Lesson 4: Arizona Water Story Video

Total Page:16

File Type:pdf, Size:1020Kb

Lesson 4: Arizona Water Story Video LESSON 4: ARIZONA WATER STORY VIDEO Estimated Time for Lesson 1 hour State Standards Addressed Segment 1: Arizona History • Social Studies – S1C2PO1: Describe the legacy and cultures of prehistoric people in the Americas (development of agriculture). • Social Studies – S1C2PO2: Describe the cultures and contributions of the Hohokam people (e.g., location, agriculture, housing, arts and trade networks). • Social Studies – S1C5PO2: Describe the influence of American explorers and trappers on the development of the Southwest. • Social Studies – S1C5PO3: Describe events that led to Arizona becoming a possession of the United States: the Mexican-American War, the Mexican Cession (Treaty of Guadalupe Hidalgo) and the Gadsden Purchase. • Social Studies – S4C4PO1: Describe the factors that have contributed to the settlement, economic development and growth of major Arizona cities. • Social Studies – S4C4PO2: Describe how Mexico and Arizona are connected by the movement of people, goods and ideas. • Social Studies – S1C7PO1: Describe the economic development of Arizona: mining, ranching, farming and dams. • Social Studies – S4C4PO5: Describe the major economic activities and land-use patterns (e.g., harvesting of natural resources) of regions studied. Segments 2 and 3: SRP and Central Arizona Project (CAP) • Social Studies – S4C2PO1: Describe how the Southwest has distinct physical and cultural characteristics. • Social Studies – S4C2PO3: Locate the landform regions of Arizona (plateau, mountain and desert). • Social Studies – S4C2PO4: Compare the landform regions of Arizona according to their physical features, plants and animals. • Social Studies – S4C2PO5: Describe how regions and places (e.g., the Grand Canyon and the Colorado River) have distinct characteristics. • Science – S3C1: Describe how natural events and human activities impact environments. • Science – S4C3: Describe uses, types and conservation of natural resources. • Social Studies – S4C5PO1: Describe human dependence on the physical environment and natural resources to satisfy basic needs. • Social Studies – S4C5PO2: Describe the impact of extreme natural events (e.g., floods and droughts) on human and physical environments. • Social Studies – S4C5PO3: Describe the impact of human modifications (e.g., dams, irrigation and agriculture) on the physical environment and ecosystems. Objectives Content Objectives • Students will be able to describe the contributions of past people (Hohokam, American explorers, Mexican-Americans) on the land, settlement and development of the land we now call Arizona. • Students will be able to describe the process in which water is delivered to the Desert Region of Arizona. Language Objective Students will use complete sentences to describe how water plays a part in the history of Arizona. 36 37 Materials • Arizona Water Story Video • Segment handouts (1 per student) It is recommended that you blow up the handouts to 11-by- 17 inches. This will allow more room for students to write, and handouts can also be made into a large brochure of facts about Arizona. Allow students to illustrate the other faces of the brochure. Procedures Pass out the video guide to students. Read through the questions with the class before watching the Arizona video. You may want to pause the video periodically Facts to allow students time to discuss and record their answers to the questions. At the end of each segment, review the questions with the students to reinforce their learning. To allow ample time for discussion, it is recommended that the segments be viewed on separate days. Segment 1: Arizona History (run time: approx. 10 minutes) Segment 2: SRP (run time: approx. 11 minutes) Segment 3: Central Arizona Project (run time: approx. 7 minutes) Evaluation Student video guide worksheets and class discussion about answers (answers can be found in the Appendix). Lesson Closure As a conclusion to the lesson, have the students discuss the following items in pairs: • Explain why and how we are able to have water in the Desert Region of Arizona. • Explain where we get our water from in (your town). 