Genus 1 Sp. 2 (Diptera: Chironomidae): the Potential Use of Its Larvae As Bioindicators

Total Page:16

File Type:pdf, Size:1020Kb

Genus 1 Sp. 2 (Diptera: Chironomidae): the Potential Use of Its Larvae As Bioindicators Copyright ©Environmental Fredy A Rivera Páez CRIMSON PUBLISHERS C Wings to the Research Analysis & Ecology Studies ISSN 2578-0336 Review Article Genus 1 sp. 2 (Diptera: Chironomidae): The Potential use of its Larvae as Bioindicators Paula A Ossa López1, Narcís Prat2, Gabriel J Castaño Villa3, Erika M Ospina Pérez1, Ghennie T Rodriguez Rey4 and Fredy A Rivera Páez1* 1Grupo de Investigación GEBIOME, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Colombia 2Grup de recerca consolidat F.E.M (Freshwater Ecology and Management), Departament de Biologia Evolutiva, Ecologia i Medi Ambient, Universitat de Barcelona, Barcelona, España 3Grupo de Investigación GEBIOME, Departamento de Desarrollo Rural y Recursos Naturales, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Manizales, Caldas, Colombia 4Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Caldas, Colombia *Corresponding author: Fredy A Rivera Páez, Grupo de Investigación GEBIOME, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Caldas, Colombia Submission: November 05, 2018; Published: November 16, 2018 Abstract The family Chironomidae belongs to the most abundant macroinvertebrates in samples for water quality assessment and displays a wide tolerance range to contaminants, which makes it an excellent bioindicator. The species Genus 1 sp. 2 (Chironomidae: Orthocladiinae), included among the larval Chinchinákeys of the river Cricotopus-Oliveiriella basin (Caldas-Colombia), complex, along is difficultwith eight to organismsdetermine atbased the pupal on its level larval (reared instar in using the laboratory). the current The morphological organisms were keys, morphologically which makes it necessary to use pupae for a species-level identification. In this study, 103 organisms in the IV larval instar were collected from tributaries of the high identified, and a molecular analysis of the genes COI and 16S rDNA was performed in order to confirm and associate larvae and pupae. In the larval morphometric analysis, 13 structure measurements were taken, with the aim of finding possible variations among specimens from samplingdifferent samplingstations. Thestations, results and obtained only dorsal allow head for a areamolecular (DHAr) determination showed significant and association differences. of larvaeThe presence and pupae of mentumof the species deformities Genus 1was sp. assessed,2, and new a morphologicaltotal of 18 specimens measurements showed inpartial larvae or that total can teeth aid indeformity, determining although variations no significant resulting differencesfrom contaminant were found agents between and contributing deformity tofrequency establishing and thisthe species as a water quality bioindicator. Keywords: Colombia; Deformities; Molecular analysis; Morphology; Morphometry Introduction The subfamily Orthocladiinae (Diptera: Chironomidae) is one of species-level, the differences between species have not been studied the richest in genera and species, and in Andean rivers above 2000 complicating its identification even at the genus level, and at the yet. Its pupae, however, are very characteristic and very different meters of altitude, the subfamily Orthocladiinae is very abundant, from the genus Cricotopus; therefore, a species-level description can with multiple genera present in the high Andean region, and of be achieved. Larvae belonging to this taxon are abundantly found in which some have yet to be described [1]. Furthermore, species of the Chinchiná River (Colombia), and based on studies related to the the same genus share many larval characteristics, making it nearly association between macroinvertebrates and contamination, the impossible to distinguish them, even at a genus level. Nevertheless, possibility of using these larvae as contamination indicators has led to a complete morphological and genetic study in order to establish there are several records in which larvae and pupae have been pupal forms are specific for a genus, and even for a species, and its possible use as bioindicators [4,5]. associated in rivers of the high Andean region between Colombia and Peru. The use of aquatic macroinvertebrates currently constitutes a tool for