Nootropics- Memory Boosters

Total Page:16

File Type:pdf, Size:1020Kb

Nootropics- Memory Boosters Harikumar K. et al. / Journal of Pharmaceutical Biology, 6(1), 2016, 14-19. Journal of Pharmaceutical Biology www.jpbjournal.com e-ISSN - 2249-7560 Print ISSN - 2249-7579 NOOTROPICS- MEMORY BOOSTERS K.Hari Kumar*, Mitta Srija, D.K.Sandeep, Ramisetty Davarika, Gunda Sai Mounica Department of Pharmacology, Sri Venkateswara College of Pharmacy, R.V.S.Nagar, Chittoor-517127, Andhra Pradesh, India. ABSTRACT Nootropics also called as smart drug, memory enhancers, neuron enhancers, cognitive enhancers and intelligent enhancers are drugs, supplements, neutraceuticals and functional foods that provide one or more aspects of mental function. Specific effect can include improvement to working memory motivation or attention. Nootropics drugs are able to promote, enhance and protect cognitive functions. As cognition is the typically human higher activity of brain, nootropic concept looked quite appealing for scores of people dreaming to enjoy better and longer lasting mental activity and for drug maker keen to produce such enviable products. There are large number of drugs which can be used as nootropic agents and help to enhance memory of people. Nootropics offer lot of benefits for cognitive aptitude and brain health. Nootropics used for the treatment of Alzheimer’s disease, Parkinson’s disease and Huntington’s disease, dementia and cognitive symptoms of schizophrenia. Keywords: Nootropics, Huntington’s disease, Dementia, Alzheimer’s disease. INTRODUCTION It is derived from Greek words “NOOS –Mind” But non-ADHD medications and supplements are more “Tropein – Turn/Bend”. They are also called as memory frequently used for performance enhancement. Many enhancers, Smart nutrients, Cerebroactive drugs and individuals use these drugs for performance enhancement cognition enhancers. Scientifically they are represented as and/or to gain some sort of competitive edge in academics nootropics. or occupational work. These are a heterogeneous group of drugs 1. Medical treatment: Nootropics are often used to treat a developed in dementia and other cerebral disorders. They variety of medical conditions ranging from ADHD to do elicit pharmacological effects, but widely different wakefulness disorders. Those who receive various forms mechanisms of action are claimed. Therapeutic benefits of nootropics for medical conditions arguably need them are limited, at the best, short –lasting. in order to properly function. ADHD: Those who are diagnosed with attention- Types of nootropics deficit disorder generally are prescribed various forms of 1. Racetams psychostimulant medications. These medications improve 2. Ampakines many aspects of cognition including: memory, 3. Choline and ach intermediates concentration, and organization of thoughts. 4. Synthetic B-vitamins derived nootropics Chronic fatigue syndrome: In some cases, people 5. Natural drugs with CFS (chronic fatigue syndrome) need medication so 6. Peptides that they can function. Energy drinks only help these 7. Smart drugs individuals to a certain extent. Therefore a psychostimulant or medication like Nuvigil is often Why do people use nootropics? prescribed. There are several reasons why people use Neurodegenerative disorders: Many nootropics nootropics. They are most often used for medical have been suggested to provide benefit for those with conditions such as ADHD and are regulated substances. Corresponding Author:- K.Hari Kumar Email:- [email protected] 14 | P a g e Harikumar K. et al. / Journal of Pharmaceutical Biology, 6(1), 2016, 14-19. various neurodegenerative disorders such as: Alzheimer’s Memorization: In addition to improving disease, Parkinson’s disease, Huntington’s disease and concentration, many also boost memory functions. If a dementia. Some have even been