Furosemide in the Treatment of Generalized Anxiety Disorder: Case Report and Review of the Literature
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inhibitory Role for GABA in Autoimmune Inflammation
Inhibitory role for GABA in autoimmune inflammation Roopa Bhata,1, Robert Axtella, Ananya Mitrab, Melissa Mirandaa, Christopher Locka, Richard W. Tsienb, and Lawrence Steinmana aDepartment of Neurology and Neurological Sciences and bDepartment of Molecular and Cellular Physiology, Beckman Center for Molecular Medicine, Stanford University, Stanford, CA 94305 Contributed by Richard W. Tsien, December 31, 2009 (sent for review November 30, 2009) GABA, the principal inhibitory neurotransmitter in the adult brain, serum (13). Because actions of exogenous GABA on inflammation has a parallel inhibitory role in the immune system. We demon- and of endogenous GABA on phasic synaptic inhibition both strate that immune cells synthesize GABA and have the machinery occur at millimolar concentrations (5, 8, 9), we hypothesized that for GABA catabolism. Antigen-presenting cells (APCs) express local mechanisms may also operate in the peripheral immune functional GABA receptors and respond electrophysiologically to system to enhance GABA levels near the inflammatory focus. We GABA. Thus, the immune system harbors all of the necessary first asked whether immune cells have synthetic machinery to constituents for GABA signaling, and GABA itself may function as produce GABA by Western blotting for GAD, the principal syn- a paracrine or autocrine factor. These observations led us to ask thetic enzyme. We found significant amounts of a 65-kDa subtype fl further whether manipulation of the GABA pathway in uences an of GAD (GAD-65) in dendritic cells (DCs) and lower levels in animal model of multiple sclerosis, experimental autoimmune macrophages (Fig. 1A). GAD-65 increased when these cells were encephalomyelitis (EAE). Increasing GABAergic activity amelio- stimulated (Fig. -
Structural Elements Required for Coupling Ion and Substrate Transport in the Neurotransmitter Transporter Homolog Leut
bioRxiv preprint doi: https://doi.org/10.1101/283176; this version posted July 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Classification: Biological Sciences, Biochemistry Title: Structural elements required for coupling ion and substrate transport in the neurotransmitter transporter homolog LeuT. Authors: Yuan-Wei Zhang1,3, Sotiria Tavoulari1,4, Steffen Sinning1, Antoniya A. Aleksandrova2, Lucy R. Forrest2 and Gary Rudnick1 Institutions: 1Department of Pharmacology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066; 2Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35A Convent Drive, Bethesda, MD 20892; 3School of Life Sciences, Guangzhou University, 230 Outer Ring West Rd., Higher Education Mega Center, Guangzhou, China 510006.4Current Address: Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom. Corresponding Author: Gary Rudnick, Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, Tel: (203) 785-4548, Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/283176; this version posted July 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Screening of 109 Neuropeptides on Asics Reveals No Direct Agonists
www.nature.com/scientificreports OPEN Screening of 109 neuropeptides on ASICs reveals no direct agonists and dynorphin A, YFMRFamide and Received: 7 August 2018 Accepted: 14 November 2018 endomorphin-1 as modulators Published: xx xx xxxx Anna Vyvers, Axel Schmidt, Dominik Wiemuth & Stefan Gründer Acid-sensing ion channels (ASICs) belong to the DEG/ENaC gene family. While ASIC1a, ASIC1b and ASIC3 are activated by extracellular protons, ASIC4 and the closely related bile acid-sensitive ion channel (BASIC or ASIC5) are orphan receptors. Neuropeptides are important modulators of ASICs. Moreover, related DEG/ENaCs are directly activated by neuropeptides, rendering neuropeptides interesting ligands of ASICs. Here, we performed an unbiased screen of 109 short neuropeptides (<20 amino acids) on fve homomeric ASICs: ASIC1a, ASIC1b, ASIC3, ASIC4 and BASIC. This screen revealed no direct agonist of any ASIC but three modulators. First, dynorphin A as a modulator of ASIC1a, which increased currents of partially desensitized