the biological and integral characterization of water Among the most abundant genera of Orthocladiinae in the high quality [4,6]. All aquatic organisms can be considered as Andean region, there are larvae described as Genus 1 by Roback bioindicators, however, the evolutionary adaptations to different & Coffman [2], a genus found exclusively in the Andean region. environmental conditions and the tolerance limits to a given Its larvae belong to the Cricotopus-Oliveiriella complex [1,3]; disturbance are responsible for the characteristics that classify Volume -4 Issue - 3 Copyright © All rights are reserved by Fredy A Rivera Páez. 376 Environ Anal Eco stud Copyright © Fredy A Rivera Páez them as sensitive organisms, whether they do not endure changes in their environment or they are tolerant to stress conditions. of 250µm, and manual drainers (the samples were taken from a Surber net, with 30.5x30.5x8cm dimensions and a mesh size Chironomidae (Diptera: Chironomidae), with nearly 20000 species sediments, rock washes and leaf litter). The specimens were distributed throughout all the continents, from the Antarctic region preserved in absolute ethanol with their corresponding information to the Tropics, inhabit lakes, streams and rivers during their larval (date, location, and coordinates). In the laboratory, several and pupal developmental stages [1,2,4]. specimens were conditioned in aquariums with water from the sampling stations, under constant oxygenation, and were fed with The family Chironomidae is considered to be tolerant to water TetraMin® contamination with organic matter, heavy metals, pesticides, aromatic polycyclic hydrocarbons, and organic solvents, displaying Additionally, until pupaethe werefollowing obtained physical for species and confirmation.hydrobiological subletal responses such as morphological variations represented variables were measured in situ in three of the six sampling events: by morphometric changes and deformities as a result of exposure to water temperature, pH, conductivity, dissolved oxygen, oxygen these conditions [5-11]. Regarding these tolerance characteristics, the following chemical variables were evaluated in the laboratory: saturation, average depth, width, and water flow velocity. Also, et al. [14,15], Giacometti & Bersosa [16], report Chironomidae chemical oxygen demand (COD), biological oxygen demand (BOD ), Arambourou et al. [11], Warwick [12], Alba-Tercedor [13], Servia 5 as organisms with a potential use in water quality bioindication. Nevertheless, one of the current limitations for the use of total coliforms, fecal coliforms, total suspended solids (TSS), total ammoniacal nitrogen (NH -N), phosphate (PO ), solids (TS), cyanide (CN), 3boron (B), lead (Pb),4 mercury (Hg),4 which in many cases is not straightforward, due to phenotypic iron (Fe), chloride (Cl-), lipids and oils, nitrates (NO ), nitrites Chironomidae is an insufficient knowledge of their taxonomy, ), sulfate3 (SO plasticity or shared characters between several species of a genus, (NO2), and aluminum (Al). These variables were analyzed by or even between genera. chemical variables between the reference and mining stations were The present study aimed to morphological evaluation the ACUATEST S.A. Comparisons of the physical, hydrobiological, and performed using the Wilcoxon test (W). larvae of Genus 1 sp. 2 Roback & Coffman [2], through diagnostic characters, further, larvae and pupae of Genus 1 sp. 2 were Morphological and molecular evaluation molecularly determined and associated based on the study of The ethanol-preserved organisms were examined and mitochondrial genes. The possible morphometric variations and record the frequency of deformities was assessed in organisms of the stereomicroscope equipped with a MC170HD digital camera. Next, identified based on the keys of Prat et al. [1,3], using a Leica M205C the head of each specimen, both the larvae and pupae reared in impact or lack of any evident mining impact and sampling stations IV larval instar in the sampling stations (no evident anthropogenic the laboratory, were dissected and placed in hot 10% KOH. They with mining impact). Overall, the results allowing to contribute to were then washed, dehydrated, and mounted on microscope slides the establishment of this species as a water quality bioindicator. with Euparal® for their subsequent observation, following the light