36 37 Arizona Water Story Video Script Introduction Arizona is a land of natural wonders, from the Grand Canyon carved by the mighty Colorado River, to the delicate and dry colors of the Painted Desert, to the dense green forests of the White Mountains. But we tend to forget that much of the Arizona we know today, with its growing cities and productive farms, was once a dry and desolate wilderness. What changed the landscape? The availability of water. Water has shaped Arizona’s history as well as its landscape. Segment 1: Arizona History Hohokam and Canals Archaeologists have spent much time studying the Hohokam, a prehistoric culture who lived in southern Arizona before the Spanish and other settlers came. For about a thousand years, these peaceful farmers made their homes in central and southern Arizona river basins, places where the desert had a water supply. They lived in the Salt River Valley, the Gila River region (including what is now Pinal County) and the Santa Cruz River basin near what is now Tucson. The Hohokam built irrigation ditches using sticks, stone tools and their hands in order to bring water to their fields so they could grow corn, squash, beans and other crops. In the Phoenix area alone, their water delivery system contained nearly 500 miles of canals and over time may have served as many as 100,000 people. The Hohokam lived in Arizona for 1,000 years but left about A.D. 1450. No one knows for sure why they left, but the cycle of drought and flood that still exists in Arizona may have been a major reason. The Hohokam set the groundwork for today’s major canal system in the Phoenix area, which follows many of the same paths. Tucson and Spanish History The Santa Cruz Valley, where modern Tucson is now located, was the first place in Arizona settled by Spanish missionaries and soldiers. The settlers farmed and tended their sheep and cattle, often having to fight off attacks from the Apache Indians. A war between the new government of Mexico and the U.S. over the border between the two countries ended in 1848 with the Treaty of Guadalupe Hidalgo. A miscalculation set the boundary on the Gila River 80 miles north of Tucson. It wasn’t until 1853 when James Gadsden purchased additional land south of the river that Tucson became part of the U.S. In early Tucson, residents first drew their water from small streams, but these streams, even the Santa Cruz River that flowed north out of the Santa Rita Mountains, tended to go dry in the hot summer months. Sanitary conditions were not good. Pioneer Phocion R. Way wrote upon his arrival in Tucson in 1858, “There is a small creek which runs through town. The water is alkaline and warm. The hogs wallow in the creek, the people water their donkeys and cattle, and wash themselves and their clothes and drink water out of the same creek.” Tucson farmers and citizens also pumped water from under the surface of the ground, but soon this valuable resource was depleted. Groundwater pumping also dried up the Santa Cruz River, which now flows only after big storms. 38 39 Swilling and the Pioneers The adobe ruins of the Hohokam baked in the Arizona sun for 400 years. Then in the early 1860s, Arizona experienced an influx of new settlers, many searching for gold and other precious minerals. Prospector, explorer and former Confederate officer Jack Swilling gathered a group of associates in Wickenburg and formed a canal company in 1867 to irrigate the lands in the Salt River Valley. Perhaps Swilling noticed the ruined Hohokam canals and thought they could work again. In December 1867, he formed the Swilling Irrigation and Canal Company at the gold camp at Wickenburg. He and his partners planned to take water from the Salt River via a canal so he could grow crops to sell to miners at Wickenburg and the U.S. Calvary stationed at Fort McDowell. The waterway became known as the Swilling Ditch, later the Town Ditch, or the Salt River Valley Canal. By March 1868, Swilling and his partners had harvested their first crops on land near the present-day Arizona State Hospital. During that same month, a government survey party came to the Valley and noted that a small community calling itself “Phoenix” had appeared on the scene. Soon groups of farmers up and down the river were digging canals and building crude rock and brush diversion dams (or headings) to force a flow of water into the canals. These little dams required constant maintenance, and the most successful projects were those of the private canal companies and associations, which charged members a fee for construction and maintenance. The farmers even reused some ancient Indian canals, cleaning them out and deepening them. Drought and Flood Farmers in Arizona in the late 1800s had the same problem the ancient Indians had. In a year with heavy rain and mountain snow, rivers were full of water, the farmers had an abundance of water for their crops and sometimes the heavy rains would even flood the area. And yet the next year might see little rain and thus very little water for farmers and their crops. Trying to be a farmer under such circumstances, or even trying to provide a city with water for drinking, bathing and cleaning, was very difficult. Between 1890 and 1900, the population of Maricopa County grew by nearly 10,000, further heightening the need for a reliable source of water. The obvious solution was to build a water storage dam to capture seasonal runoff. But how would such a large project be paid for? In the 1880s, a private company built a small dam to divert water into a canal to bring water from the Salt River down to the homes and farms near Phoenix.
