The Response of Escherichia Coli to the Alkylating Agents Chloroacetaldehyde and Styrene Oxide T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Purification, Crystallization and Preliminary X-Ray Diffraction Analysis of Exodeoxyribonuclease III from Crenarchaeon Sulfolobus Tokodaii Strain 7
Crystal Structure Theory and Applications, 2013, 2, 155-158 Published Online December 2013 (http://www.scirp.org/journal/csta) http://dx.doi.org/10.4236/csta.2013.24021 Purification, Crystallization and Preliminary X-Ray Diffraction Analysis of Exodeoxyribonuclease III from Crenarchaeon Sulfolobus tokodaii Strain 7 Shuichi Miyamoto1*, Chieko Naoe2, Masaru Tsunoda3, Kazuo T. Nakamura2 1Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan 2School of Pharmacy, Showa University, Tokyo, Japan 3Faculty of Pharmacy, Iwaki Meisei University, Iwaki, Japan Email: *[email protected] Received October 13, 2013; revised November 12, 2013; accepted December 6, 2013 Copyright © 2013 Shuichi Miyamoto et al. This is an open access article distributed under the Creative Commons Attribution Li- cense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Exodeoxyribonuclease III (EXOIII) acts as a 3’→5’ exonuclease and is homologous to purinic/apyrimidinic (AP) en- donuclease (APE), which plays an important role in the base excision repair pathway. To structurally investigate the reaction and substrate recognition mechanisms of EXOIII, a crystallographic study of EXOIII from Sulfolobus tokodaii strain 7 was carried out. The purified enzyme was crystallized by using the hanging-drop vapor-diffusion method. The crystals belonged to space group C2, with unit-cell parameters a = 154.2, b = 47.7, c = 92.4 Å, β = 125.8˚ and diffracted to 1.5 Å resolution. Keywords: Crenarchaeon; Crystallization; Exodeoxyribonuclease; Sulfolobus tokodaii; X-Ray Diffraction 1. Introduction formational change upon protein binding that permits complex formation and activation of attacking water, A variety of mechanisms exist to repair damaged DNA leading to incision, in the presence of Mg2+ [10,11]. -
1Ako Lichtarge Lab 2006
Pages 1–6 1ako Evolutionary trace report by report maker November 5, 2010 4.3.3 DSSP 5 4.3.4 HSSP 5 4.3.5 LaTex 5 4.3.6 Muscle 5 4.3.7 Pymol 5 4.4 Note about ET Viewer 6 4.5 Citing this work 6 4.6 About report maker 6 4.7 Attachments 6 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 1ako): Title: Exonuclease iii from escherichia coli Compound: Mol id: 1; molecule: exonuclease iii; chain: a; ec: 3.1.11.2; engineered: yes Organism, scientific name: Escherichia Coli; 1ako contains a single unique chain 1akoA (268 residues long). 2 CHAIN 1AKOA 2.1 P09030 overview CONTENTS From SwissProt, id P09030, 100% identical to 1akoA: Description: Exodeoxyribonuclease III (EC 3.1.11.2) (Exonuclease 1 Introduction 1 III) (EXO III) (AP endonuclease VI). 2 Chain 1akoA 1 Organism, scientific name: Escherichia coli. 2.1 P09030 overview 1 Taxonomy: Bacteria; Proteobacteria; Gammaproteobacteria; 2.2 Multiple sequence alignment for 1akoA 1 Enterobacteriales; Enterobacteriaceae; Escherichia. 2.3 Residue ranking in 1akoA 1 Function: Major apurinic-apyrimidinic endonuclease of E.coli. It 2.4 Top ranking residues in 1akoA and their position on removes the damaged DNA at cytosines and guanines by cleaving the structure 2 on the 3’ side of the AP site by a beta-elimination reaction. It exhi- 2.4.1 Clustering of residues at 25% coverage. 2 bits 3’-5’-exonuclease, 3’-phosphomonoesterase, 3’-repair diesterase 2.4.2 Possible novel functional surfaces at 25% and ribonuclease H activities. -
A Review and Appraisal of the DNA Damage Theory of Ageing