Materials and Methods microscopy (LM) techniques described by Epler [19], and the head capsule and pupal keys of Prat et al. [1,20]. Study area DNA was extracted from the thorax and abdomen of 11 larvae, The study area included six sampling stations located in the as well as two mature pupae, using the DNeasy Blood and Tissue Chinchiná River basin in the department of Caldas (Colombia). Kit (Qiagen®), according to the manufacturer’s instructions. Two sampling stations were selected as reference (areas without Two mitochondrial genes (mtDNA), cytochrome oxidase I (COI) an evident mining impact), one located in La Elvira stream (05°03’10.9’’ North, 75°24’33.6’’ West), municipality of Manizales, that were conducted following Ossa et al. [21]. The PCR products and the other in Romerales stream
Recommended publications
  • Taxonomic Review of the Chironomid Genus Cricotopus V.D. Wulp
    Zootaxa 3919 (1): 001–040 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3919.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:218630EE-6BF7-4E35-A8F6-9E8260D60FA0 Taxonomic review of the chironomid genus Cricotopus v.d. Wulp (Diptera: Chironomidae) from Australia: keys to males, females, pupae and larvae, description of ten new species and comments on Paratrichocladius Santos Abreu NICK DRAYSON1, PETER S. CRANSTON2,4 & MATT N. KROSCH3 17 Park Walk, Brigstock, Northants NN14 3HH, UK 2Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, A.C.T. 2601, Australia 3Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland., Brisbane, QLD 4072, Australia 4Corresponding author Drayson: urn:lsid:zoobank.org:author:B568A060-A52A-4440-8CC1-D81506B3902A Cranston: urn:lsid:zoobank.org:author:C068AC61-DF1D-432A-9AB7-52B5D85C6C79 Krosch: urn:lsid:zoobank.org:author:C7DD7291-27F0-4216-80B2-90BD9F0CDFAB Table of contents Abstract . 1 Introduction . 2 Methods and material . 3 Cricotopus acornis Drayson & Cranston, sp.n. 5 Cricotopus albitarsis Hergstrom sp. n. 6 Cricotopus annuliventris (Skuse) . 8 Cricotopus brevicornis Drayson & Cranston sp.n. 10 Cricotopus conicornis Drayson & Cranston sp.n.. 11 Cricotopus hillmani Drayson & Cranston, sp. n . 13 Cricotopus howensis Cranston sp.n. 15 Cricotopus parbicinctus Hergstrom sp.n. 16 Cricotopus tasmania Drayson & Cranston sp. n. 18 Cricotopus varicornis Drayson & Cranston sp. n. 20 Cricotopus wangi Cranston & Krosch sp. n.. 21 Key to adult males of Australian Cricotopus . 22 Key to adult females of Australian Cricotopus .
    [Show full text]
  • Insects in Cretaceous and Cenozoic Amber of Eurasia and North America
    Insects in Cretaceous and Cenozoic Amber of Eurasia and North America Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, ul. Bogdana Khmel’nitskogo 15, Kiev, 01601 Ukraine email: [email protected] Edited by E. E. Perkovsky ISSN 00310301, Paleontological Journal, 2016, Vol. 50, No. 9, p. 935. © Pleiades Publishing, Ltd., 2016. Preface DOI: 10.1134/S0031030116090100 The amber is wellknown as a source of the most Eocene ambers. However, based on paleobotanical valuable, otherwise inaccessible information on the data, confirmed by new paleoentomological data, it is biota and conditions in the past. The interest in study dated Middle Eocene. Detailed discussions of dating ing Mesozoic and Paleogene ambers has recently and relationships of Sakhalinian ants is provided in the sharply increased throughout the world. The studies first paper of the present volume, in which the earliest included in this volume concern Coleoptera, ant of the subfamily Myrmicinae is described from Hymenoptera, and Diptera from the Cretaceous, the Sakhalinian amber and assigned to an extant Eocene, and Miocene amber of the Taimyr Peninsula, genus. The earliest pedogenetic gall midge of the Sakhalin Island, Baltic Region, Ukraine, and Mexico. tribe Heteropezini from the Sakhalinian amber is Yantardakh is the most important Upper Creta also described here. ceous insect locality in northern Asia, which was dis The Late Eocene Baltic amber is investigated better covered by an expedition of the Paleontological Insti than any other; nevertheless, more than half of its tute of the Academy of Sciences of the USSR fauna remains undescribed; the contemporaneous (at present, Borissiak Paleontological Institute, Rus fauna from the Rovno amber is investigated to a con sian Academy of Sciences: PIN) in 1970 and addition siderably lesser degree.