investigated to help treat person needs to boost their memory function, the cognitive symptoms of schizophrenia. Productivity: Others are taking these drugs just Sleep wakefulness disorders: People with to see how much they can accomplish. Those who are conditions such as: narcolepsy, excessive daytime looking to increase their productivity in all aspects of life sleepiness, and shift-work disorder often benefit from may experiment with nootropics. stimulating drugs, many of which are considered Less sleep: Those who want to get more done nootropics. and sleep less, may take a nootropic like Nuvigil (which Treatment-resistant depression: Some people are promotes wakefulness). This allows the person to able to obtain a prescription for various nootropics as a accomplish quite a bit throughout the day without any result of having treatment-resistant depression. For fatigue. example, some psychiatrists may consider prescribing Adderall for depression as an antidepressant augmentation Comprehensive List of Nootropics (Smart Drugs) strategy Below is an extensive list of nootropics or “smart 2. Performance enhancement: Nootropics are also drugs.” It is important to understand that while many may commonly used for the purposes of gaining an edge on improve cognition, there are concerns regarding long- the competition. Using nootropics could be thought of as term effects. Additionally among individuals without being analogous to a bodybuilder taking steroids. In this fully developed brains, the usage of these substances case it allows an individual to surpass their natural genetic should be discouraged. Keep in mind that many of the limitations. substances listed below have not been medically tested, Academic advantage: In academics, students are thus having scientifically unverified or poor evidence to using nootropics to help them remember more and study support nootropic claims. Long-term effects and safety of more efficiently. Students are taking these drugs to help nootropics haven’t been established. improve scores on various tests and to write papers. Let’s face it, academics is becoming more competitive than in Acetylcholinesterase Inhibitors years past, and any mental edge that a student has on the Galantamine competition will help them get into a good college and/or Huperzine A build an optimal academic resume. Occupational performance: Some people may Ampakines use these for a competitive advantage on certain This is a class of nootropics that is suggested to cognitively-demanding jobs. For example, a person who improve attention, learning, memory, and vigilance. The needs to crunch numbers all day and critical thinking as classification as “Ampakines” is derived from the fact that part of their job may benefit from using nootropics. they influence the AMPA receptor, responsible for Sports: Many nootropics are known to improve binding to glutamate. the performance of athletes. They can increase focus, Ampalex (CX-516) spatial orientation, and allow an athlete to surpass their CX-717 natural genetic limitations. Farampator (CX-691) 3. Biohacking: Individuals may want to try nootropics as Sunifiarm a means of biohacking. Usually people who are drawn to Unifiram these substances are individuals looking to alter their natural biological state of functioning. Many people put Cholinergics themselves through nootropic “trials” in order to This class of supplements influences the determine how their mental functioning improves as a neurotransmission of acetylcholine in the brain. result. As a result, there are many intriguing reports Acetylcholine is a neurotransmitter that is associated with surfacing on the internet from people that have used cortical excitement and is well-known to influence nootropics. attentional tasks, alertness, as well as reward processing. Concentration: These substances are known to