Antibodies Encoded Natural Igm − Ligands for VH4-34 Poly-N-Acetyl

Total Page:16

File Type:pdf, Size:1020Kb

Antibodies Encoded Natural Igm − Ligands for VH4-34 Poly-N-Acetyl Identification of Cell Surface Straight Chain Poly-N-Acetyl-Lactosamine Bearing Protein Ligands for VH4-34−Encoded Natural IgM Antibodies This information is current as of September 24, 2021. Neelima M. Bhat, Christopher M. Adams, Yi Chen, Marcia M. Bieber and Nelson N. H. Teng J Immunol 2015; 195:5178-5188; Prepublished online 26 October 2015; doi: 10.4049/jimmunol.1501697 Downloaded from http://www.jimmunol.org/content/195/11/5178 Supplementary http://www.jimmunol.org/content/suppl/2015/10/24/jimmunol.150169 http://www.jimmunol.org/ Material 7.DCSupplemental References This article cites 80 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/195/11/5178.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 24, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Identification of Cell Surface Straight Chain Poly-N-Acetyl- Lactosamine Bearing Protein Ligands for VH4-34–Encoded Natural IgM Antibodies Neelima M. Bhat,* Christopher M. Adams,† Yi Chen,* Marcia M. Bieber,* and Nelson N. H. Teng* B cell binding and cytotoxicity by human VH4-34–encoded Abs of the IgM isotype has been well documented. A VH4-34-IgM has recently shown a favorable early response in a phase 1 trial for treatment of B cell acute lymphoblastic leukemia. Although its B cell ligand has been identified as straight chain poly-N-acetyl-lactosamine (SC-PNAL), the carrier of the sugar moiety has not been identified. Using nanoelectrospray ionization mass spectrometry, we identify the metabolic activation related protein com- plex of CD147-CD98 as a major carrier of poly-N-acetyl-lactosamine (SC-PNAL) on human pre-B cell line Nalm-6. Previous Downloaded from studies have suggested CD45 as the SC-PNAL carrier for VH4-34–encoded IgG Abs. Because Nalm-6 is CD45 negative, human peripheral blood B lymphocytes and human B cell line, Reh, with high CD45 expression, were examined for SC-PNAL carrier proteins. Western blot analysis shows that the CD147-98 complex is indeed immunoprecipitated by VH4-34–encoded IgMs from human peripheral blood B lymphocytes and human B cell lines, Reh, OCI-Ly8, and Nalm-6. However, CD45 is immunoprecipi- tated only from peripheral B lymphocytes, but not from Reh despite the high expression of CD45. These results suggest that human B cells retain SC-PNAL on the CD147-98 complex, but modulate the sugar moiety on CD45. Because the carbohydrate http://www.jimmunol.org/ moiety may act as a selecting Ag for VH4-34 autoantibody repertoire, its differential expression on proteins may provide a clue to the intricate atypical regulation of the VH4-34 gene. The Journal of Immunology, 2015, 195: 5178–5188. ntibodies encoded by the VH4-34 gene have been studied nasopharyngeal carcinoma and a subset of cold agglutinin disease because of their inherent autoreactivity and unusual (5–11). The shared feature among these diverse syndromes is as- A regulation. B lymphocytes bearing the VH4-34-BCR are sociation with lymphotropic viruses and B cell hyperproliferation (6). overrepresented in the naive repertoire but counterselected for Ab In IM, a widespread disease caused by EBV, the secreted VH4-34 secretion. Although nearly 5% of naive B cells use the V4-34-BCR response is transitory and limited to the multivalent IgM and IgA by guest on September 24, 2021 circulating Abs are low to undetectable in healthy adults (1, 2). In disappearing with the resolution of the disease (12). No manifestation fact, VH4-34-BCR bearing cells exhibit a surface profile of anergic of long-term clinical autoimmunity is linked with brief secretion of cells, are actively policed away from germinal centers in healthy high-avidity VH4-34 Abs approaching 400 mg/ml. Isotype-switched adults, and are primarily found in the marginal or mantle zone (3, 4). VH4-34 Abs are detected in .50% of SLE patients (13). The op- Circulating VH4-34 Abs are readily detectable in limited clinical erative mechanism that restricts VH4-34-BCR bearing B cells from conditions, such as infectious mononucleosis (IM), AIDS, systemic entering germinal center reactions is blocked, leading to the pro- lupus erythematosus (SLE), hepatitis C infection, EBV-associated duction of isotype-switched somatically mutated autoantibodies (3). Hence, secretion of VH4-34 Abs has been monitored to study the *Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, interplay between acute anti-pathogen response and breakdown in Stanford University, Stanford, CA 