    [Show full text]
  • Orthocladiinae 7.1
    ORTHOCLADIINAE 7.1 SUBFAMILY ORTHOCLADIINAE 7 DIAGNOSIS: Antennae with 3-7 segments; may be strongly reduced or may be longer than head capsule. Labrum with S I variable (simple, bifid, branched, serrated, palmate or plumose); S II usually simple but may be bifid, branched, palmate or plumose; S III simple (rarely bifid); S IV normal. Labral lamellae present or absent. Mentum usually well sclerotized, with several to more than 25 teeth; ventro- mental plates absent/vestigial to very large, without striae (occasionally with ridges in Nanocladius); beard present or absent. Prementum variably developed but never with dense well developed median brush of setae. Body with anterior parapods (sometimes reduced and/or fused); with posterior parapods well developed, separate or fused, or parapods reduced or absent. Setal fringe, setal tufts or long setae sometimes present. Anal tubules normally present, may be reduced or absent/vestigial. NOTES: One of the most diverse of the chironomid subfamilies; orthoclad larvae are found in an amaz- ing variety of habitats, running the gamut from terrestrial (corn fields, dung, greenhouses, leaf litter in hardwood forests) to seeps, springs, streams, rivers, ponds and lakes in freshwater, and coastal estuarine and littoral marine areas. Most larvae are scrapers, shredders or collectors-gatherers; some taxa are preda- tors, some are parasites. Key to the genera of larval Orthocladiinae of the southeastern United States (larvae are unknown for Apometriocnemus, Chasmatonotus, Diplosmittia, Lipurometriocnemus, Plhudsonia, Saetheriella, Sublettiella and Tavastia) 1 Length of antennae at least 1/2 length of head capsule ............................................................ 2 1’ Length of antennae less than 1/2 length of head capsule ........................................................
    [Show full text]
  • ©Zoologische Staatssammlung München;Download
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2000 Band/Volume: 023 Autor(en)/Author(s): Ashe Patrick, O'Connor James P., Murray Declan A. Artikel/Article: Larvae of Eurycnemus crassipes (Panzer) (Diptera: Chrionomidae) ectoparasitic on prepupae/pupae of Hydropsyche siltalai Döhler (Trichoptera: Hydropsychidae), with a summary of know chironomid/trichopteran associations 267-274 ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at SPIXIANA ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at Methods and material A shallow riffle site on the River Flesk, S. W. Ireland, was chosen for the investigation, and from the ecological data available on the immature stages of Eurycnemus (Murray & Ashe 1981) it was assumed for the purposes of the search that E. crassipes is ectoparasitic on Hydropsyche prepupae/pupae. By driving long, upright branches into the Substrate, the riffle area was divided into three rectangular, box- like sections each about 1 m wide and 10 m long, the total area studied being about 30 Square metres. Work began on the downstream end of each box and every stone likely to support Hydropsyche pupal cases was examined. Any such cases found were removed, opened and discarded if nothing was found. Suspect cases were placed in a tray of river water for further examination, and those which contained or were suspected of containing larvae or pupae of E. crassipes were preserved in 75 % alcohol. Material found: Ireland, Co. Kerry, River Flesk (Grid reference: V964893), 8.VI11.1994, leg.
    [Show full text]
  • Checklist of the Family Chironomidae (Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 63–90 (2014)Checklist of the family Chironomidae (Diptera) of Finland 63 doi: 10.3897/zookeys.441.7461 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chironomidae (Diptera) of Finland Lauri Paasivirta1 1 Ruuhikoskenkatu 17 B 5, FI-24240 Salo, Finland Corresponding author: Lauri Paasivirta ([email protected]) Academic editor: J. Kahanpää | Received 10 March 2014 | Accepted 26 August 2014 | Published 19 September 2014 http://zoobank.org/F3343ED1-AE2C-43B4-9BA1-029B5EC32763 Citation: Paasivirta L (2014) Checklist of the family Chironomidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 63–90. doi: 10.3897/zookeys.441.7461 Abstract A checklist of the family Chironomidae (Diptera) recorded from Finland is presented. Keywords Finland, Chironomidae, species list, biodiversity, faunistics Introduction There are supposedly at least 15 000 species of chironomid midges in the world (Armitage et al. 1995, but see Pape et al. 2011) making it the largest family among the aquatic insects. The European chironomid fauna consists of 1262 species (Sæther and Spies 2013). In Finland, 780 species can be found, of which 37 are still undescribed (Paasivirta 2012). The species checklist written by B. Lindeberg on 23.10.1979 (Hackman 1980) included 409 chironomid species. Twenty of those species have been removed from the checklist due to various reasons. The total number of species increased in the 1980s to 570, mainly due to the identification work by me and J. Tuiskunen (Bergman and Jansson 1983, Tuiskunen and Lindeberg 1986).