Nootropics that influence choline tend to increase levels increase concentration, but many vary in their effects. of acetylcholine. Some people are taking these in varying amounts to self- Alpha GPC experiment ant determine the degree to which they help Choline people concentrate. Choline Bitartrate Motivation: Some nootropics are known to Choline Citrate increase overall levels of motivation. This is a very Citicoline (CDP-Choline) common effect when a person begins using stimulants – DMAE their motivation skyrockets and they get more done. 15 | P a g e Harikumar K. et al. / Journal of Pharmaceutical Biology, 6(1), 2016, 14-19. Lecithin Bacopa monnieri Phosphatidylcholine Forskolin Ginkgo biloba Dopaminergics Grape Seed Extract This is a classification of substances that Green Tea influence levels of the neurotransmission dopamine Panax ginseng throughout the brain. They can include dopamine Hordenine reuptake inhibitors, enzymes, and other antidepressants. Isoflavones Many psychostimulants are of dopaminergic nature, and Kava Kava thus could also fit within this classification. Kratom Bromantane Lion’s Mane DL-Phenylalanine (DLPA) Lemon Balm L-Dopa Oat Straw Extract L-Theanine Piperine Mucuna Pruriens Pterostilbene Phenylethylamine (PEA) Resveratrol Rasagiline Rhodiola Rosea Selegiline Stablon (Tianeptine) Hormones Sulbutiamine This classification of nootropics involves Suntheanine hormonal-based nootropics. In other words, specific Tyrosine (4-hydroxyphenylalanine) hormones are known to improve cognition when they are released within the body. When hormones are released, Eugeroics they can elicit a response from certain neurotransmitters This classification of drugs is known as and alter brain activity. Certain hormones may increase “wakefulness-promoting.” Eugeroic drugs are often arousal and brain activation, while others may promote a prescribed to treat those with
Recommended publications
  • (12) United States Patent (10) Patent No.: US 8,148,546 B2 Schuster Et Al
    US008148546B2 (12) United States Patent (10) Patent No.: US 8,148,546 B2 Schuster et al. (45) Date of Patent: Apr. 3, 2012 (54) TETRAHYDROCARBAZOLE DERIVATIVES (58) Field of Classification Search .................. 548/448: ASLGANDS OF G-PROTEIN COUPLED 51474 11 RECEPTORS See application file for complete search history. (75) Inventors: Tilmann Schuster, Grossostheim (DE); Klaus Paulini, Maintal (DE); Peter (56) References Cited Schmidt, Schoeneck (DE); Silke Baasner, Schoeneck (DE); Emmanuel FOREIGN PATENT DOCUMENTS Polymeropoulos, Frankfurt (DE); WO WO O3051837 * 6, 2003 Eckhard Guenther, Maintal (DE); WO WO 2006005484 * 1, 2006 Michael Teifel, Weiterstadt (DE) OTHER PUBLICATIONS (73) Assignee: AEterna Zentaris GmbH, Frankfurt Kubinyi (3D QSAR in Drug Design: Ligand-Protein Interactions and (DE) Molecular Similarity, vol. 2-3, Springer, 1998, 800 pages), TOC, pp. 243-244 provided.* *) NotOt1Ce: Subjubject to anyy d1Sclaimer,disclai theh term off thisthi Tatsuta et al. (Bioorg. Med. Chem. Lett. 15 (2005) 2265-2269).* patent is extended or adjusted under 35 Wermuth, The Practice of Medicinal Chemsitry, 2d ed. (2003), 768 U.S.C. 154(b) by 852 days. pages, chs. 9-10 provided.* CAPLUS Abstract of WO O3051837.* (21) Appl. No.: 12/109,479 * cited by examiner (22) Filed: Apr. 25, 2008 (65) Prior Publication Data Primary Examiner — Robert Havlin (74) Attorney, Agent, or Firm — Oblon, Spivak, US 2009/O 170783 A1 Jul. 2, 2009 McClelland, Maier & Neustadt, L.L.P. Related U.S. Application Data (60) Provisional application No. 60/914,424, filed on Apr. (57) ABSTRACT 27, 2007. The present invention provides novel tetrahydrocarbazole compounds according to formula (I) as ligands of G-protein (30) Foreign Application Priority Data coupled receptors (GPCR) which are useful in the treatment and/or prophylaxis of physiological and/or pathological con Apr.