channels; second, YFMRFamide as a modulator of ASIC1b and ASIC3, which decreased currents of ASIC1b and slowed desensitization of ASIC1b and ASIC3; and, third, endomorphin-1 as a modulator of ASIC3, which also slowed desensitization. With the exception of YFMRFamide, which, however, is not a mammalian neuropeptide, we identifed no new modulator of ASICs. In summary, our screen confrmed some known peptide modulators of ASICs but identifed no new peptide ligands of ASICs, suggesting that most short peptides acting as ligands of ASICs are already known. Acid-sensing ion channels form a small family of proton-gated ion channels that belongs to the degenerin/epi- thelial Na+ channel (DEG/ENaC) gene family1. -
(12) Patent Application Publication (10) Pub. No.: US 2015/0202317 A1 Rau Et Al
US 20150202317A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0202317 A1 Rau et al. (43) Pub. Date: Jul. 23, 2015 (54) DIPEPTDE-BASED PRODRUG LINKERS Publication Classification FOR ALPHATIC AMNE-CONTAINING DRUGS (51) Int. Cl. A647/48 (2006.01) (71) Applicant: Ascendis Pharma A/S, Hellerup (DK) A638/26 (2006.01) A6M5/9 (2006.01) (72) Inventors: Harald Rau, Heidelberg (DE); Torben A 6LX3/553 (2006.01) Le?mann, Neustadt an der Weinstrasse (52) U.S. Cl. (DE) CPC ......... A61K 47/48338 (2013.01); A61 K3I/553 (2013.01); A61 K38/26 (2013.01); A61 K (21) Appl. No.: 14/674,928 47/48215 (2013.01); A61M 5/19 (2013.01) (22) Filed: Mar. 31, 2015 (57) ABSTRACT The present invention relates to a prodrug or a pharmaceuti Related U.S. Application Data cally acceptable salt thereof, comprising a drug linker conju (63) Continuation of application No. 13/574,092, filed on gate D-L, wherein D being a biologically active moiety con Oct. 15, 2012, filed as application No. PCT/EP2011/ taining an aliphatic amine group is conjugated to one or more 050821 on Jan. 21, 2011. polymeric carriers via dipeptide-containing linkers L. Such carrier-linked prodrugs achieve drug releases with therapeu (30) Foreign Application Priority Data tically useful half-lives. The invention also relates to pharma ceutical compositions comprising said prodrugs and their use Jan. 22, 2010 (EP) ................................ 10 151564.1 as medicaments. US 2015/0202317 A1 Jul. 23, 2015 DIPEPTDE-BASED PRODRUG LINKERS 0007 Alternatively, the drugs may be conjugated to a car FOR ALPHATIC AMNE-CONTAINING rier through permanent covalent bonds. -
Amino Acid Transporters As Tetraspanin TM4SF5 Binding Partners Jae Woo Jung1,Jieonkim2,Eunmikim2 and Jung Weon Lee 1,2
Jung et al. Experimental & Molecular Medicine (2020) 52:7–14 https://doi.org/10.1038/s12276-019-0363-7 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Amino acid transporters as tetraspanin TM4SF5 binding partners Jae Woo Jung1,JiEonKim2,EunmiKim2 and Jung Weon Lee 1,2 Abstract Transmembrane 4 L6 family member 5 (TM4SF5) is a tetraspanin that has four transmembrane domains and can be N- glycosylated and palmitoylated. These posttranslational modifications of TM4SF5 enable homophilic or heterophilic binding to diverse membrane proteins and receptors, including growth factor receptors, integrins, and tetraspanins. As a member of the tetraspanin family, TM4SF5 promotes protein-protein complexes for the spatiotemporal regulation of the expression, stability, binding, and signaling activity of its binding partners. Chronic diseases such as liver diseases involve bidirectional communication between extracellular and intracellular spaces, resulting in immune-related metabolic effects during the development of pathological phenotypes. It has recently been shown that, during the development of fibrosis and cancer, TM4SF5 forms protein-protein complexes with amino acid transporters, which can lead to the regulation of cystine uptake from the extracellular space to the cytosol and arginine export from the lysosomal lumen to the cytosol. Furthermore, using proteomic analyses, we found that diverse amino acid transporters were precipitated with TM4SF5, although these binding partners need to be confirmed by other approaches and in functionally relevant studies. This review discusses the scope of the pathological relevance of TM4SF5 and its binding to certain amino acid transporters. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction on the plasma membrane and the mitochondria, lyso- Importing and exporting biological matter in and out of some, and other intracellular organelles. -
