Ligand Intercellular Adhesion Molecule 1 Has a Necessary Role in Activation of Integrin Lymphocyte Function-Associated Molecule

Total Page:16

File Type:pdf, Size:1020Kb

Ligand Intercellular Adhesion Molecule 1 Has a Necessary Role in Activation of Integrin Lymphocyte Function-Associated Molecule Proc. Natl. Acad. Sci. USA Vol. 90, pp. 5838-5842, June 1993 Immunology Ligand intercellular adhesion molecule 1 has a necessary role in activation of integrin lymphocyte function-associated molecule 1 (adhesion/activation epitope/induced fit) CARLOS CABANAS AND NANCY HOGG* Imperial Cancer Research Fund, Lincoln's Inn Fields, London WC2A 3PX, United Kingdom Communicated by Walter F. Bodmer, March 16, 1993 (receivedfor review December 10, 1992) ABSTRACT The signaling that causes the leukocyte inte- MATERIALS AND METHODS grin lymphocyte function-associated molecule (LFA-1) to bind firmly to its ligand intercellular adhesion molecule 1 (ICAM-1) mAbs and ICAM-1. Production, isolation, and character- is transduced indirectly through other T-cell receptors and is ization of mAb 24 has been described (6). Other mAbs used termed inside-out signaling. We show here that the high- were mAb 38 (6) and MHM24 (9), both recognizing the LFA-1 affinity state of LFA-1 is characterized by expression of the a subunit (CDiia); RRi/1, recognizing ICAM-1 (CD54) (10); LFA-1 epitope detected by monoclonal antibody 24. This CD3 mAb UCHT1 (11); and control mAbs 52U (IgGl) and 4U epitope is expressed not in response to the initial agonist- (IgG2a) (unpublished data). mAbs 24, 38, RRi/1, 52U, and mediated signal but when LFA-1 binds to ICAM-1, indicating 4U were used as purified immunoglobulin and the other that ligand binding induces an alteration in LFA-1. As would mAbs were used as tissue culture supernatant. Fab fragments be predicted, the monoclonal antibody 24 epitope is confined to of mAb 24 were prepared by pepsin digestion (1%; wt/wt) of the LFA-1, which is located at the site ofcontact between T cells intact IgGl in order to generate F(ab')2 fragments, which and ICAM-1-expressing transfectants. When a fixation proto- were subsequently reduced with 0.01 M cysteine for 1 h at col for "freezing" receptors is used, only T cells that are fixed room temperature and blocked for a further hour with 0.03 M after prior exposure to ICAM-1 bind frmly to ICAM-1 a iodoacetamide (8). Any intact IgG and F(ab')2 fragments second time. This suggests that, in addition to the inside-out were separated from Fab 24 by extensive adsorption with signaling, a previously unrecognized requirement for full ac- protein A-coupled Sepharose followed by fractionation using tivation ofthe leukocyte integrin LFA-1 is the initial interaction gel-filtration chromatography. Analysis of 10 ,ug ofFab 24 by with its ligand ICAM-1. Thus, activation of LFA-1 is in part SDS/PAGE showed it to be free of any such contaminants achieved by an induced fit imposed from without by interaction (results not shown). Direct fluorescein isothiocyanate (FITC) with ligand. conjugates of mAb 24 were prepared as described and were used at 10 p,g/ml (8, 12). Recombinant ICAM-1-Fc protein consisted of the first The integrin lymphocyte function-associated molecule 1 three domains of ICAM-1 and the hinge, CH2, and CH3 (LFA-1) and immunoglobulin-like intercellular adhesion mol- domains ofIgGl (Fc) (13). The expression plasmid containing ecule 1 (ICAM-1) form a receptor/ligand pair of adhesion this construct was a gift from A. Craig and A. Berendt and molecules required for many leukocyte functions (1, 2). was used to produce ICAM-1-Fc protein by transient expres- Regulation of LFA-1/ICAM-1 adhesion resides with LFA-1, sion in COS-1 cells and protein A chromatography. The which, under normal circumstances, binds only weakly to ICAM-1-CHO transfectant was a gift from J. Trowsdale and ICAM-1 (3). On T cells, the affinity ofLFA-1 for ICAM-1 can D. Sansom and was maintained in selection medium contain- be increased transiently by cross-linking other membrane ing geneticin (0.5 mg/ml). receptors such as CD3 (XL-CD3) associated