    [Show full text]
  • Yerevan State Medical University After M. Heratsi
    YEREVAN STATE MEDICAL UNIVERSITY AFTER M. HERATSI DEPARTMENT OF PHARMACY Balasanyan M.G. Zhamharyan A.G. Afrikyan Sh. G. Khachaturyan M.S. Manjikyan A.P. MEDICINAL CHEMISTRY HANDOUT for the 3-rd-year pharmacy students (part 2) YEREVAN 2017 Analgesic Agents Agents that decrease pain are referred to as analgesics or as analgesics. Pain relieving agents are also called antinociceptives. An analgesic may be defined as a drug bringing about insensibility to pain without loss of consciousness. Pain has been classified into the following types: physiological, inflammatory, and neuropathic. Clearly, these all require different approaches to pain management. The three major classes of drugs used to manage pain are opioids, nonsteroidal anti-inflammatory agents, and non opioids with the central analgetic activity. Narcotic analgetics The prototype of opioids is Morphine. Morphine is obtained from opium, which is the partly dried latex from incised unripe capsules of Papaver somniferum. The opium contains a complex mixture of over 20 alkaloids. Two basic types of structures are recognized among the opium alkaloids, the phenanthrene (morphine) type and the benzylisoquinoline (papaverine) type (see structures), of which morphine, codeine, noscapine (narcotine), and papaverine are therapeutically the most important. The principle alkaloid in the mixture, and the one responsible for analgesic activity, is morphine. Morphine is an extremely complex molecule. In view of establish the structure a complicated molecule was to degrade the: compound into simpler molecules that were already known and could be identified. For example, the degradation of morphine with strong base produced methylamine, which established that there was an N-CH3 fragment in the molecule.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Modafinil and Modafinil Analogues: Free Radical Mechanism of the Eugeroic and Cognitive Enhancment Effect Clifford Fong
    Modafinil and modafinil analogues: free radical mechanism of the eugeroic and cognitive enhancment effect Clifford Fong To cite this version: Clifford Fong. Modafinil and modafinil analogues: free radical mechanism of the eugeroic and cognitive enhancment effect. [Research Report] Eigenenergy. 2018. hal-01933737 HAL Id: hal-01933737 https://hal.archives-ouvertes.fr/hal-01933737 Submitted on 24 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Modafinil and modafinil analogues: free radical mechanism of the eugeroic and cognitive enhancment effect Clifford W. Fong Eigenenergy, Adelaide, South Australia. Keywords: Modafinil, modafinil-like analogues, eugeroic effect, cognitive enhancement, free radicals, quantum mechanics Abbreviations Dopamine DA, dopamine transporter DAT, Dissociative electron transfer or attachment DET, Linear free energy relationship LFER, free energy of water desolvation ΔG desolv,CDS , lipophilicity free energy ΔG lipo,CDS, cavity dispersion solvent structure of the first solvation shell CDS, highest occupied molecular orbital HOMO, lowest unoccupied molecular orbital LUMO, multiple correlation coefficient R 2, the F test of significance, standards errors for the estimate (SEE) and standard errors of the variables SE(ΔG desolCDS ), SE(ΔG lipoCDS ), SE(Dipole Moment), SE (Molecular Volume), transition state TS, reactive oxygen species ROS.
    [Show full text]
  • Supplementary Digital Content REVIEW of ANXIETY MODELS USED in 2010-2011. Type of the Study. Here We Cathegorize the Study Accor
    Supplementary digital content REVIEW OF ANXIETY MODELS USED IN 2010-2011. LEGEND Type of the study. Here we cathegorize the study according to its major aim or major finding as follows: anxiogenic effects, the compound had effects opposite to expectations; detection of anxiolytic effect, anxiolytic effects were noticed but no suggestion was formulated for use as anxiolytics; established anxiolytic, well-known anxiolytics studied for various reasons; no effect on anxiety, the compound did not fulfil expectations; mechanism, studies employing anxiolytic treatments but addressing developmental issues, neural mechanisms, drug interactions etc.; putative novel anxiolytic, the authors suggested the compound for anxiolytic drug development; (H), the tested compound was an herbal extract; (Ho), purified or synthesized compound of herbal origin. Anxiety tests. The tests listed in Table 1 were considered 'classical' for the reasons specified in the Abstract. Modifier. Tests are sometimes performed under unconventional conditions to induce heightened levels of anxiety and by this to icrease the translational value of the test. Procedures that altered (usually increased) anxiety levels normally shown in the given test were categorized as follows. chemical, hormonal or pharmacological treatments (e.g. ovarectomy, drug administration in adolescence, etc.); condition, modified testing conditions (e.g. high lighting, no habituation to the testing room, etc.); neural, treatments that affect neural functions (e.g. brain lesions, inhibited neurogenesis); selection, subjects from selection lines, specific strains, etc; stress, subjects exposed to stressors with long-lasting consequences (e.g. chronic immobility, drug withdrawal, etc); subject, the use of specific subjects classes (aged subjects, females, etc.); transgenic, the effects of drugs were studied in genetically engineered subjects.