Mutation Research 728 (2011) 12–22 Contents lists available at ScienceDirect Mutation Research/Reviews in Mutation Research jo urnal homepage: www.elsevier.com/locate/reviewsmr Co mmunity address: www.elsevier.com/locate/mutres Review A review and appraisal of the DNA damage theory of ageing a,b a, Alex A. Freitas , Joa˜o Pedro de Magalha˜es * a Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK b School of Computing and Centre for BioMedical Informatics, University of Kent, Canterbury, CT2 7NF, UK A R T I C L E I N F O A B S T R A C T Article history: Given the central role of DNA in life, and how ageing can be seen as the gradual and irreversible Received 10 February 2011 breakdown of living systems, the idea that damage to the DNA is the crucial cause of ageing remains a Received in revised form 2 May 2011 powerful one. DNA damage and mutations of different types clearly accumulate with age in mammalian Accepted 3 May 2011 tissues. Human progeroid syndromes resulting in what appears to be accelerated ageing have been Available online 10 May 2011 linked to defects in DNA repair or processing, suggesting that elevated levels of DNA damage can accelerate physiological decline and the development of age-related diseases not limited to cancer. Keywords: Higher DNA damage may trigger cellular signalling pathways, such as apoptosis, that result in a faster Ageing depletion of stem cells, which in turn contributes to accelerated ageing. -
Letters to Nature
letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997). -
The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. -
Environmental Adaptability and Stress Tolerance of Laribacter
Lau et al. Cell & Bioscience 2011, 1:22 http://www.cellandbioscience.com/content/1/1/22 Cell & Bioscience RESEARCH Open Access Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis Susanna KP Lau1,2,3,4*†, Rachel YY Fan4*, Tom CC Ho4, Gilman KM Wong4, Alan KL Tsang4, Jade LL Teng4, Wenyang Chen5, Rory M Watt5, Shirly OT Curreem4, Herman Tse1,2,3,4, Kwok-Yung Yuen1,2,3,4 and Patrick CY Woo1,2,3,4† Abstract Background: Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler’s diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches. Results: L. hongkongensis possessed genes for DNA repair and recombination, basal transcription, alternative s-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two arc gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na+:H+ antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. -
Sequence Homology and Expression Profile of Genes Associated with DNA Repair Pathways in Mycobacterium Leprae
[Downloaded free from http://www.ijmyco.org on Wednesday, February 6, 2019, IP: 131.111.5.19] Original Article Sequence Homology and Expression Profile of Genes Associated with DNA Repair Pathways in Mycobacterium leprae Mukul Sharma1, Sundeep Chaitanya Vedithi2,3, Madhusmita Das3, Anindya Roy1, Mannam Ebenezer3 1Department of Biotechnology, Indian Institute of Technology, Hyderabad, Telangana, 2Schieffelin Institute of Health Research and Leprosy Center, Vellore, Tamil Nadu, India, 3Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK Abstract Background: Survival of Mycobacterium leprae, the causative bacteria for leprosy, in the human host is dependent to an extent on the ways in which its genome integrity is retained. DNA repair mechanisms protect bacterial DNA from damage induced by various stress factors. The current study is aimed at understanding the sequence and functional annotation of DNA repair genes in M. leprae. Methods: The genome of M. leprae was annotated using sequence alignment tools to identify DNA repair genes that have homologs in Mycobacterium tuberculosis and Escherichia coli. A set of 96 genes known to be involved in DNA repair mechanisms in E. coli and Mycobacteriaceae were chosen as a reference. Among these, 61 were identified in M. leprae based on sequence similarity and domain architecture. The 61 were classified into 36 characterized gene products (59%), 11 hypothetical proteins (18%), and 14 pseudogenes (23%). All these genes have homologs in M. tuberculosis and 49 (80.32%) in E. coli. A set of 12 genes which are absent in E. coli were present in M. leprae and in Mycobacteriaceae. These 61 genes were further investigated for their expression profiles in the whole transcriptome microarray data of M. -