with the T-cell T Cells. Peripheral blood mononuclear cells (PBMCs) were receptor for longer periods oftime by treatment with phorbol prepared from freshly drawn heparinized blood by centrifu- esters such as phorbol dibutyrate (PdBu) (3, 4) or by incu- gation over Ficoll/Hypaque (Pharmacia). As previously re- bating T cells with the divalent cations required by LFA-1 for ported, activated T cells were function (5). We have described an epitope recognized by expanded from unstimulated monoclonal antibody (mAb) 24 that is present on the CD11 a PBMCs by culture in RPMI 1640 medium containing 10% subunit and is expressed in a manner that correlates with fetal calf serum (FCS) plus treatment with phytohemagglu- Mg2+ (and Mn2+) binding (5-7). This epitope has been tinin (10 pg/ml) for 48 h (5, 8). Cells were then washed and thought to be a "reporter" of the activated state of LFA-1 in cultured in 10% FCS plus recombinant interleukin 2 (20 that its expression parallels receptor activity (5-8). A role for ng/ml) (Cetus). the mAb 24 epitope in LFA-1 activation was further sug- T-Cell Binding Assay. Standard T-cell assay. The LFA-1- gested by the ability of mAb 24 to inhibit some LFA-1 dependent adhesion of cultured T cells to immobilized mediated functions, possibly by locking the integrin in acti- ICAM-1-Fc has been described (5, 8). Briefly, 40 ul of vated form and preventing a return to the low binding state ICAM-1-Fc per well in phosphate-buffered saline (PBS) (5 (8). In the present study, we show that in addition to signals ,g/ml) was incubated overnight at 4°C, followed by satura- such as XL-CD3, another necessary step in the induction of tion of any remaining plastic sites with 2% bovine serum fully active LFA-1 is fulfilled by the initial binding of ligand albumin in PBS. T cells (2-5 x 107 cells per ml) were labeled ICAM-1 to LFA-1. This causes exposure of the activation with 200 ,uCi (1 Ci = 37 GBq) of 51Cr for 1 h at 37°C. marker or epitope detected by mAb 24, which is character- Cross-linking of CD3 was accomplished by incubating an istic of LFA-1 when it is able to complex with ICAM-1 in a aliquot of the T cells on ice for 20 min with UCHT1 mAb (1:5 stable manner. Abbreviations: FITC, fluorescein isothiocyanate; ICAM-1, intercel- lular adhesion molecule 1; LIBS, ligand-induced binding site(s); The publication costs ofthis article were defrayed in part by page charge LFA-1, lymphocyte function-associated molecule-i; mAb, mono- payment. This article must therefore be hereby marked "advertisement" clonal antibody; PdBu, phorbol dibutyrate. in accordance with 18 U.S.C. §1734 solely to indicate this fact. *To whom reprint requests should be addressed. 5838 Downloaded by guest on October 6, 2021 Immunology: Cabaiias and Hogg Proc. Natl. Acad. Sci. USA 90 (1993) 5839 dilution of culture supernatant; IgG2a isotype), followed by the latter samples undergoing an additional incubation at 0°C a second incubation period of 20 min on ice with goat with tetramethylrhodamine B isothiocyanate (TRITC)- anti-mouse IgG2a in RPMI 1640 medium (1:100 dilution; conjugated goat anti-mouse IgGl antiserum (1:50 dilution). Nordic, Maidenhead, U.K.). Either the XL-CD3- or PdBu The cells were then fixed with 5% formaldehyde in PBS for (50 nM)-treated or control T cells (2 x 105 cells per well) were 20 min at room temperature. For double-antibody staining, added to the ICAM-1-Fc-precoated wells, centrifuged at 75 x PdBu-treated T cells were incubated with 25 /4 of directly g for 2 min, and incubated at 37°C for the periods of time conjugated FITC-mAb 24 (IgGl) at 10 ug/ml in RPMI 1640 indicated. After washing four times with warm RPMI 1640 medium followed by a second incubation with the anti-CD11a medium to remove unbound T cells, the radioactivity of the mAb 38 (IgG2a) at 10 ,ug/ml and a final incubation with bound T cells was assayed with a Betaplate counter (LKB). TRITC-conjugated goat anti-mouse IgG2a antiserum (1:50 Fixed T-cell assay. Briefly, [3H]thymidine-labeled T cells dilution in RPMI 1640 medium). Incubations with various were