    [Show full text]
  • WO 2013/142184 Al 26 September 2013 (26.09.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/142184 Al 26 September 2013 (26.09.2013) P O P C T (51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 33/16 (2006.01) A61K 31/7048 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, A61K 33/14 (2006.01) A61K 31/70 (2006.01) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, A61K 33/18 (2006.01) A61K 31/4196 (2006.01) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (21) International Application Number: RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, PCT/US20 13/030788 TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (22) International Filing Date: ZM, ZW. 13 March 2013 (13.03.2013) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (26) Publication Language: English UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 61/612,689 19 March 2012 (19.03.2012) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (71) Applicant: YALE UNIVERSITY [US/US]; Two Whitney TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Avenue, New Haven, CT 065 10 (US).
    [Show full text]
  • Plant-Mediated Enantioselective Transformation of Indan-1-One and Indan-1-Ol. Part 2
    molecules Article Plant-Mediated Enantioselective Transformation of Indan-1-one and Indan-1-ol. Part 2 Wanda M ˛aczka 1,* , Katarzyna Wi ´nska 1,* , Małgorzata Grabarczyk 1,* and Renata Galek 2 1 Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland 2 Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences Pl. Grunwaldzki 24A, 53-363 Wroclaw, Poland; [email protected] * Correspondence: [email protected] (W.M.); [email protected] (K.W.); [email protected] (M.G.); Tel.: +48-71-320-5213 (W.M. & K.W.) Received: 31 October 2019; Accepted: 25 November 2019; Published: 27 November 2019 Abstract: The main purpose of this publication was to obtain the S-enantiomer of indan-1-ol with high enantiomeric excess and satisfactory yield. In our research, we used carrot callus cultures (Daucus carota L.), whereby the enzymatic system reduced indan-1-one and oxidized indan-1-ol. During the reaction of reduction, after five days, we received over 50% conversion, with the enantiomeric excess of the formed S-alcohol above 99%. In turn, during the oxidation of racemic indan-1-ol after 15 days, 36.7% of alcohol with an enantiomeric excess 57.4% S(+) remained in the reaction mixture. In addition, our research confirmed that the reactions of reduction and oxidation are competing reactions during the transformation of indan-1-ol and indan-1-one in carrot callus cultures. Keywords: indan-1-one; indan-1-ol; biotransformation; reduction; oxidation; carrot; callus culture 1.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Semax Item No. 27719 CAS Registry No.: 80714-61-0 N Formal Name: L-methionyl-L-α-glutamyl- N H S L-histidyl-L-phenylalanyl-L- H2N prolylglycyl-L-proline O Synonym: ACTH4-7-PGP N H N N O MF: C37H51N9O10S O FW: 813.9 H N OH N O H Purity: ≥95% N O O O Supplied as: A solid H Storage: -20°C O HO Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Semax is supplied as a solid. A stock solution may be made by dissolving the semax in the solvent of choice, which should be purged with an inert gas. Semax is soluble in organic solvents such as DMSO and dimethyl formamide. The solubility of semax in these solvents is approximately 5 and 1 mg/ml, respectively. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of semax can be prepared by directly dissolving the solid in aqueous buffers. The solubility of semax in PBS, pH 7.2, is approximately 10 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description Semax is a synthetic peptide analog of adrenocorticotropic hormone (ACTH) (4-10) (Item No. 27106) that has neuroprotective, analgesic, and anxiolytic properties.1-3 In vivo, semax (0.3 mg/kg) reduces cortical nitric oxide (NO) production and the number of neurological disturbances, such as seizures, falling, and twisting, in a rat model of global ischemia.1 It decreases acetic acid-induced writhing and nociception in a hind paw compression test in mice when administered at doses ranging from 0.015 to 0.5 mg/kg.2 Semax also increases time spent in the open arms in the elevated plus maze, indicating anxiolytic activity, in a rat model of maternal deprivation-induced anxiety.3 References 1.