Recommended publications
  • CENTRAL ARIZONA SALINITY STUDY --- PHASE I Technical Appendix C HYDROLOGIC REPORT on the PHOENIX
    CENTRAL ARIZONA SALINITY STUDY --- PHASE I Technical Appendix C HYDROLOGIC REPORT ON THE PHOENIX AMA Prepared for: United States Department of Interior Bureau of Reclamation Prepared by: Brown and Caldwell 201 East Washington Street, Suite 500 Phoenix, Arizona 85004 Brown and Caldwell Project No. 23481.001 C-1 TABLE OF CONTENTS PAGE TABLE OF CONTENTS ................................................................................................................ 2 LIST OF TABLES .......................................................................................................................... 3 LIST OF FIGURES ........................................................................................................................ 3 1.0 INTRODUCTION .............................................................................................................. 4 2.0 PHYSICAL SETTING ....................................................................................................... 5 3.0 GENERALIZED GEOLOGY ............................................................................................ 6 3.1 BEDROCK GEOLOGY ......................................................................................... 6 3.2 BASIN GEOLOGY ................................................................................................ 6 4.0 HYDROGEOLOGIC CONDITIONS ................................................................................ 9 4.1 GROUNDWATER OCCURRENCE ....................................................................
    [Show full text]
  • The Central Arizona Project
    University of Colorado Law School Colorado Law Scholarly Commons New Sources of Water for Energy Development and Growth: Interbasin Transfers: A Short 1982 Course (Summer Conference, June 7-10) 6-9-1982 The Central Arizona Project Jon Kyl Follow this and additional works at: https://scholar.law.colorado.edu/new-sources-of-water-for-energy- development-and-growth-interbasin-transfers Part of the Agriculture Law Commons, Animal Law Commons, Aquaculture and Fisheries Commons, Biodiversity Commons, Contracts Commons, Energy and Utilities Law Commons, Environmental Law Commons, Hydrology Commons, Law and Economics Commons, Legal History Commons, Legislation Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Mineral Law Commons, Property Law and Real Estate Commons, State and Local Government Law Commons, Transportation Law Commons, Water Law Commons, and the Water Resource Management Commons Citation Information Kyl, Jon, "The Central Arizona Project" (1982). New Sources of Water for Energy Development and Growth: Interbasin Transfers: A Short Course (Summer Conference, June 7-10). https://scholar.law.colorado.edu/new-sources-of-water-for-energy-development-and-growth-interbasin- transfers/21 Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. Jon Kyl, The Central Arizona Project, in NEW SOURCES OF WATER FOR ENERGY DEVELOPMENT AND GROWTH: INTERBASIN TRANSFERS (Natural Res. Law Ctr., Univ. of Colo. Sch. of Law 1982). Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
    [Show full text]
  • Central Arizona Water Control Study
    SUMMARY OF ELEMENTS UNDER STUDY How will flood waters be controlled gestions made by citizens at public along the Salt and Gila Rivers? How meetings or through correspondence will Central Arizona Project (CAP) with the two agencies. waters be stored for distribution in central Arizona? Solutions to these To date, the Bureau and Corps have terns will be evaluated using techni­ two critical water problems are being identified a number of structural and cal and environmental criteria. The sought by the Central Arizona Water nonstructural actions that singly or in systems that are determined to be Control Study (formerly known as the combination could provide for flood most acceptable will be studied at an Study of Alternatives for Salt-Gila control and CAP storage. These "ele­ increased !eve! of detail until a pre­ Flood Control and Regulation of CAP ments" were studied in Phase I of the ferred plan or plans can be recom­ Waters) . The U.S. Bbrnau- of Recla­ study and will be studied further in mended. Plans are combinations of mation, with assistance from the U.S. Phase II, along with additional ele systems with the addition of neces­ Army Corps of Engineers, is con­ ments that were added as a result of sary financial, institutional and oper­ ducting the study, with considerable public comment. ational arrangements. At each deci­ involvement of the public in helping sion point the public will be actively develop solutions to the problems. During Phase II, the elements will be involved. The following diagram Many of the ideas discussed in this combined into sys1ems that achieve shows the sequence of the planning summary are a direct result of sug- the goals of the study, and the sys- process.