94305; and †Stanford University Mass Spectrom- tolerance leading to autoimmunity, particularly in SLE. etry, Stanford University, Stanford, CA 94305 In the context of autoreactivity, it is the recognition of a con- ORCIDs: 0000-0002-6472-1638 (N.M.B.); 0000-0002-0210-3711 (C.M.A.). served carbohydrate epitope on human adult or fetal RBC and Received for publication July 29, 2015. Accepted for publication September 24, B lymphocytes that sets VH4-34 Abs apart from the typical natural 2015. autoantibodies. The germ-line nonmutated framework region of This work was supported by the Malloy Research Gift Fund, Division of Gynecologic the VH4-34 H chain, independent of the L chain, is accountable Oncology, Department of Obstetrics and Gynecology, Stanford University; the re- sources and collaborative efforts provided by the Consortium for Functional Glyco- for binding linear/straight chain poly-N-acetyl-lactosamine (SC- mics were funded by NIGMS-GM62116. PNAL) or i-antigen on human fetal/nucleated RBC and human Address correspondence and reprint requests to Dr. Neelima M. Bhat, HH333, Di- B lymphocytes. Despite the preponderance of circulating i-antigen/ vision of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5317. E-mail SC-PNAL on fetal RBCs, B lymphocytes bearing VH4-34 BCR address: [email protected] are positively selected in human fetal immune repertoire. This scenario The online version of this article contains supplemental material. represents an unprecedented selection of an autoreactive BCR in the Abbreviations used in this article: CFG, Consortium for Functional Glycomics; DIF, presence of abundant autoantigen, making the VH4-34 gene a rare detergent insoluble fraction; D-threo PDMP, 1-phenyl-2-decanoylamino-3-morpholino- example where expression of surface versus secreted Ig is stringently 1-propanol, HCl; FB1, fumonisin B1; FDR, false discovery rate; GO, gene ontology; HG-CD147, high glycoform CD147; IM, infectious mononucleosis; IP, immunoprecip- regulated. In contrast, the branched SC-PNAL chains or i-antigen is itation; LC, liquid chromatography; LG-CD147, low glycoform-CD147; Nano-ESI-MS, present only on adult human RBCs and are not bound by anti–B cell nanoelectrospray ionization mass spectrometry; RT, room temperature; SC-PNAL, germ line–encoded VH4-34 IgM Abs (14). poly-N-acetyl-lactosamine; SLE, systemic lupus erythematosus; TL, tomato lectin. The anti-i/anti–B cell SC-PNAL binding VH4-34 Abs, range Copyright Ó 2015 by The American Association of Immunologists, Inc. 0022-1767/15/$25.00 from high to low binders, with the high binders demonstrating www.jimmunol.org/cgi/doi/10.4049/jimmunol.1501697 The Journal of Immunology 5179 B cell cytotoxicity via membrane perturbations. Such VH4-34 Abs and results can be accessed at www.functionalglycomics.org under CFG are observed to bind or paint B lymphocytes in patients with IM, request number 2112. SLE, or HIV (15, 16). On RBCs, SC-PNAL is present on both TLC glycolipids and glycoproteins (17). The nature of the biological backbone that carries the sugar epitope on B lymphocytes has not Glycans on a ceramide backbone were purified as described (20, 21), separated on TLC, and immunostained as described (22, 23). Plate was air been studied in detail. Earlier work with VH4-34-IgG has iden- dried and blocked with PBS with 5% BSA for 2 h and exposed overnight tified CD45 protein as a carrier of SC-PNAL (18). In this study, with mAb 216 (5 mg/ml). After washing five times with 0.5% BSA/PBS, we show that SC-PNAL is present on CD147 and other proteins the plate was incubated for l h with 125I-labeled anti-human IgM (Zymed known to associate with it, such as CD98. This membrane super Laboratories, South San Francisco, CA). After 10 washes with PBS, the plate was then air-dried and subjected to autoradiography. Total staining of complex plays a central role in cell proliferation, transport, and glycan-ceramides was performed by orcinol-H2SO4 as described (20, 21). energy metabolism. SC-PNAL expression on CD45 is detected Glycan-ceramide purification and TLC studies were performed by Dr. Sen-itiroh only on peripheral blood B lymphocytes and not on human B cell Hakomori (University of Washington, Seattle, WA). lines, suggesting differential glycosylation patterns. Because gly- Abs and reagents can moieties have crucial functions from protein folding/adhesion to signaling, differential expression of SC-PNAL on proteins in VH4-34 gene–encoded MAb 216, Z21, Z2D2, and A6H4C5 have been different B cell types may be linked to the intricate control of described previously (14).
