing International Collaborations on a Major European Irradiation Infrastructure D. Parrat1, G. Bignan2, B. Maugard2, C. Gonnier2, C. Blandin2 1 CEA, DEN, DEC, Fuel Research Department, Cadarache, France 2 CEA, DEN, DER, Reactor Studies Departmen t, Cadarache, France Abstract early their needs, thanks to either participation to the JHR Consortium, or to international programs or through bilateral collaborations. Development process of a fuel product or a nu- clear material before using at an industrial scale A general presentation of this research infra- in a power reactor ranges from characterization structure and associated experimental capabil- th of the material itself under neutronic fl ux up to its ity has been made at the 9 WWER Fuel Perfor- qualifi cation in accidental conditions. Irradiations mance Meeting in 2011. Current paper updates in in Material Testing Reactors (MTRs) are in practice a fi rst part the facility building status and the cur- the basis of the whole process, in complement of rent design work carried out on irradiation hosting prediction capabilities gained by modelling. Dedi- systems for nuclear materials and nuclear fuels cated experimental reactors play also an impor- and on non-destructive examination benches. tant complementary role for some specifi c integral Then expected main performances are reviewed tests (e.g. RIA tests). Irradiations of precursors in and collaborations set up around each study are power reactors are often limited to products which also underlined, as they often correspond to an present a slight design evolution compare to the “in-kind” contribution of a Consortium member.
    [Show full text]
  • Nuclear Technologies for Sustainable Development
    Nuclear Technologies for Sustainable Development Martin Ruščák September 13, 2017 WHY… to secure nuclear knowledge? Safety and longevity of current operation Sustainable power supply for the 21st century It´s about carbon…. 1 Shares of different technologies / 2050 2DS scenario 2 WHAT… do we need? Critical mass of engineers Demanding tasks Superb technical competencies 3 Knowledge Infrastructure in Nuclear Technologies in the Czech Republic / Czechoslovakia 2x VVER 1000 Temelín A-1 Ability to build 4x VVER 440 Dukovany & operate RPV Interim storages of Steam gen Piping spent fuel Regulation SONS Intermediate storage RR VVR-1 RR LVR-15 Research SUSEN RR LR-0 Inst Nucl Ph UJV privatized Research Centre Education Nuclear technologies at other universities Nuclear faculty 1950 1960 1970 1980 1990 2000 2010 2020 1993 4 Czechoslovakia Czech Rep. The Czech Republic: Research Related Assets People Since 1955 four generations of nuclear engineers: Pioneers of 50/60s, Power stations builders of 70s/80s, Operators of 90s/00s, New technologists of 2000+ High public support High expertise in most of nuclear technology fields Knowledge R&D related to the current NPPs: Nuclear safety – deterministic & probabilistic, component integrity, back end of fuel cycle, engineering R&D related to Generation IV R&D related to fusion technologies 5 The Czech Republic: Research Related Assets Infrastructure Research reactors (LVR-15 & LR-0 in Řež, VR-0 at the university) Hot cells Loops Material research labs Major knowledge-based Institutions UJV (Nuclear Research
    [Show full text]
  • Low Enriched Uranium from France ITC Sunset Review Hearing
    Low Enriched Uranium From France ITC Sunset Review Hearing Daniel W. Klett Capital Trade Incorporated September 10, 2013 AREVA Presence in the U.S. Market is Significant AREVA's U.S. Market Share 25% 20% 2007 2008 2009 2010 2011 2012 Prehearing Staff Report at Table 11-10. Prepared by Capital Trade, Inc. Centrifuge Enrichment Is Capital Intensive and but Capacity can be Added Incrementally • "With centrifuge technology it is easy to add capacity with modular expansion, but it is inflexible and best run at full capacity with low operating cost." -Uranium Enrichment, World Nuclear Association (updated July 2013). • "While gaseous diffusion plants have the advantage of being less capital intensive than gaseous centrifuge plants, there appear to be a number of important advantages of the gaseous centrifuge facilities that render them technologically superior to the gas diffusion facilities, especially the more up-to-date centrifuge technologies. These include lower electrical costs, higher capacity utilization rates, and the ability to incrementally add gaseous centrifuge capacity based on market needs/' - Prehearing Staff Report at IV-11. Prepared by Capital Trade, Inc. AREVA's Georges Besse II Plant Will Outstrip Its Georges Besse I (Eurodif) Plant's Production by 2014 Enrichment: controlled technology transition EURODIF GBII Sales out of Inventories End of the legacy contract with EDF (2011-2012) Eurodif Georges BesseI PRODUCTION (SWUs) June 2012: Eurodif is shut down 2008 2009 2010 2011 2012 2013 2014 2015 2016 A AREVA Overview - December 2012 p.106 Performance and objectives by BG ARE V A AREVA's Georges Besse II Plant Has Significant Capacity and the Ability to Expand That Capacity • "It will have a production capacity of 7.5 million SWU (Separative Work Units), which could be increased to 11 million SWU." - AREVA Press Release: Enrichment: Inauguration ofthe Georges Besse II Plant (December 14, 2010).