incubated at 2.5 x 105 cells per well in flexiwell plates control mAbs showed the observed staining patterns to be for 20 min at 37°C in 40 nM PdBu/RPMI 1640 medium in specific. either the presence or absence of anti-ICAM-1 mAb RR1/1 at 40 pg/ml. After two washes, cells were fixed with the indicated percentages of freshly prepared paraformaldehyde RESULTS in Hepes buffer for 10 min at 37°C and the fixation reaction Expression of mAb 24 Epitope Correlates with Activation of was terminated with 0.1% glycine for 10 min at room tem- LFA-1. Although previous experiments suggested that the perature. Because the T cells were now fixed, Mg2+/EGTA presence of the mAb 24 epitope paralleled LFA-1 activity, its was used as a means of activating receptors from outside the expression had never been assessed in a system that mim- cell. After three washes, the fixed T cells were transferred icked physiological T-cell activation. Therefore, we triggered into ICAM-1-Fc-containing wells precoated at 60 pg/ml and cultured T cells in several ways and tested the activation incubated a second time in Hepes buffer containing 1 mM MgCl2 and 1 mM EGTA for 30 min at 37°C. Finally, the T cells status of LFA-1 by its ability to bind to ICAM-1 using the were washed three times with warm Hepes buffer and the following two assays.
Recommended publications
  • An Investigation Into the in Vitro and in Vivo Function of Murine MRP-14 (S100A9)
    An Investigation into the In Vitro and In Vivo Function of Murine MRP-14 (S100A9) Josie A. R. Hobbs March 2003 Supervisors Dr. Nancy Hogg (Cancer Research UK) Prof. Peter Beverley (University College London) This thesis is submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy at the University of London ProQuest Number: U643505 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643505 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract MRP-14 and its heterodimeric partner, MRP-8 are highly expressed in neutrophils and monocytes where they constitute 40% and 1% of the total cytosolic protein respectively. They are both low molecular weight proteins that belong to the SI GO family of Ca^^-binding proteins. Using the air pouch model of inflammation it has been demonstrated that recombinant murine MRP-14 (rMRP-14) is a potent chemoattractant for myeloid cells in vivo (May, 1999). While rMRP-14 did not directly cause chemotaxis or activation of myeloid cells in vitro, it caused a rapid elevation in the levels of cytokines in air pouch exudate, suggesting that rMRP-14 causes leukocyte influx via an indirect mechanism.
    [Show full text]
  • Non-Cleavable Talin Rescues Defect in the T-Cell Conjugation of T-Cells
    Immunology Letters 172 (2016) 40–46 Contents lists available at ScienceDirect Immunology Letters j ournal homepage: www.elsevier.com/locate/immlet Non-cleavable talin rescues defect in the T-cell conjugation of T-cells deficient in the immune adaptor SKAP1 a,b a,b a,b,∗ Daina Lim , Yuning Lu , Christopher E. Rudd a Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK b Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK a r a t i b s c t l e i n f o r a c t Article history: While the cytoskeletal protein talin binds to the ␤-chain of LFA-1, the immune cell adaptor SKAP1 (SKAP- Received 13 October 2015 55) binds to the ␣-chain of the same integrin via RapL. Whereas calpain protease cleavage of talin is Received in revised form 2 February 2016 important for LFA-1 activation, it has been unclear whether SKAP1 can alter the function of talin or its Accepted 5 February 2016 associated adaptor RIAM in T-cells. In this paper, we report that Skap1−/− T-cells showed a reduction in Available online 19 February 2016 the translocation of talin and RIAM to the contact interface of T-cells with antigenic beads or dendritic cells (DCs) presenting OVA peptide to OT-1 T-cells. In addition, Skap1−/− T-cells show an altered pattern Keywords: of talin cleavage, while the expression of a cleavage resistant form of talin (L432G) restored the impaired T-cells − − Talin adhesion of OT1 transgenic Skap1 / T-cells with DCs.