    [Show full text]
  • The XV International Symposium on Chironomidae Was Convened
    Proceedings of the XV International Symposium on Chironomidae, pp. 285-293 Edited by Leonard C. Ferrington Jr. (2010) Phytotelmatocladius, A New Genus from Bromeliads in Florida and Brazil (Diptera: Chironomidae: Orthocladiinae) J. H. EPLER 461 Tiger Hammock Road, Crawfordville, Florida 32327, U.S.A. ABSTRACT: Phytotelmatocladius delarosai, new genus, new species, is described from bromeliad phytotelmata in southern Florida and Brazil. The larva had previously been keyed and diagnosed as Metriocnemus sp. B in Epler (1992, 1995) and Orthocladiinae genus H in Epler (2001). The pupa lacks a thoracic horn and pedes spurii A and B, has tergites II-VII and anal lobe mostly covered with shagreen spines, with well developed spinules on the conjunctiva between most tergites and sternites, and has only two macrosetae on each of its truncated anal lobes. The female has bare eyes, scalpellate acrostichals, only one or no seta on the squama, no setae on wing membrane, a long comb of 40+ sensilla chaetica on the mid leg basitarsus and seminal capsules without microtrichia. This new genus shows similarities to Compterosmittia, Limnophyes, Paralimnophyes and Thienemannia. Only female adults and pupae have been collected or reared (excepting larvae which can not be sexed), leading one to assume that this taxon may be parthenogenetic. INTRODUCTION Phytotelmata are the small bodies of water impounded by plants, such as bromeliads or pitcher plants. Phytotelmata often contain a variety of invertebrate and vertebrate life forms, among them Chironomidae (Cranston & Kitching, 1995; Epler and Janetzky, 1999; Frank and Fish, 2008; Picado, 1913 and others). In 1980 I made some collections from arboreal Tillandsia (a bromeliad genus native in Florida) phytotelmata that contained two taxa of orthocladine larvae.
    [Show full text]
  • Studies on Ecology of Marine Chironomids in Southwestern Japan INTRODUCTION MATERIALS and METHODS
    生物圏科学 Biosphere Sci. 54:13-19 (2015) Studies on ecology of marine chironomids in southwestern Japan 1)* 1) 2) Koichiro KAWAI , Hidetoshi SAITO and Katsuo SUGIMARU 1)Laboratory of Aquatic Ecology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan 2) Research Dept., Fumakira Co. Ltd., 1-11-1, Umehara, Hatsukaichi-shi, Hiroshima 739-0494, Japan Abstract Ecological studies were conducted on marine chironomids in south-western Japan. A total of 20 species was collected. For vertical distribution, only a few species was distributed only at high or middle intertidal zone while many species were distributed only at low zone. For substrate preference, some species were collected only on rocks or in mud while many species were collected only in seaweeds. For geographical distribution, a few species was collected only in the southwestern islands or in the oceanic coast in the Japanese main islands. In contrast, some species were collected in the Seto Inland Sea and the oceanic coast in the main islands, in the oceanic coast in the main islands and the southwestern islands, or in all areas. For seasonal emergence, Dicrotendipes enteromorphae was collected only in summer and autumn, and Semiocladius endocladiae was collected in all seasons. Other species were collected only in autumn and winter, or only in winter and spring. These results suggest that many chironomid species with a variety of lifestyles dwell in intertidal zones and have some important roles in the ecosystems. Key Words: sessile organisms, chironomid, distribution, intertidal zone, seaweed INTRODUCTION Chironomids (Diptera: Chironomidae) are one of the widely distributed insects on the earth (Nihon yusurika kenkyu-kai, 2010).