Recommended publications
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • SUPPLEMENTARY TABLES and FIGURE LEGENDS Supplementary
    SUPPLEMENTARY TABLES AND FIGURE LEGENDS Supplementary Figure 1. Quantitation of MYC levels in vivo and in vitro. a) MYC levels in cell lines 6814, 6816, 5720, 966, and 6780 (corresponding to first half of Figure 1a in main text). MYC is normalized to tubulin. b) MYC quantitations (normalized to tubulin) for cell lines Daudi, Raji, Jujoye, KRA, KRB, GM, and 6780 corresponding to second half of Figure 1a. c) In vivo MYC quantitations, for mice treated with 0-0.5 ug/ml doxycycline in their drinking water. MYC is normalized to tubulin. d) Quantitation of changing MYC levels during in vitro titration, normalized to tubulin. e) Levels of Odc (normalized to tubulin) follow MYC levels in titration series. Supplementary Figure 2. Evaluation of doxycycline concentration in the plasma of mice treated with doxycycline in their drinking water. Luciferase expressing CHO cells (Tet- off) (Clonethech Inc) that is responsive to doxycycline by turning off luciferase expression was treated with different concentrations of doxycycline in culture. A standard curve (blue line) correlating luciferase activity (y-axis) with treatment of doxycycline (x- axis) was generated for the CHO cell in culture. Plasma from mice treated with different concentrations of doxycycline in their drinking water was separated and added to the media of the CHO cells. Luciferase activity was measured and plotted on the standard curve (see legend box). The actual concentration of doxycycline in the plasma was extrapolated for the luciferase activity measured. The doxycycline concentration 0.2 ng/ml measured in the plasma of mice correlates with 0.05 μg/ml doxycycline treatment in the drinking water of mice, the in vivo threshold for tumor regression.
    [Show full text]
  • Profilin-1 Is Required for Survival of Adult Hematopoietic Stem Cells
    Extended methods Immunohistochemistry HepG-2, SMMC-7721, and 293T cells were obtained from Cell Resource Center of Shanghai Institute for Biological Science, Chinese Academy Science, Shanghai, China. HUVEC cells were kindly provided by Prof. Ping-Jin Gao at Institute of Health Sciences (Shanghai, China). All these cell lines were cultured in DMEM with 10% FBS. MDA- MB-231 cell line was kindly provided by Prof. Ming-Yao Liu (East China Normal University, Shanghai, China) and was cultured in Leibovitz L-15 medium with 10% FBS. All these cell lines were originally purchased from ATCC. MDA-MB-231, SMMC-7721 or HepG2 cells were grown on coverslips in 24-well plates and fixed in either 4% paraformaldehyde or pre-chilled methanol (-20°C) for 10 min. In some cases, WT or VPS33B-null Lin-Sca-1+c-Kit+Flk2-CD34- LT-HSCs were collected by flow cytometry and fixed for immunofluorescence staining. Cells were then blocked with 3% BSA in PBS for 60 min followed by incubation with primary antibodies overnight. The antibodies used were anti-HA (Sigma), anti-Flag (Sigma), anti-VPS33B (Sigma), anti- VPS16B (Abcam), anti-GDI2 (Proteintech), anti-LAMP1 (Proteintech), anti-FLOT1 (Abways), anti-CD63 (Proteintech), anti-ANGPTL2 (R&D system), anti-ANGPTL3 (R&D system), anti-TPO (Abways), anti-GLUT1 (Proteintech), anti-LDHA (Proteintech), anti-PKM2 (CST), anti-RAB11A (Abways), anti-RAB27A (Abways) and anti-V5 (Biodragon). Fluorescent-conjugated secondary antibodies (Alexa Fluor® 488 or Alexa Fluor® 555) against mouse, rabbit, or goat were obtained from the Thermo Scientific Inc. The details for all the antibodies are listed in Table S3.