    [Show full text]
  • 'T' Domain of LFA-1 in Selective Binding to Ligands ICAM-1 and ICAM-3 R
    Involvement of the 'T' Domain of LFA-1 in Selective Binding to Ligands ICAM-1 and ICAM-3 R. Clive Landis,* Alison McDowall,* Claire L. L. Holness,** Amanda J. Littler,* David L. Simmons,* and Nancy Hogg* * Leukocyte Adhesion Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom; and ~Cell Adhesion Laboratory, Imperial Cancer Research Fund, Institute for Molecular Medicine, Oxford OX3 9DU, United Kingdom Abstract. To analyze the binding requirements of ent on ICAM-3 but not ICAM-1. The epitopes of LFA-1 for its two most homologous ligands, ICAM-1 mAbs YTH81.5 and 122.2A5 were shown to map to and ICAM-3, we compared the effects of various LFA-1 the I domain of the LFA-1 o~ subunit. A third I domain activation regimes and a panel of anti-LFA-1 mAbs mAb, MEM-83, has been previously reported to uni- in T cell binding assays to ICAM-1 or ICAM-3 coated quely activate LFA-1 to bind ICAM-1 (Landis, R. C., on plastic. These studies demonstrated that T cell R. I. Bennett, and N. Hogg. 1993. J. Cell Biol. binding to ICAM-3 was inducible both from the ex- 120:1519-1527). We now show that mAb MEM-83 is terior of the cell by Mn 2+ and from the interior by an not able to stimulate binding of T cells to ICAM-3 agonist of the "inside-out" signaling pathway. T cells over a wide concentration range. Failure to induce bound both ICAM ligands with comparable avidity. A ICAM-3 binding by mAb MEM-83 was not due to a screen of 29 anti-LFA-1 mAbs led to the identification blockade of the ICAM-3 binding site on LFA-1.
    [Show full text]
  • Neutrophils Integrin Mac-1 on 2Β Activator of the the Human S100 Protein MRP-14 Is a Novel
    The Human S100 Protein MRP-14 Is a Novel Activator of the β2 Integrin Mac-1 on Neutrophils This information is current as Rebecca A. Newton and Nancy Hogg of October 1, 2021. J Immunol 1998; 160:1427-1435; ; http://www.jimmunol.org/content/160/3/1427 References This article cites 44 articles, 20 of which you can access for free at: Downloaded from http://www.jimmunol.org/content/160/3/1427.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on October 1, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Human S100 Protein MRP-14 Is a Novel Activator of the b 1 2 Integrin Mac-1 on Neutrophils Rebecca A. Newton and Nancy Hogg2 The 14-kDa myeloid-related protein (MRP-14) and its heterodimeric partner, MRP-8, are members of the S100 family of calcium- binding proteins (S100A9 and S100A8, respectively).
    [Show full text]
  • Open Space’ Meeting Called on 12 November 2015
    What can Fellows do to support women in the biomedical workforce? A report of an ‘open space’ meeting called on 12 November 2015 1 Introduction On 12 November 2015 the Academy of Medical Sciences held a meeting for women Fellows to come together to discuss the question ‘What can Fellows do to support women in the biomedical workforce?’. Over 60 women Fellows registered to attend the event (see Annex 1 for names) The event was held using an open space format, which allows groups to self-organise and collaborate around a question of shared concern. The day began with an opening circle at which participants called sessions on the topics they wanted to discuss. This report contains reports of these sessions written by the Fellow who called them. Reports of all sessions were not received. It also includes a transcript of the closing session where participants summarised their thoughts about the day and ideas for next steps. Sessions called during the opening circle: • Women’s Attitudes • Sponsorship (vs Mentoring) • Lectures by women for women • How not to be patronising • The token woman • Fellows careers are not over • Recruitment to senior positions • Ambition limitation by social pressure • Networking - the pub? • Work / life balance • Being small • “Calm Down Dear!” - dealing with sexist comments • Deciding whether and when to have children • Invisibility • How do we get more women Fellows? • Changing the culture • Pink princess • Supporting transitions • Do we involve men? How? • Does language matter? • No more 1 in 4 • Science communication at a young age • Quotas? 30% • What when women numerically dominate? • What is special about women in science? • Style 2 Session reports Women’s attitudes 1.