    [Show full text]
  • The French Nuclear Dream: Promises for Disillusion
    The French nuclear dream: promises for disillusion Nuclear energy might be marginal on a world-wide scale, but see how successful it can be in France, from an economical, industrial or environmental perspective! In view of such benefits, why not follow the French path? The idea deserves consideration: what lies behind the repetitive vulgate of an industry selling its technical and economical success, claiming that it guarantees French energy independency, protects the climate, controls its waste and preserves the environment, that it is safe against terrorism, etc.? What is the reality of the French nuclear experience in terms of industrial policy, safety, proliferation, waste management or economy? This chapter explores, on each of these issues, the gap between the talks and the facts. Global Chance Nuclear Power: the great illusion 34 Overview The nuclear industry in France – An overview French scientists contributed to the main stages in the discovery of radioactivity and its properties. Right after the Second World War, the country embarked on a nuclear development programme – initially military and then civil. The nuclear industry’s organisation is still heavily based upon the structures created at this key period, even if their status has developed. The Commissariat à l’Énergie Atomique (CEA – Atomic Energy Commission), set up in 1946, was charged with overseeing the research and development, up to the industrial stage, of all the processes necessary for the military programme and subsequently for nuclear electricity generation, including the uranium extraction and fuel manufacture (upstream) stages and the management of spent fuel and waste (downstream). A branch of the public research body CEA was created to manage all its industrial activities, mainly through the Compagnie Générale des Matières Nucléaires (Cogema – General Company for Nuclear Materials), a private company set up in 1976.
    [Show full text]
  • CONSOLIDATED FINANCIAL STATEMENTS Orano December 31
    CONSOLIDATED FINANCIAL STATEMENTS Orano December 31, 2019 Consolidated statement of income December December (in millions of euros) Note 31, 2018 31, 2019 (*) (**) REVENUE 3,787 3,623 Cost of sales (2,991) (3,007) GROSS MARGIN 796 617 Research and development expenses (101) (97) Marketing and sales expenses (39) (38) General expenses (112) (103) Other operating income 5 107 344 Other operating expenses 5 (183) (206) OPERATING INCOME 468 517 Share in net income of joint ventures and associates 14 (19) (10) Operating income after share in net income of joint ventures and 449 506 associates Income from cash and cash equivalents 24 24 Gross borrowing costs (222) (176) Net borrowing costs 7 (198) (152) Other financial income 865 191 Other financial expenses (627) (1,017) Other financial income and expenses 7 238 (826) NET FINANCIAL INCOME 40 (978) Income tax 8 (36) (70) NET INCOME FOR THE PERIOD 452 (542) NET INCOME ATTRIBUTABLE TO OWNERS OF THE PARENT 408 (544) NET INCOME ATTRIBUTABLE TO NON-CONTROLLING 44 2 INTERESTS (*) Application of IFRS 16 as of January 1, 2019 (see Note 1.3.1). (**) The comparative figures as of December 31, 2018 have been restated to take into account the change in the presentation of end-of-lifecycle operations (see Notes 1.3.1 and 36). Orano consolidated financial statements December 31, 2019 2 Comprehensive income December December (in millions of euros) Note 31, 2019 31, 2018 (*) Net income 452 (542) Other items not recyclable to the statement of income (57) 26 Actuarial gains and losses on employee benefits (54)