    [Show full text]
  • Effects of Semax on Dopaminergic and Serotoninergic Systems of the Brain K
    Doklady Biological Sciences, Vol. 394, 2004, pp. 1–3. Translated from Doklady Akademii Nauk, Vol. 394, No. 1, 2004, pp. 130–132. Original Russian Text Copyright © 2004 by Eremin, Kudrin, Grivennikov, Miasoedov, Rayevsky. PHYSIOLOGY Effects of Semax on Dopaminergic and Serotoninergic Systems of the Brain K. O. Eremin*, V. S. Kudrin*, I. A. Grivennikov**, Academician N. F. Miasoedov**, and K. S. Rayevsky* Received June 11, 2003 Short-term effects of the synthetic nootropic peptide in rats and simultaneously raises the intracellular level Semax on the content and metabolism of monoamines of dopamine in the striatum [6]. in the brain of C57/Bl6 mice and Sprague–Dawley rats The goal of this study was to examine the effects of were studied. Intraperitoneal injection of Semax at a Semax on the neurochemical parameters of the dopam- dose of 0.15 mg/kg caused an increase in the tissue con- inergic and serotoninergic systems of the animal brain. centrations of 5-hydroxyindoleacetic acid (5-HIAA) in Semax was administered at a dose of 0.15 mg per kilo- the hypothalamus and striatum of mice 0.5 and 2 h after gram body weight to ë57/Bl6 mice, and their hypothal- the injection. Using brain microdialysis, we detected amus and striatum were analyzed for tissue levels of increased levels of extracellular 5-HIAA in the striatum dopamine (DA) and its metabolites 3,4-dihydroxyphe- of freely moving rats 1 h after administration of 0.15 or nylacetic acid (DOPAC) and homovanillic acid (HVA), 0.6 mg/kg Semax. The effect lasted for an additional as well as serotonin (or 5-hydroxytriptamine, 5-HT) 3 h.
    [Show full text]
  • Screening of 109 Neuropeptides on Asics Reveals No Direct Agonists
    www.nature.com/scientificreports OPEN Screening of 109 neuropeptides on ASICs reveals no direct agonists and dynorphin A, YFMRFamide and Received: 7 August 2018 Accepted: 14 November 2018 endomorphin-1 as modulators Published: xx xx xxxx Anna Vyvers, Axel Schmidt, Dominik Wiemuth & Stefan Gründer Acid-sensing ion channels (ASICs) belong to the DEG/ENaC gene family. While ASIC1a, ASIC1b and ASIC3 are activated by extracellular protons, ASIC4 and the closely related bile acid-sensitive ion channel (BASIC or ASIC5) are orphan receptors. Neuropeptides are important modulators of ASICs. Moreover, related DEG/ENaCs are directly activated by neuropeptides, rendering neuropeptides interesting ligands of ASICs. Here, we performed an unbiased screen of 109 short neuropeptides (<20 amino acids) on fve homomeric ASICs: ASIC1a, ASIC1b, ASIC3, ASIC4 and BASIC. This screen revealed no direct agonist of any ASIC but three modulators. First, dynorphin A as a modulator of ASIC1a, which increased currents of partially desensitized channels; second, YFMRFamide as a modulator of ASIC1b and ASIC3, which decreased currents of ASIC1b and slowed desensitization of ASIC1b and ASIC3; and, third, endomorphin-1 as a modulator of ASIC3, which also slowed desensitization. With the exception of YFMRFamide, which, however, is not a mammalian neuropeptide, we identifed no new modulator of ASICs. In summary, our screen confrmed some known peptide modulators of ASICs but identifed no new peptide ligands of ASICs, suggesting that most short peptides acting as ligands of ASICs are already known. Acid-sensing ion channels form a small family of proton-gated ion channels that belongs to the degenerin/epi- thelial Na+ channel (DEG/ENaC) gene family1.