    [Show full text]
  • A Regional Groundwater Flow Model of the Salt River Valley - Phase I
    SDMS DOCID#1142207 ARIZONA DEPARTMENT OF WATER RESOURCES A REGIONAL GROUNDWATER FLOW MODEL OF THE SALT RIVER VALLEY - PHASE I PBOEN~ AC~ MANAGEMENT AREA HYDROGEOLOGIC FRAMEWORK AND BASIC DATA REPORT BY EDWIN F. CORKHILL, STEVE CORELL, BRADLEY M. HILL. and DAVID A. CARR HYDROLOGY DIVISION MODELING REPORT NO. 6 Phoenix, Arizona April, 1993 ARIZO~A DEPARTMENT OF \'1ATER RESOURCES A REGIONAL GROUND\VATER FLOW MODEL OF THE SALT RIVER VALLEY ~ PHASE I PHOENIX ACTIVE MANAGEMENT AREA HYDROGEOLOGIC FRAMEWORK AND BASIC DATA REPORT Final Report by Edwin Corkhilt Steve CorelL Bradley M. HilL and David A. Modeling Report No. 6 Hydrology Division - Groundwater Modeling April 1, 1 Abstract The Phoenix Active :Management Area groundwater flow model focuses on the hydrologic system of the Salt River Valley, the most intensive water use area of the state. The goal of the hydrologic study and modeling effort was to develop a quantitative tool to test various groundwater management scenarios. The predevelopment hydrologic system (circa 1900) of the Salt River Valley is analyzed. Various components of groundwater inflow and outflov,/ are identified. A predevelopment groundviater budget is presented. The total inflows and outflows were in approximate balance and equaled approximately 139J~OO acre-feet per year. The modern hydrologic system (1978-198:-1) is analyzed. The vari.ous components of groundv,:rner inflow and outflov<' are identified. Detailed descriptions of the methodologies used to analyze the components of flow are provided. A groundwater budget for the period 19/X-1 Y88 is presented. The total inflows were approximately 13.5 million acre-feet and the total outflow-, were approximately 14.0 million acre-feet The estimated decrease in the volume of groundwater in storage \\'US 0.5 rnillion acre-feet Various recommendations are provided to improve future data collection and analysis efforts.
    [Show full text]
  • Western Area Power Administration Desert Southwest Region's
    FINAL Western Area Power Administration Desert Southwest Region’s Facilities Historic Context Statement Edited by Lisa M. Meyer September 2014 FINAL Western Area Power Administration Desert Southwest Region’s Facilities Historic Context Edited by Lisa M. Meyer September 2014 DSW Region’s Facilities Historic Context Statement CONTENTS Contents Executive Summary ................................................................................................................... ES-1 1. Introduction ........................................................................................................................... 1-1 Purpose and Need .................................................................................................................. 1-1 Data Sources Consulted ......................................................................................................... 1-5 Current Document ................................................................................................................. 1-8 2. Statement of Context Part 1: DSW Region’s Transmission Power Systems………………………………………… ...................................................................................... 2-1 Temporal Context .................................................................................................................. 2-1 Geographic Context ............................................................................................................... 2-1 Historic Context ....................................................................................................................
    [Show full text]
  • Read Ed Hallenbeck's Oral History Transcript
    Ed Hallenbeck_Transcript.docx Page 1 of 46 CAP Oral History Pam Stevenson (Q): Let’s start off by identifying on the tape that today is Thursday, July 8th of 2004, and I’m Pam Stevenson and we’re here in Mesa to do an interview for the Central Arizona Project and I’ll let you introduce yourself. So go ahead and give me your full name and when you were born. Ed Hallenbeck (A): My name is Ed Hallenbeck and I was born October 10, 1932 in Madison, South Dakota. Q: Can you tell me a little a bit Madison, South Dakota, growing up, was it a farm family? A: No, we had a furniture and undertaking business in a town of about 5,000 which served a large agricultural area. It was a great place to grow up and it was kind of typical Midwest at that time, small town, an innocent place. It had a four-year college in it so we were exposed to some opportunities for higher education right at the beginning. It was a great, great town. Q: Did you go to college there? A: No, I didn’t. I took a few courses there, but I went to South Dakota State University and got a degree in Electrical Engineering. Q: Why did you decide to go into that field? A: Oh, I sort of liked electricity, liked electronics, and that sort of thing - although I didn’t do much of it. Professionally, it’s a great background in engineering. You need engineering in a lot, a lot of areas, construction and design and that sort of thing.