    [Show full text]
  • In Situ Induction of Dendritic Cell–Based T Cell Tolerance in Humanized Mice and Nonhuman Primates
    Published October 24, 2011 Article In situ induction of dendritic cell–based T cell tolerance in humanized mice and nonhuman primates Kyeong Cheon Jung,1,2 Chung-Gyu Park,3,4,8 Yoon Kyung Jeon,1 Hyo Jin Park,1 Young Larn Ban,2 Hye Sook Min,1 Eun Ji Kim,2 Ju Hyun Kim,1 Byung Hyun Kang,2 Seung Pyo Park,7 Youngmee Bae,5 Il-Hee Yoon,3,4,8 Yong-Hee Kim,3,4,8 Jae-Il Lee,8 Jung-Sik Kim,3,4,8 Jun-Seop Shin,3,4,8 Jaeseok Yang,6,9 Sung Joo Kim,10,11 Emily Rostlund,12 William A. Muller,12 and Seong Hoe Park1,2 1Department of Pathology, 2Graduate School of Immunology, 3Department of Microbiology and Immunology, 4Cancer Downloaded from Research Institute, 5Department of Parasitology and Tropical Medicine, and 6Transplantation Research Institute, College of Medicine; and 7National Creative Research Initiative Center for Oxide Nanocrystalline Materials, School of Chemical and Biological Engineering, College of Engineering; Seoul National University, Seoul 151-742, South Korea 8Xenotransplantation Research Center and 9Transplantation Center, Seoul National University Hospital, Seoul 110-744, South Korea 10Department of Surgery and 11Department of Molecular Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea 12Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 jem.rupress.org Induction of antigen-specific T cell tolerance would aid treatment of diverse immunological disorders and help prevent allograft rejection and graft versus host disease. In this study, we establish a method of inducing antigen-specific T cell tolerance in situ in diabetic humanized mice and Rhesus monkeys receiving porcine islet xenografts.
    [Show full text]
  • Defective Chemoattractant-Induced Calcium Signalling in S100A9 Null Neutrophils
    Cell Calcium 41 (2007) 107–121 Defective chemoattractant-induced calcium signalling in S100A9 null neutrophils E. McNeill a, S.J. Conway b, H.L. Roderick c, M.D. Bootman c, N. Hogg a,∗ a Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute (CRUK LRI), 44 Lincoln’s Inn Fields, London WC2A 3PX, UK b Department of Chemistry, School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK c Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK Received 14 March 2006; received in revised form 14 May 2006; accepted 18 May 2006 Available online 30 June 2006 Abstract The S100 family member S100A9 and its heterodimeric partner, S100A8, are cytosolic Ca2+ binding proteins abundantly expressed in neutrophils. To understand the role of this EF-hand-containing complex in Ca2+ signalling, neutrophils from S100A9 null mice were investigated. There was no role for the complex in buffering acute cytosolic Ca2+ elevations. However, Ca2+ responses to inflammatory agents such as chemokines MIP-2 and KC and other agonists are altered. For S100A9 null neutrophils, signalling at the level of G proteins is normal, 2+ as is release of Ca from the IP3 receptor-gated intracellular stores. However MIP-2 and FMLP signalling in S100A9 null neutrophils was less susceptible than wildtype to PLC␤ inhibition, revealing dis-regulation of the signalling pathway at this level. Downstream of PLC␤, there was reduced intracellular Ca2+ release induced by sub-maximal levels of chemokines. Conversely the response to FMLP was uncompromised, demonstrating different regulation compared to MIP-2 stimulation. Study of the activity of PLC product DAG revealed that chemokine-induced signalling was susceptible to inhibition by elevated DAG with S100A9 null cells showing enhanced inhibition by DAG.