    [Show full text]
  • CD Markers Are Routinely Used for the Immunophenotyping of Cells
    ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr.
    [Show full text]
  • Biomarkers, Master Regulators and Genomic Fabric Remodeling in a Case of Papillary Thyroid Carcinoma
    G C A T T A C G G C A T genes Article Biomarkers, Master Regulators and Genomic Fabric Remodeling in a Case of Papillary Thyroid Carcinoma Dumitru A. Iacobas Personalized Genomics Laboratory, CRI Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; [email protected]; Tel.: +1-936-261-9926 Received: 1 August 2020; Accepted: 1 September 2020; Published: 2 September 2020 Abstract: Publicly available (own) transcriptomic data have been analyzed to quantify the alteration in functional pathways in thyroid cancer, establish the gene hierarchy, identify potential gene targets and predict the effects of their manipulation. The expression data have been generated by profiling one case of papillary thyroid carcinoma (PTC) and genetically manipulated BCPAP (papillary) and 8505C (anaplastic) human thyroid cancer cell lines. The study used the genomic fabric paradigm that considers the transcriptome as a multi-dimensional mathematical object based on the three independent characteristics that can be derived for each gene from the expression data. We found remarkable remodeling of the thyroid hormone synthesis, cell cycle, oxidative phosphorylation and apoptosis pathways. Serine peptidase inhibitor, Kunitz type, 2 (SPINT2) was identified as the Gene Master Regulator of the investigated PTC. The substantial increase in the expression synergism of SPINT2 with apoptosis genes in the cancer nodule with respect to the surrounding normal tissue (NOR) suggests that SPINT2 experimental overexpression may force the PTC cells into apoptosis with a negligible effect on the NOR cells. The predictive value of the expression coordination for the expression regulation was validated with data from 8505C and BCPAP cell lines before and after lentiviral transfection with DDX19B.
    [Show full text]
  • Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*□S
    crossmark Research Author’s Choice © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*□S Rolf Turk‡§¶ʈ**, Jordy J. Hsiao¶, Melinda M. Smits¶, Brandon H. Ng¶, Tyler C. Pospisil‡§¶ʈ**, Kayla S. Jones‡§¶ʈ**, Kevin P. Campbell‡§¶ʈ**, and Michael E. Wright¶‡‡ Mutations in genes encoding components of the sar- The muscular dystrophies are hereditary diseases charac- colemmal dystrophin-glycoprotein complex (DGC) are re- terized primarily by the progressive degeneration and weak- sponsible for a large number of muscular dystrophies. As ness of skeletal muscle. Most are caused by deficiencies in such, molecular dissection of the DGC is expected to both proteins associated with the cell membrane (i.e. the sarco- reveal pathological mechanisms, and provides a biologi- lemma in skeletal muscle), and typical features include insta- cal framework for validating new DGC components. Es- bility of the sarcolemma and consequent death of the myofi- tablishment of the molecular composition of plasma- ber (1). membrane protein complexes has been hampered by a One class of muscular dystrophies is caused by mutations lack of suitable biochemical approaches. Here we present in genes that encode components of the sarcolemmal dys- an analytical workflow based upon the principles of pro- tein correlation profiling that has enabled us to model the trophin-glycoprotein complex (DGC). In differentiated skeletal molecular composition of the DGC in mouse skeletal mus- muscle, this structure links the extracellular matrix to the cle. We also report our analysis of protein complexes in intracellular cytoskeleton.
    [Show full text]
  • Engineered Type 1 Regulatory T Cells Designed for Clinical Use Kill Primary
    ARTICLE Acute Myeloid Leukemia Engineered type 1 regulatory T cells designed Ferrata Storti Foundation for clinical use kill primary pediatric acute myeloid leukemia cells Brandon Cieniewicz,1* Molly Javier Uyeda,1,2* Ping (Pauline) Chen,1 Ece Canan Sayitoglu,1 Jeffrey Mao-Hwa Liu,1 Grazia Andolfi,3 Katharine Greenthal,1 Alice Bertaina,1,4 Silvia Gregori,3 Rosa Bacchetta,1,4 Norman James Lacayo,1 Alma-Martina Cepika1,4# and Maria Grazia Roncarolo1,2,4# Haematologica 2021 Volume 106(10):2588-2597 1Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 2Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 3San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and 4Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, CA, USA *BC and MJU contributed equally as co-first authors #AMC and MGR contributed equally as co-senior authors ABSTRACT ype 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for Tchemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature.