    [Show full text]
  • Impact on Exports and Nuclear Industry Could Not Be Determined
    4 r %,I * lVU/ (1333( BY Ti-iECOMPTROLLER GENERAi - Report ToThe Congress OF THEUNITED STATES U.S.Nuclear Non-Proliferation Policy: Impact On Exports And Nuclear Industry Could Not Be Determined The Nuclear Non-Proliferation Act of 1978 es- tablished new measures to prevent the diver- sion to weapons use of peaceful nuclear ex- ports. It also created a policy to confirm US. reliability as a nuclear supplier. GAO did not identify any export sales lost as a result of the Act, but did find indications that nonproliferation policiescan influenceex- port sales. Based on available data, GAO could not determine the impact of the Act on the competitiveness of U.S. nuclear exports. How- ever, U.S. companies are at some disadvantage because importers perceive that implementa- tion of the Act may result in delayed export licenses. The United States dominated the nuclear ex- port market through the early 1970s. How- ever, foreign competitors, some aided by U.S. technology transfers, emerged to monopolize home markets and compete for third-country business. Further, the market has been de- pressed since 1974 and prospects for U.S. nuclear power plant exports have dimmed 113371 greatly. However, U.S. companies continue to view exports as important to sustain produc- tion capacity. m-8042 SEPTEMBER 23.1980 . * For sale by: Superintendent of Documents U.S. Government Printing Office Washington, D.C. 20402 Telephone (202) 783-3238 Members of Congress; heads of Federal, State, and local government agencies; members of the press; and libraries can obtain GAO documents from: U.S. General Accounting Office Document Handling and Information Services Facility P.O.
    [Show full text]
  • Rapport Transparence Et Sécurité Nucléaire Du CEA De Cadarache
    Rapport Transparence et Sécurité Nucléaire 2020 du CEA de Cadarache SommaireSommaire 4 Présentation du Centre CEA de Cadarache > > 6 Dispositions prises en matière de sûreté > 26 Dispositions prises en matière de radioprotection Événements significatifs en matière de sûreté nucléaire, > 34 de radioprotection et de transport Résultats des mesures des rejets > 40 et leur impact sur l’environnement > 54 Déchets radioactifs entreposés dans les INB du Centre > 58 Conclusion générale > 60 Annexes > 76 Glossaire > 83 Recommandations du CSE du CEA Cadarache Le rapport public du centre CEA Cadarache pour l’année 2020 que vous êtes en train de consulter, est un bilan annuel portant sur la sûreté nucléaire, la radioprotection, les incidents ou accidents, la nature et la composition des rejets radioactifs et chimiques issus de nos activités de recherche et les déchets radioactifs qui sont temporairement entreposés sur notre site*. Pour une plus large diffusion vers le public, il est transmis à la Commission Locale d’Information et au Haut Comité pour la Transparence et l’Information sur la Sécurité Nucléaire. * Il a été rédigé au titre des articles L. 125-15 et L. 125-16 du Code de l’environnement. 2 | Centre CEA de Cadarache - Rapport transparence et sécurité nucléaire 2020 Éditorial Le Centre CEA de Cadarache se présente comme un très grand centre de recherche en Europe sur les énergies décarbonées. Ses activités se sont beaucoup diversifiées depuis sa construction en 1959. Entièrement dédié aux recherches sur l’électronucléaire à ses débuts, le site s’est spécialisé depuis dans de nombreuses autres activités, comme le nucléaire de fusion, les bioénergies et le solaire.
    [Show full text]