Functional Comparisons of Three Glutamate Transporter Subtypes Cloned from Human Motor Cortex
The Journal of Neuroscience, September 1994, 14(g): 5559-5569 Functional Comparisons of Three Glutamate Transporter Subtypes Cloned from Human Motor Cortex Jeffrey L. Arriza, Wendy A. Fairman, Jacques I. Wadiche, Geoffrey H. Murdoch, Michael P. Kavanaugh, and Susan G. Amara The Vellum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland, Oregon 97201 Reuptake plays an important role in regulating synaptic and peripheral tissues(Christensen, 1990) and in the nervous system extracellular concentrations of glutamate. Three glutamate (Kanner and Schuldiner, 1987; Nicholls and Attwell, 1990). transporters expressed in human motor cortex, termed Transport serves a special function in the brain by mediating EAATl , EAATP, and EAAT3 (for excitatory amino acid trans- the reuptake of glutamate releasedat excitatory synapses.Glu- porter), have been characterized by their molecular cloning tamate can be reaccumulated from the synaptic cleft by the and functional expression. Each EAAT subtype mRNA was presynaptic nerve terminal (Eliasof and Werblin, 1993) or by found in all human brain regions analyzed. The most prom- glial uptake of transmitter diffusing from the cleft (Nicholls and inent regional variation in message content was in cerebel- Attwell, 1990; Schwartz and Tachibana, 1990; Barbour et al., lum where EAATl expression predominated. EAATl and 199 1). The activities of neuronal and glial transporters influence EAAT3 mRNAs were also expressed in various non-nervous the temporal and spatial dynamics of the chemical signal in tissues, whereas expression of EAATS was largely restricted other neurotransmitter systems(Hille, 1992; Bruns et al., 1993; to brain. The kinetic parameters and pharmacological char- Isaacsonet al., 1993), but such effects have not yet been dem- acteristics of transport mediated by each EAAT subtype onstrated at glutamatergic synapses(Hestrin et al., 1990; Sar- were determined in transfected mammalian cells by radio- antis et al., 1993). -
Efficacy of Peptide Anxiolytic Selank During Modeling of Withdrawal Syndrome in Rats with Stable Alcoholic Motivation
52 Bulletin of Experimental Biology and Medicine, Vol. 157, No. 1, May, 2014 PHARMACOLOGY AND TOXICOLOGY Effi cacy of Peptide Anxiolytic Selank during Modeling of Withdrawal Syndrome in Rats with Stable Alcoholic Motivation L. G. Kolik, A. V. Nadorova, and M. M. Kozlovskaya Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 1567, No. 1, pp. 61-65, January, 2014 Original article submitted January 31, 2013 We studied the effects of selank on the development of symptoms of acute 48-h alcohol withdrawal in outbred rats drinking 10% ethanol as the only source of fl uid for 24 weeks. In alcohol-preferring animals (mean daily ethanol intake >5.0 g/kg) allowed free choice between 10% ethanol and water, single intraperitoneal injection of selank in a dose of 0.3 mg/kg eliminated anxiety induced by ethanol withdrawal in tests elevated plus maze and so- cial interaction tests and prevented the formation of mechanical allodynia without affecting ethanol consumption. The fi ndings suggest that selank is effective in eliminating of alcohol withdrawal symptoms in rats. Key Words: selank; alcohol withdrawal; anxiety; allodynia; rats Benzodiazepine anxiolytics temporary relieving man- by rapid onset of therapeutic effect and the absence of ifestation of psychopathological symptoms associ- undesirable side effects [4]. Experimental studies have ated with withdrawal syndrome play an important shown that it had a broad spectrum of psychotropic role in the complex medical therapy for alcoholism. activity and restored integrative activity of the CNS However, numerous side effects, such as respiratory impaired by neurotoxic factors of different genesis depression, excitement, potentiation of the narcogene [5]. -
Amino Acid Transporters on the Guard of Cell Genome and Epigenome