    [Show full text]
  • Comparative Proteomic Analysis Identifies Epha2 As a Specific Cell
    International Journal of Molecular Sciences Article Comparative Proteomic Analysis Identifies EphA2 as a Specific Cell Surface Marker for Wharton’s Jelly-Derived Mesenchymal Stem Cells Ashraf Al Madhoun 1,2,* , Sulaiman K. Marafie 3 , Dania Haddad 2, Motasem Melhem 2, Mohamed Abu-Farha 3 , Hamad Ali 2,4 , Sardar Sindhu 1 , Maher Atari 5 and Fahd Al-Mulla 2 1 Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; [email protected] 2 Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; [email protected] (D.H.); [email protected] (M.M.); [email protected] (H.A.); [email protected] (F.A.-M.) 3 Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; sulaiman.marafi[email protected] (S.K.M.); [email protected] (M.A.-F.) 4 Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya 046302, Kuwait 5 Medical-Surgical Pathology Department, Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, 08195 Barcelona, Spain; [email protected] * Correspondence: [email protected] Received: 28 June 2020; Accepted: 1 September 2020; Published: 3 September 2020 Abstract: Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) are a valuable tool in stem cell research due to their high proliferation rate, multi-lineage differentiation potential, and immunotolerance properties. However, fibroblast impurity during WJ-MSCs isolation is unavoidable because of morphological similarities and shared surface markers. Here, a proteomic approach was employed to identify specific proteins differentially expressed by WJ-MSCs in comparison to those by neonatal foreskin and adult skin fibroblasts (NFFs and ASFs, respectively).
    [Show full text]
  • Mouse CD Marker Chart Bdbiosciences.Com/Cdmarkers
    BD Mouse CD Marker Chart bdbiosciences.com/cdmarkers 23-12400-01 CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD1d CD1.1, CD1.2, Ly-38 Lipid, Glycolipid Ag + + + + + + + + CD104 Integrin b4 Laminin, Plectin + DNAX accessory molecule 1 (DNAM-1), Platelet and T cell CD226 activation antigen 1 (PTA-1), T lineage-specific activation antigen 1 CD112, CD155, LFA-1 + + + + + – + – – CD2 LFA-2, Ly-37, Ly37 CD48, CD58, CD59, CD15 + + + + + CD105 Endoglin TGF-b + + antigen (TLiSA1) Mucin 1 (MUC1, MUC-1), DF3 antigen, H23 antigen, PUM, PEM, CD227 CD54, CD169, Selectins; Grb2, β-Catenin, GSK-3β CD3g CD3g, CD3 g chain, T3g TCR complex + CD106 VCAM-1 VLA-4 + + EMA, Tumor-associated mucin, Episialin + + + + + + Melanotransferrin (MT, MTF1), p97 Melanoma antigen CD3d CD3d, CD3 d chain, T3d TCR complex + CD107a LAMP-1 Collagen, Laminin, Fibronectin + + + CD228 Iron, Plasminogen, pro-UPA (p97, MAP97), Mfi2, gp95 + + CD3e CD3e, CD3 e chain, CD3, T3e TCR complex + + CD107b LAMP-2, LGP-96, LAMP-B + + Lymphocyte antigen 9 (Ly9),
    [Show full text]
  • Protein Tyrosine Phosphorylation in Haematopoietic Cancers and the Functional Significance of Phospho- Lyn SH2 Domain
    Protein Tyrosine Phosphorylation in Haematopoietic Cancers and the Functional Significance of Phospho- Lyn SH2 Domain By Lily Li Jin A thesis submitted in conformity with the requirements for the degree of Ph.D. in Molecular Genetics, Graduate Department of Molecular Genetics, in the University of Toronto © Copyright by Lily Li Jin (2015) Protein Tyrosine Phosphorylation in Haematopoietic Cancers and the Functional Significance of Phospho-Lyn SH2 Domain Lily Li Jin 2015 Ph.D. in Molecular Genetics Graduate Department of Molecular Genetics University of Toronto Abstract Protein-tyrosine phosphorylation (pY) is a minor but important protein post-translational modification that modulates a wide range of cellular functions and is involved in cancer. Dysregulation of tyrosine kinases (TKs) and protein-tyrosine phosphatases (PTPs) have been observed in multiple myeloma (MM) and acute myeloid leukemia (AML) and is a subject of study. Using recently developed mass spectrometry-based proteomics techniques, quantitative PTP expression and cellular pY profiles were generated for MM cell lines and mouse xenograft tumors, as well as primary AML samples. Integrated comprehensive analyses on these data implicated a subset of TKs and PTPs in MM and AML, with valuable insights gained on the dynamic regulation of pY in biological systems. In particular, I propose a model that describes the cellular pY state as a functional output of the total activated TKs and PTPs in the cell. My results show that the global pY profile in the cancer models is quantitatively related to the cellular levels of activated TKs and PTPs. Furthermore, the identity of the implicated TK/PTPs is system- ii dependent, demonstrating context-dependent regulation of pY.