    [Show full text]
  • Infection Pneumoniae Streptococcus Recruitment to Lungs During
    The Integrins Mac-1 and α4β1 Perform Crucial Roles in Neutrophil and T Cell Recruitment to Lungs during Streptococcus pneumoniae Infection This information is current as of September 23, 2021. Aras Kadioglu, Katia De Filippo, Mathieu Bangert, Vitor E. Fernandes, Luke Richards, Kristian Jones, Peter W. Andrew and Nancy Hogg J Immunol published online 1 April 2011 http://www.jimmunol.org/content/early/2011/04/01/jimmun Downloaded from ol.1001533 Supplementary http://www.jimmunol.org/content/suppl/2011/04/01/jimmunol.100153 http://www.jimmunol.org/ Material 3.DC1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 23, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published April 1, 2011, doi:10.4049/jimmunol.1001533 The Journal of Immunology The Integrins Mac-1 and a4b1 Perform Crucial Roles in Neutrophil and T Cell Recruitment to Lungs during Streptococcus pneumoniae Infection Aras Kadioglu,* Katia De Filippo,† Mathieu Bangert,* Vitor E.
    [Show full text]
  • Adhesion Remodeling, Resulting in Enhanced T Cell Filamentous Actin
    Signaling Through Integrin LFA-1 Leads to Filamentous Actin Polymerization and Remodeling, Resulting in Enhanced T Cell Adhesion This information is current as of September 28, 2021. Joanna C. Porter, Madelon Bracke, Andrew Smith, Derek Davies and Nancy Hogg J Immunol 2002; 168:6330-6335; ; doi: 10.4049/jimmunol.168.12.6330 http://www.jimmunol.org/content/168/12/6330 Downloaded from References This article cites 30 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/168/12/6330.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Signaling Through Integrin LFA-1 Leads to Filamentous Actin Polymerization and Remodeling, Resulting in Enhanced T Cell Adhesion1 Joanna C. Porter,* Madelon Bracke,* Andrew Smith,* Derek Davies,† and Nancy Hogg2* The integrins can activate signaling pathways, but the final downstream outcome of these pathways is often unclear.
    [Show full text]
  • LFA-1-Induced T Cell Migration on ICAM-1 Involves Regulation of MLCK-Mediated Attachment and ROCK- Dependent Detachment
    Research Article 3123 LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK- dependent detachment Andrew Smith*, Madelon Bracke*,‡, Birgit Leitinger§, Joanna C. Porter¶ and Nancy Hogg** Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, Lincoln’s Inn Fields, London WC2A 3PX, UK *These authors contributed equally to this work ‡Present address: Department Pharmacoepidemiology and Pharmacotherapy, Utrecht Institute for Pharmaceutical Sciences, PO Box 80082, 3508 TB Utrecht, The Netherlands §Present address: Sackler Institute for Muscular Skeletal Research, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK ¶Present address: MRC Laboratory for Molecular Cell Biology, University College London, Gordon Street, London WC1E 6BT, UK **Author for correspondence (e-mail: [email protected]) Accepted 9 April 2003 Journal of Cell Science 116, 3123-3133 © 2003 The Company of Biologists Ltd doi:10.1242/jcs.00606 Summary This study analyzes signaling events initiated through compartmentalized activity of the two kinases is reflected binding of the leukocyte integrin LFA-1 to ICAM-1, which in their localization within the T cell. Myosin light chain leads to T cell attachment, polarization and random kinase is concentrated at the leading edge, overlapping F- migration. These events are critically dependent on actin, whereas ROCK is more widely distributed in the dynamic changes in the acto-myosin cytoskeleton under the trailing edge of the T cell. Thus these two kinases perform regulation of myosin light chain kinase and ROCK (Rho two different functions in the migrating T cell, with myosin kinase).