cancers Review Amino Acid Transporters on the Guard of Cell Genome and Epigenome U˘gurKahya 1,2 , Ay¸seSedef Köseer 1,2,3,4 and Anna Dubrovska 1,2,3,4,5,* 1 OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; [email protected] (U.K.); [email protected] (A.S.K.) 2 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany 3 National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany 4 Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany 5 German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany * Correspondence: [email protected]; Tel.: +49-351-458-7150 Simple Summary: Amino acid transporters play a multifaceted role in tumor initiation, progression, and therapy resistance. They are critical to cover the high energetic and biosynthetic needs of fast- growing tumors associated with increased proliferation rates and nutrient-poor environments. Many amino acid transporters are highly expressed in tumors compared to the adjacent normal tissues, and their expression correlates with tumor progression, clinical outcome, and treatment resistance. Tumor growth is driven by epigenetic and metabolic reprogramming and is associated with excessive production of reactive oxygen species causing the damage of vital macromolecules, including DNA. This review describes the role of the amino acid transporters in maintaining tumor redox homeostasis, DNA integrity, and epigenetic landscape under stress conditions and discusses them as potential targets for tumor imaging and treatment. -
A Summary of Mechanistic Hypotheses of Gabapentin Pharmacology
Epilepsy Research 29 (1998) 233–249 A summary of mechanistic hypotheses of gabapentin pharmacology Charles P. Taylor a,*, Nicolas S. Gee d, Ti-Zhi Su b, Jeffery D. Kocsis e, Devin F. Welty c, Jason P. Brown d, David J. Dooley a, Philip Boden d, Lakhbir Singh d a Department of Neuroscience Therapeutics, Parke–Da6is Pharmaceutical Research, Di6ision of Warner–Lambert Co., Ann Arbor, MI 48105, USA b Department of Molecular Biology, Parke–Da6is Pharmaceutical Research, Di6ision of Warner–Lambert Co., Ann Arbor, MI 48105, USA c Department of Pharmacokinetics and Drug Metabolism, Parke–Da6is Pharmaceutical Research, Di6ision of Warner–Lambert Co., Ann Arbor, MI 48105, USA d Parke–Da6is Neuroscience Research Centre, Cambridge Uni6ersity For6ie Site, Robinson Way, Cambridge, CB22QB, UK e Neuroscience and Regeneration Research Center A127A, Veterans Affairs Medical Center, Building 34, Room 123, 950 Campbell A6e., West Ha6en, CT 06516, USA Received 28 July 1997; received in revised form 1 October 1997; accepted 8 October 1997 Abstract Although the cellular mechanisms of pharmacological actions of gabapentin (Neurontin®) remain incompletely described, several hypotheses have been proposed. It is possible that different mechanisms account for anticonvulsant, antinociceptive, anxiolytic and neuroprotective activity in animal models. Gabapentin is an amino acid, with a mechanism that differs from those of other anticonvulsant drugs such as phenytoin, carbamazepine or valproate. Radiotracer studies with [14C]gabapentin suggest that gabapentin is rapidly accessible to brain cell cytosol. Several hypotheses of cellular mechanisms have been proposed to explain the pharmacology of gabapentin: 1. Gabapentin crosses several membrane barriers in the body via a specific amino acid transporter (system L) and competes with leucine, isoleucine, valine and phenylalanine for transport. -
Nootropics- Memory Boosters
Harikumar K. et al. / Journal of Pharmaceutical Biology, 6(1), 2016, 14-19. Journal of Pharmaceutical Biology www.jpbjournal.com e-ISSN - 2249-7560 Print ISSN - 2249-7579 NOOTROPICS- MEMORY BOOSTERS K.Hari Kumar*, Mitta Srija, D.K.Sandeep, Ramisetty Davarika, Gunda Sai Mounica Department of Pharmacology, Sri Venkateswara College of Pharmacy, R.V.S.Nagar, Chittoor-517127, Andhra Pradesh, India. ABSTRACT Nootropics also called as smart drug, memory enhancers, neuron enhancers, cognitive enhancers and intelligent enhancers are drugs, supplements, neutraceuticals and functional foods that provide one or more aspects of mental function. Specific effect can include improvement to working memory motivation or attention. Nootropics drugs are able to promote, enhance and protect cognitive functions. As cognition is the typically human higher activity of brain, nootropic concept looked quite appealing for scores of people dreaming to enjoy better and longer lasting mental