Enforces in Vivo DNA Cloning of Escherichia Coli to Create
bioRxiv preprint doi: https://doi.org/10.1101/454074; this version posted October 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Exonuclease III (XthA) enforces in vivo DNA cloning of Escherichia coli to create 2 cohesive ends 3 4 Shingo Nozaki1 and Hironori Niki1, 2 5 6 1Microbial Physiology Laboratory, Department of Gene Function and Phenomics, 7 National Institute of Genetics, 1111, Yata, Mishima, Shizuoka, Japan 411-8540 8 9 2Department of Genetics, the Graduate University for Advanced Studies (SOKENDAI), 10 1111, Yata, Mishima, Shizuoka, Japan 411-8540 11 12 Corresponding author: Hironori Niki 13 [email protected] 14 055-981-6870 15 Microbial Physiology Laboratory, Department of Gene Function and Phenomics, 16 National Institute of Genetics, 1111, Yata, Mishima, Shizuoka, Japan 411-854 17 1 bioRxiv preprint doi: https://doi.org/10.1101/454074; this version posted October 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 18 Abstract 19 Escherichia coli has an ability to assemble DNA fragments with homologous 20 overlapping sequences of 15-40 bp at each end. Several modified protocols have already 21 been reported to improve this simple and useful DNA-cloning technology. However, the 22 molecular mechanism by which E. coli accomplishes such cloning is still unknown. In 23 this study, we provide evidence that the in vivo cloning of E. coli is independent of both 24 RecA and RecET recombinase, but is dependent on XthA, a 3’ to 5’ exonuclease. -
Evolution and Diversity of Clonal Bacteria: the Paradigm of Mycobacterium Tuberculosis
Evolution and diversity of clonal bacteria: the paradigm of Mycobacterium tuberculosis. Tiago dos Vultos, Olga Mestre, Jean Rauzier, Marcin Golec, Nalin Rastogi, Voahangy Rasolofo, Tone Tonjum, Christophe Sola, Ivan Matic, Brigitte Gicquel To cite this version: Tiago dos Vultos, Olga Mestre, Jean Rauzier, Marcin Golec, Nalin Rastogi, et al.. Evolution and diversity of clonal bacteria: the paradigm of Mycobacterium tuberculosis.. PLoS ONE, Public Library of Science, 2008, 3 (2), pp.e1538. 10.1371/journal.pone.0001538. pasteur-00364652 HAL Id: pasteur-00364652 https://hal-pasteur.archives-ouvertes.fr/pasteur-00364652 Submitted on 26 Feb 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Evolution and Diversity of Clonal Bacteria: The Paradigm of Mycobacterium tuberculosis Tiago Dos Vultos1, Olga Mestre1, Jean Rauzier1, Marcin Golec1, Nalin Rastogi2, Voahangy Rasolofo3, Tone Tonjum4,5, Christophe Sola1, Ivan Matic6, Brigitte Gicquel1* 1 Unite´ de Ge´ne´tique mycobacte´rienne, Institut Pasteur, Paris, France, 2 Unite´ de la Tuberculose et des Mycobacte´ries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, 3 Unite´ de la Tuberculose et des Mycobacte´ries, Institut Pasteur de Madagascar, Antananarivo, Madagascar, 4 Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway, 5 Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet, Oslo, Norway, 6 Institut National de la Sante´ et de la Recherche Me´dicale U571, Faculte´ de Me´dicine, Universite´ Paris V, Paris, France Background. -
Kidney V-Atpase-Rich Cell Proteome Database