    [Show full text]
  • Engagement of Adhesion Molecules (Cdt8, Cdtta, CD45, CD44, and CD58) Enhances Human Immunodeficiency Virus Type T Replication In
    54 Engagement of Adhesion Molecules (CDt8, CDtta, CD45, CD44, and CD58) Enhances Human Immunodeficiency Virus Type t Replication in Monocytic Cells through a Tumor Necrosis Factor-Modulated Pathway Robin J. Shattock, Gian Paolo Rizzardi,* Peter Hayes, Divisions ofInfectious Diseases and Oncology, St. George's Hospital and George E. Griffin Medical School, London, United Kingdom Engagement of monocytic cell membrane proteins was shown to enhance human immunodefi­ ciency virus type 1 (HIV-1) replication in monocytic cells. Cross-linking of CD18, CDlla, or CD45 by immobilized antibodies produced up to an ll-fold enhancement of HIV-1 release in the OM10.1 monocytic cell line in a tumor necrosis factor-a (TNF-a)-dependent manner. In addition, adhesion Downloaded from https://academic.oup.com/jid/article/174/1/54/959003 by guest on 29 September 2021 ofOM10.1 cells to immobilized intercellular adhesion molecule-I (ligand for CDl8/CDlla) induced similar TNF-a-dependent enhancement of HIV-l replication. After phenotypic differentiation of OMlO.l cells, engagement of cell membrane proteins CD18, CD1la, CD44, CD45, or CD58 by soluble antibodies enhanced HIV-1 replication in a TNF-a-dependent manner. These data suggest that cross-linkage of monocytic cell membrane proteins during cell-cell interaction and specifically during antigen presentation to CD4 T cells may enhance HIV-1 replication, facilitating infection of adjacent cells. Human immunodeficiency virus type 1 (HIV-l)-infected HIV-1 replication in infected peripheral blood monocytes. We macrophages are a persistent reservoir ofvirus in tissue during have previously demonstrated for monocytes that adhesion per all stages ofHIV-I infection [1,2], and migration of such cells se, a phenotypic change associated with differentiation, to tis­ is likely to facilitate dissemination of HIV -1 throughout the sue culture plastic and endothelial cells enhances HIV -1 tran­ body.
    [Show full text]
  • Immune Regulation Experimental Biology and Medicine Immune Regulation, Edited by Marc Feldmann and N
    Immune Regulation Experimental Biology and Medicine Immune Regulation, edited by Marc Feldmann and N. A. Mitchison, 1985 Human T Cell Clones: A New Approach to Immune Regu­ lation, edited by Marc Feldmann, Jonathan R. Lamb, and James N. Woody, 1985 Growth, Cancer, and the Cell Cycle, edited by Philip Skehan and Susan J. Friedman, 1984 Ir Genes: Past, Present, and Future, edited by Carl W. Pierce, Susan E. Cullen, Judith A. Kapp, Benjamin D. Schwartz, and Donald C. Shreffler, 1983 Methods in Protein Sequence Analysis. edited by Marshall Elzinga, 1982 Inflammatory Diseases and Copper, edited by John R. J. Sorenson, 1982 Membrane Fluidity: Biophysical Techniques and Cellular Regulation, edited by Morris Kates and Amis Kuksis, 1980 IMMUNE REGULATION Edited by Marc Feldmann and N. A. Mitchison Humana Press . Clifton, New Jersey Library of Congress Cataloging in Publication Data Main entry under title: Immune regulation. (Experimental biology and medicine) Based on papers presented at a conference held in 1984 at Cambridge. England. Includes index. I. Immune response-Regulation-Congresses. 1. Feldmann , Marc. II. Mitchison, N. Avrion. III. Series: Experimental biology and medici ne (Clifton, N.J .) [DNLM: I. Cell Differentiation­ congresses. 2. Immunity, Cellular-<:ongresses. 3. L ymphocytes-<:ytology-<:ongresses. 4. Lymphocytes­ immunology-<:ongresses. QW 568 1315 1984] QR186.1437 1985 616.07'9 85-5786 1SBN-\3: 978-1-4612-9390-3 e-1SBN-\3 : 978-1-4612-4996-2 DOl: 10.1007/978-1-4612-4996-2 ©1985 The Humana Press Inc. So/trover reprint of the hardcover I st edition 1985 Crescent Manor PO Box 2148 Cli fton, NJ 07015 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise without written permission from the Publisher.
    [Show full text]