    [Show full text]
  • Acricotopus Indet. Morphotype Incurvatus: Description and Genetics of a New Orthocladiinae (Diptera: Chironomidae) Larval Morphotype from the Tibetan Plateau
    Zootaxa 4656 (3): 535–544 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4656.3.10 http://zoobank.org/urn:lsid:zoobank.org:pub:E236AFC9-76EA-4F64-8045-268C5417E46A Acricotopus indet. morphotype incurvatus: Description and genetics of a new Orthocladiinae (Diptera: Chironomidae) larval morphotype from the Tibetan Plateau ANDREAS LAUG1, LADISLAV HAMERLÍK2, STEN ANSLAN3, STEFAN ENGELS4, FALKO TURNER5, JUNBO WANG6 & ANTJE SCHWALB7 1Technische Universität Braunschweig, Institute of Geosystems and Bioindication, Langer Kamp 19c, 38106 Braunschweig, Ger- many. E-mail: [email protected] 2Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland & Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia. E-mail: [email protected] 3Technische Universität Braunschweig, Zoological Institute, Mendelssohnstraße 4, 38106 Braunschweig, Germany. E-mail: [email protected] 4Birkbeck University of London, Department of Geography, 32 Tavistock Sq., London, WC1H 9EZ, UK. E-mail: [email protected] 5Technische Universität Braunschweig, Institute of Geosystems and Bioindication, Langer Kamp 19c, 38106 Braunschweig, Germany, deceased on 10th of January 2017 at the age of 36 6Institute of Tibetan Plateau Research (ITP), Chinese Academy of Sciences, Beijing, 100085, P.R. China. E-mail: [email protected] 7Technische Universität Braunschweig, Institute of Geosystems and Bioindication, Langer Kamp 19c, 38106 Braunschweig, Germany. E-mail: [email protected] Abstract High mountain ranges such as the Tibetan Plateau with an average altitude above 4500 m are topographically complex formations.
    [Show full text]
  • THE CHIRONOMIDAE of OTSEGO LAKE with KEYS to the IMMATURE STAGES of the SUBFAMILIES TANYPODINAE and DIAMESINAE (DIPTERA) Joseph
    THE CHIRONOMIDAE OF OTSEGO LAKE WITH KEYS TO THE IMMATURE STAGES OF THE SUBFAMILIES TANYPODINAE AND DIAMESINAE (DIPTERA) Joseph P. Fagnani Willard N. Harman BIOLOGICAL FIELD STATION COOPERSTOWN, NEW YORK OCCASIONAL PAPER NO. 20 AUGUST, 1987 BIOLOGY DEPARTMENT STATE UNIVERSITY COLLEGE AT ONEONTA THIS MANUSCRIPT IS NOT A FORMAL PUBLICATION. The information contained herein may not be cited or reproduced without permission of the author or the S.U.N.Y. Oneonta Biology Department ABSTRACT The species of Chironomidae inhabiting Otsego Lake, New York, were studied from 1979 through 1982. This report presents the results of a variety of collecting methods used in a diversity of habitats over a considerable temporal period. The principle emphasis was on sound taxonomy and rearing to associate immatures and adults. Over 4,000 individual rearings have provided the basis for description of general morphological stages that occur during the life cycles of these species. Keys to the larvae and pupae of the 4 subfamilies and 10 tribes of Chironomidae collected in Otsego Lake were compiled. Keys are also presented for the immature stages of 12 Tanypodinae and 2 Diamesinae species found in Otsego Lake. Labeled line drawings of the majority of structures and measurements used to identify the immature stages of most species of chironomids were adapted from the literature. Extensive photomicrographs are presented along with larval and pupal characteristics, taxonomic notes, synonymies, recent literature accounts and collection records for 17 species. These include: Chironominae­ Paratendipes albimanus (Meigen) (Chironomini); Ortl10cladiinae ­ Psectrocladius (Psectrocladius) simulans (Johannsen) and I!ydrobaenus johannseni (Sublette); Diamesinae - Protanypus ramosus Saether (Protanypodini) and Potthastia longimana Kieffer (Diamesini); and Tanypodinae - Clinotanypus (Clinotanypus) pinguis (Loew) (Coelotanypodini), Tanypu~ (Tanypus) punctipennis Meigen (Tanypodini), Procladius (Psilotanypus) bellus (Loew); Var.