A comprehensive list of the proteins that are expressed in V-ATPase-rich cells harvested from the kidneys based on the isolation by enzymatic digestion and fluorescence-activated cell sorting (FACS) from transgenic B1-EGFP mice, which express EGFP under the control of the promoter of the V-ATPase-B1 subunit. In these mice, type A and B intercalated cells and connecting segment principal cells of the kidney express EGFP. The protein identification was performed by LC-MS/MS using an LTQ tandem mass spectrometer (Thermo Fisher Scientific). For questions or comments please contact Sylvie Breton ([email protected]) or Mark A. Knepper ([email protected]). -
A Second DNA Methyltransferase Repair Enzyme in Escherichia Coli (Ada-Alb Operon Deletion/O'-Methylguanine/04-Methylthyne/Suicide Enzyme) G
Proc. Nati. Acad. Sci. USA Vol. 85, pp. 3039-3043, May 1988 Genetics A second DNA methyltransferase repair enzyme in Escherichia coli (ada-alB operon deletion/O'-methylguanine/04-methylthyne/suicide enzyme) G. WILLIAM REBECK, SUSAN COONS, PATRICK CARROLL, AND LEONA SAMSON* Charles A. Dana Laboratory of Toxicology, Harvard School of Public Health, Boston, MA 02115 Communicated by Elkan R. Blout, December 28, 1987 (receivedfor review November 9, 1987) ABSTRACT The Escherichia coli ada-akB operon en- ada gene encodes a 39-kDa DNA methyltransferase with two codes a 39-kDa protein (Ada) that is a DNA-repair methyl- active sites, one that removes methyl groups from O6- transferase and a 27-kDa protein (AlkB) of unknown function. methylguanine (06-MeGua) or 04-methylthymine (04- By DNA blot hybridization analysis we show that the alkyla- MeThy) and one that removes methyl groups from methyl tion-sensitive E. cofi mutant BS23 [Sedgwick, B. & Lindahl, T. phosphotriester lesions (7, 12-15). The Ada protein is one of (1982) J. Mol. Biol. 154, 169-1751 is a deletion mutant lacking several gene products to be induced as E. coli adapt to the entire ada-aik operon. Despite the absence ofthe ada gene become alkylation-resistant upon exposure to low doses of and its product, the cells contain detectable levels of a DNA- alkylating agents (3, 12, 13). The repair of methyl phospho- repair methyltransferase activity. We conclude that the meth- triester lesions converts the Ada protein into a positive yltransferase in BS23 cells is the product of a gene other than regulator ofthe ada gene, and this adaptive response (16) and ada. -
SUPPLEMENTARY INFORMATION Sequence Analysis of Hypothetical Proteins from Helicobacter Pylori 26695 to Identify Potential Virule
SUPPLEMENTARY INFORMATION Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors Ahmad Abu Turab Naqvi1§, Farah Anjum2§, Faez Iqbal Khan3, Asimul Islam1, Faizan Ahmad1, Md. Imtaiyaz Hassan1* 1Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India, 2Female College of Applied Medical Science, Taif University, Al-Taif 21974, Kingdom of Saudi Arabia, 3School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, China http://www.genominfo.org/src/sm/gni-14-125-s001.pdf. Supplementary Table 4. List of annotated function of 340 hypothetical proteins (HPs) from Helicobacter pylori using BLASTp, STRING, SMART, InterProScan and Motif Motif found Predicted functional partner No. UniProt ID Major BLAST hit SMART (STRING) InterProScan Motif 1 O24859 Valyl-tRNA synthetase DNA primase No result No result Protein similar to CwfJ C-terminus 1 2 O24860 TrbC/VIRB2 family VirB4 homolog TrbC/VIRB2 family Conjugal transfer TrbC/VIRB2 family protein TrbC/type IV secretion VirB2 (pfam) 3 O24861 ComB3 competence VirB4 homolog Transmembrane region Membrane-bound protein Photosystem I psaA/psaB protein protein Predicted membrane protein 4 O24863 No result Lipoprotein signal peptidase No result Prokaryotic membrane Prokaryotic membrane lipoprotein lipid lipoprotein lipid attachment site profile attachment site profile 5 O24869 No result No result No result No result No result 6 O24871 No result Isocitrate dehydrogenase