activity and for drug maker keen to produce such enviable products. There are large number of drugs which can be used as nootropic agents and help to enhance memory of people. Nootropics offer lot of benefits for cognitive aptitude and brain health. Nootropics used for the treatment of Alzheimer’s disease, Parkinson’s disease and Huntington’s disease, dementia and cognitive symptoms of schizophrenia. Keywords: Nootropics, Huntington’s disease, Dementia, Alzheimer’s disease. INTRODUCTION It is derived from Greek words “NOOS –Mind” But non-ADHD medications and supplements are more “Tropein – Turn/Bend”. They are also called as memory frequently used for performance enhancement. Many enhancers, Smart nutrients, Cerebroactive drugs and individuals use these drugs for performance enhancement cognition enhancers. -
Identification of Γ-Aminobutyric Acid Transporter (GAT1) on the Rat Sperm
Cell Research (2000),10, 51-58 Identification of γ-aminobutyric acid transporter (GAT1) on the rat sperm HU JING HUA, XIAO BING HE, YUAN CHANG YAN* Shanghai Institute of Cell Biology, Chinese Academy of Sciences, Shanghai 200031 ABSTRACT Some recent studies indicated that GABAergic system is involved in mammalian sperm acrosome reaction (AR), but direct evidence pertaining to the expression of gat1 in mam- malian sperm is not yet demonstrated. In this study, we evalu- ated the presence of 67kDa GAT1 protein and mRNA in rat testis by Western blotting and reverse transcription-polymerase chain reaction. Meanwhile, immunohistochemical and immu- nofluorescent analyses also identified GAT1 protein on the elon- gated spermatid and sperm. These results indicated that rat testis is a novel site of gat1 expression. Further studies should be taken to explore the role of GAT1 protein on sperm acrosome reaction. Key words: Gat1, rat testis, sperm, expression. INTRODUCTION g-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the vertebrate central nervous system (CNS)[1],[2]. Outside the CNS, many peripheral tis- sues have also been found to have GABAergic system[3]. Moreover, the rat oviduct has been found to be more than twice as rich in GABA content than the brain[4]. The acrosome reaction (AR), a fundamental process in mammalian fertilization, can be viewed as a unique form of exocytosis. The AR releases acrosomal contents (including hydrolytic enzymes), which ensure sperm penetration of the egg zona pellucida, an acel- lular glycoprotein envelope overlying the egg plasma membrane, and fusion of the egg and sperm plasma membrane. -
By Organic Ion Transporters Explains Renal Background in [18F]FAMT Positron Emission Tomography
Journal of Pharmacological Sciences 130 (2016) 101e109 HOSTED BY Contents lists available at ScienceDirect Journal of Pharmacological Sciences journal homepage: www.elsevier.com/locate/jphs Full paper Transport of 3-fluoro-L-a-methyl-tyrosine (FAMT) by organic ion transporters explains renal background in [18F]FAMT positron emission tomography Ling Wei a, Hideyuki Tominaga b, Ryuichi Ohgaki a, Pattama Wiriyasermkul a, Kohei Hagiwara a, Suguru Okuda a, Kyoichi Kaira c, Yukio Kato d, Noboru Oriuchi b, * Shushi Nagamori a, Yoshikatsu Kanai a, a Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan b Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan c Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan d Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan article info abstract 18 18 Article history: A PET tracer for tumor imaging, 3- F-L-a-methyl-tyrosine ([ F]FAMT), has advantages of high cancer- Received 23 November 2015 specificity and low physiological background. In clinical studies, FAMT-PET has been proved useful for Received in revised form the detection of malignant tumors and their differentiation from inflammation and benign lesions. The 17 December 2015 tumor specific uptake of FAMT is due to its high-selectivity to cancer-type amino acid transporter LAT1 Accepted 6 January 2016 among amino acid transporters. In [18F]FAMT PET, kidney is the only organ that shows high physiological Available online 21 January 2016 background. To reveal transporters involved in renal accumulation of FAMT, we have examined [14C] FAMT uptake on the organic ion transporters responsible for the uptake into tubular epithelial cells.