    [Show full text]
  • 1St ANNUAL UNDERGRADUATE RESEARCH SYMPOSIUM
    Table of Contents Entree Subject Page 1 History of the Symposium 2 2 Program Schedule 4 3 Poster Abstract 28 4 Author/Faculty Information 132 5 Participating Institutions 137 1 HISTORY OF THE SYMPOSIUM Few activities are as rewarding as research to the motivated students as well as faculty mentors. In addition to the acquisition of invaluable research skills, students learn how knowledge is created and experience the excitement of the “eureka moment”. To celebrate undergraduate achievements, a research symposium has been held since 2007 on WPUNJ campus for students in biological and chemical sciences. In this event, undergraduate students present and display their research and creative work to the university and the scientific community from the Tri state area. This symposium provides an opportunity to the students to showcase their talents and share their research achievements with their peers from about twenty universities from Tri state area. The students and faculty from different universities as well as staff, and community members of WPU are invited to explore the latest in undergraduate research. Featured events include the poster presentation and Awards ceremony. The Symposium also features a keynote lecture by a distinguished researcher. 2 SYMPOSIUM ORGANIZING COMMITTEE Organizers Dr. Jaishri Menon Dr. Bhanu P. S. Chauhan Committee Members Dr. Jean Fuller-Stanley Dr. Michael Peek Dr. Eileen Gardner Dr. Jeung Woon Lee Dr. Carey Waldburger Dr. Pradeep Patnaik Dr. Mihaela Jitianu Dr. Mukesh Sahni Ms. Karyn Lapadura 3 SCHEDULE OF EVENTS 8:00 a.m. – 9:00 a.m. Registration & Breakfast Ballroom 9:00 a.m. – 9:15 am Welcome and Opening Remarks Dr.
    [Show full text]
  • Les Antidépresseurs De La Performance
    Annales de Toxicologie Analytique, vol. XII, n° 1, 2000 Les antidépresseurs de la performance Performance antidepressant drugs Jean-Pierre GOULLÉ*, Christian LACROIX Laboratoire de Pharmacocinétique et de Toxicologie Clinique, Groupe Hospitalier BP 24 - 76083 LE HAVRE Cedex - Tel : 02 32 73 32 18 - Fax : 02 32 73 32 38 * Auteur à qui adresser la correspondance : Docteur Jean-Pierre GOULLÉ, Laboratoire de Pharmacocinétique et de Toxicologie Clinique, Groupe Hospitalier, Jacques Monod - BP 24 - 76083 LE HAVRE Tel : 02 32 73 32 23 - Fax : 02 32 73 32 38 (Reçu le 17 décembre 1999 ; accepté le 15 janvier 2000) RÉSUMÉ SUMMARY En France, au cours de la période 1991-1997, alors que la Whereas in France the sale of psychotropic medication vente des médicaments psychotropes a augmenté de 7 %, le increased 7 % in the period between 1991 and 1997, the marché des antidépresseurs s'est littéralement envolé avec antidepressant drugs market literally exploded with a pro• une progression de plus de 40 %. Cette consommation, 2 à 3 gression of 40 %. This consumption 2 to 3 times greater than fois plus importante que celle de nos voisins européens, est that of our European neighbours created an abuse which génératrice d'abus conduisant à une accoutumance, à une lead to habituation, to an addiction, and even to drug abuse. assuétude, voire à une véritable conduite toxicophile. Les Antidepressant drugs (AD) pertain to the substances which antidépresseurs (AD) font partie des substances qui sont uti• are used by man to improve its performance due to its phar• lisées par l'homme pour améliorer sa performance, en rai• macological effects.
    [Show full text]