    [Show full text]
  • De Eurasian Lakes with Respect to Temperature and Continentality: Development and Application of New Chironomid-Based Climate-Inference Models in Northern Russia
    Quaternary Science Reviews 30 (2011) 1122e1141 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev The distribution and abundance of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: development and application of new chironomid-based climate-inference models in northern Russia A.E. Self a,b,*, S.J. Brooks a, H.J.B. Birks b,c,d, L. Nazarova e, D. Porinchu f, A. Odland g, H. Yang b, V.J. Jones b a Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK b Environmental Change Research Centre, Department of Geography, University College London, Gower Street, London WC1E 6BT, UK c Department of Biology, Bjerknes Centre for Climate Research, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway d School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK e Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A 43, 14473 Potsdam, Germany f Department of Geography, The Ohio State University, 1036 Derby Hall, 154 N. Oval Mall, Columbus, OH 43210, USA g Institute of Environmental Studies, Telemark University College, N-3800 Bø, Norway article info abstract Article history: The large landmass of northern Russia has the potential to influence global climate through amplification Received 10 June 2010 of climate change. Reconstructing climate in this region over millennial timescales is crucial for Received in revised form understanding the processes that affect the global climate system. Chironomids, preserved in lake 18 January 2011 sediments, have the potential to produce high resolution, low error, quantitative summer air temperature Accepted 19 January 2011 reconstructions.
    [Show full text]
  • A New Species of Corynoneura Winnertz from Oriental China (Diptera: Chironomidae: Orthocladiinae)
    Zootaxa 3884 (6): 567–572 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3884.6.5 http://zoobank.org/urn:lsid:zoobank.org:pub:BF32A597-44A2-459E-AA73-8DCC3EF3EE77 A New Species of Corynoneura Winnertz from Oriental China (Diptera: Chironomidae: Orthocladiinae) XIANGLIANG FANG1 & XINHUA WANG2 & YUE FU1* 1 Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Biological Scientific and Technical College of HuBei Minzu University, EnShi City 445000, China. E-mail:[email protected] 2 College of Life Sciences, Nankai University; Tianjin 300071, China, E-mail: [email protected] * Corresponding author Abstract A new species of Corynoneura Winnertz (1846) from Oriental China, C. ecphora sp. n. is described and illustrated as male. A distribution map of adult males in Oriental China is given. A key to known males of Oriental China is provided. Key words: Diptera, Chironomidae, Orthocladiinae Introduction Corynoneura Winnertz (1984) is a special genus characterized by small size (less than 3.00mm) and a thick clavus terminating at or before the midpoint of the wing. This genus is world-wide in distribution, but it was frequently overlooked because of their small size. Fu, Sæther & Wang (2009) provided a key to the sufficiently known males in the world, and gave a preliminary estimate of the phylogenetic relationships of the known males. Subsequently, Wiedenbrug et al. revised the genus Corynoneura from Neotropical region (Wiedenbrug & Trivinho-Strixino 2011, Wiedenbrug et al 2012) , Makarchenko & Makarchenko (2010) and Krasheninnikov (2012) described 7 new species from Russia.
    [Show full text]
  • Diptera) from Lake Sediments in Central America: a Preliminary Inventory
    Zootaxa 4497 (4): 559–572 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4497.4.6 http://zoobank.org/urn:lsid:zoobank.org:pub:00292B85-305D-44FF-B9D6-DE2D7A72D220 Sub-fossil Chironomidae (Diptera) from lake sediments in Central America: a preliminary inventory LADISLAV HAMERLIK1,2,5, FABIO LAURINDO DA SILVA3,4 & MARTA WOJEWÓDKA1 1Institute of Geological Sciences, Polish Academy of Sciences, Warsaw, Poland 2Department of Biology and Ecology, Matej Bel University, Banská Bystrica, Slovakia 3Laboratory of Systematic and Biogeography of Insecta, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil. 4Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway. 5Corresponding author. E-mail: [email protected] Abstract The chironomid diversity of Central America is virtually underestimated and there is almost no knowledge on the chirono- mid remains accumulated in surface sediments of lakes. Thus, in the present study we provide information on the larval sub-fossil chironomid fauna from surface sediments in Central American lakes for the first time. Samples from 27 lakes analysed from Guatemala, El Salvador and Honduras yielded a total of 1,109 remains of four subfamilies. Fifty genera have been identified, containing at least 85 morphospecies. With 45 taxa, Chironominae were the most specious and also most abundant subfamily. Tanypodinae with 14 taxa dominated in about one third of the sites. Orthocladiinae were pre- sented by 24 taxa, but were recorded in 9 sites, being dominant in only one site.
    [Show full text]