    [Show full text]
  • Supplemental Figure 1. Protein-Protein Interaction Network with Increased Expression in Fteb During the Luteal Phase
    Supplemental Figure 1. Protein-protein interaction network with increased expression in FTEb during the luteal phase. Supplemental Figure 2. Protein-protein interaction network with decreased expression in FTEb during luteal phase. LEGENDS TO SUPPLEMENTAL FIGURES Supplemental Figure 1. Protein-protein interaction network with increased expression in FTEb during the luteal phase. Submission of probe sets differentially expressed in the FTEb specimens that clustered with SerCa as well as those specifically altered in FTEb luteal samples to the online I2D database revealed overlapping networks of proteins with increased expression in the four FTEb samples and/or FTEb luteal samples overall. Proteins are represented by nodes, and known and predicted first-degree interactions are represented by solid lines. Genes encoding proteins shown as large ovals highlighted in blue were exclusively found in the first comparison (Manuscript Figure 2), whereas those highlighted in red were only found in the second comparison (Manuscript Figure 3). Genes encoding proteins shown as large ovals highlighted in black were found in both comparisons. The color of each node indicates the ontology of the corresponding protein as determined by the Online Predicted Human Interaction Database (OPHID) link with the NAViGaTOR software. Supplemental Figure 2. Protein-protein interaction network with decreased expression in FTEb during the luteal phase. Submission of probe sets differentially expressed in the FTEb specimens that clustered with SerCa as well as those specifically altered in FTEb luteal samples to the online I2D database revealed overlapping networks of proteins with decreased expression in the four FTEb samples and/or FTEb luteal samples overall. Proteins are represented by nodes, and known and predicted first-degree interactions are represented by solid lines.
    [Show full text]
  • Supplemental Materials 1 SUPPLEMENTAL METHODS CSC
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer Identification of MM immunotherapy targets by MS – Supplemental materials 1 SUPPLEMENTAL METHODS 2 CSC-technology 3 Approximately 100 million cells from each biological replicate (n=3-6) were taken 4 through the CSC-Technology workflow as previously described in detail.(1-3) Cells were 5 washed with PBS and oxidized by treatment with 1 mM sodium meta-periodate (Pierce, 6 Rockford, IL) in PBS pH 7.6 for 15 min at 4°C followed by 2.5 mg/ml biocytin hydrazide 7 (Biotium, Hayward, CA) in PBS pH 6.5 for 1 hour at 4°C. Cells were then collected and 8 homogenized in 10mM Tris pH 7.5, 0.5 mM MgCl2 and the resulting cell lysate was centrifuged 9 at 800 x g for 10 min at 4°C. The supernatant was centrifuged at 210,000 x g for 16 hours at 4°C 10 to collect the membranes. The supernatant was removed and the membrane protein pellet was 11 washed with 25 mM Na2CO3 to disrupt peripheral protein interactions. To the resulting 12 membrane pellet, 300µl 100 mM NH4HCO3, 5 mM Tris(2-carboxyethyl) phosphine (Sigma, St. 13 Louis, MO), and 0.1% (v/v) Rapigest (Waters, Milford, MA) were added and placed on a 14 Thermomixer (750 rpm) to continuously vortex. Proteins were allowed to reduce for 10 min at 15 25°C followed by alklylation with 10 mM iodoacetamide for 30 min.
    [Show full text]