    [Show full text]
  • Rio Salado Oeste Salt River-Phoenix, Arizona
    Volume 1 of 2 Final Feasibility Report and Environmental Impact Statement Rio Salado Oeste Salt River-Phoenix, Arizona Prepared by: Los Angeles District South Pacific Division September 2006 EXECUTIVE SUMMARY This report summarizes technical and feasibility study planning efforts undertaken to date to establish existing, future without-project, and future with-project conditions within the Rio Salado Oeste, Salt River study area in Phoenix, Arizona, to examine the measures and alternatives developed, and to present a recommended plan. This Feasibility Report serves to document plan formulation efforts in the development of potential alternatives for ecosystem restoration. These efforts will culminate in a complete feasibility report that identifies and recommends an implementable solution to improve the overall ecological health of the river and reestablish a more stable, less degraded, and sustainable condition. The primary problem and focus of much of the efforts discussed in the report relates to the severe degradation and loss of riparian habitat along the Salt River. Historically, the study area supported significant biological resources including extensive riparian and marsh habitats. Urban development, diversion of water to support agriculture, and domestic livestock grazing have eliminated or altered most of the natural vegetation communities that occupied the study area leaving only scattered remnants of the original vegetation communities. Modifications of the river system, such as damming and flow diversion, currently do not allow flows through the study area except during flood events. In addition, sand and gravel mining operations have induced additional changes to the river channel and hydrology. As diversions of water increased, the perennial flows in the river ceased, causing the groundwater table to drop.
    [Show full text]
  • Historic Waddell Dam Breached (In 1992)
    Water Operation and Maintenance Bulletin 11 HISTORIC WADDELL DAM BREACHED (IN 1992) On the cold, rainy morning of December 4, 1992, Waddell Dam was breached, and a large part of this historic structure sunk below the waves of Lake Pleasant. Although the weather proved to be a deterrent (probably a frigid 50 degrees) for many less hardy souls, representa- tives from the Phoenix Area Office, Maricopa Water District, Central Arizona Water Conservation District, Arizona Game and Fish Department, Maricopa County Parks and Recreation Department, and even the Coast Guard, braved the elements to witness the breaching of the original dam. Members of the local news media documented this historical event. Why would anyone, especially the Bureau of Reclamation (Reclamation), want to breach a dam as beautiful as Waddell Dam? Reclamation completed construction of New Waddell Dam, located about 1/2 mile down- stream of Waddell Dam, in October 1992. The historic Waddell Dam, constructed in 1927 by private interests, was the largest multiple arch dam in the world. New Waddell Dam was constructed to store Colorado River water delivered by the Hayden-Rhodes Aqueduct (formerly the Granite Reef Aqueduct) under the Central Arizona Project. With New Waddell Dam, the Central Arizona Water Conservation District could perform scheduled maintenance on the canal between Lake Havasu on the Colorado River to the turnout for the reversible Waddell Canal to the new dam while deliveries continued to downstream customers of the district. The dam could also provide flood protection by controlling riverflows into the Phoenix metropolitan area from the Agua Fria. The new reservoir added 6,300 surface acres to Lake Pleasant, tripling the size of the lake and greatly increasing the recreational value of Lake Pleasant Regional Park.
    [Show full text]
  • A Comparison of the Environmental Effects of Open-Loop and Closed-Loop Pumped Storage Hydropower April 2020
    A Comparison of the Environmental Effects of Open-Loop and Closed-Loop Pumped Storage Hydropower April 2020 PNNL-29157 Acknowledgments This work was authored by the Pacific Northwest National Laboratory (PNNL), operated by Battelle and supported by the HydroWIRES Initiative of the U.S. Department of Energy (DOE) Water Power Technologies Office (WPTO), under award or contract number DE-AC05-76RL01830. HydroWIRES Initiative The electricity system in the United States is changing rapidly with the large-scale addition of variable renewables. The flexible capabilities of hydropower, including pumped storage hydropower (PSH), make it well-positioned to aid in integrating these variable resources while supporting grid reliability and resilience. Recognizing these challenges and opportunities, WPTO has launched a new initiative known as HydroWIRES: Water Innovation for a Resilient Electricity System.1 HydroWIRES is focused on understanding and supporting the changing role of hydropower in the evolving electricity system in the United States. Through the HydroWIRES initiative, WPTO seeks to understand and drive utilization of the full potential of hydropower resources to help reduce system-wide costs and contribute to electricity system reliability and resilience, now and into the future. HydroWIRES is distinguished in its close engagement with the DOE National Laboratories. Five National Laboratories—Argonne National Laboratory, Idaho National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and PNNL—work as a team to provide strategic insight and develop connections across the DOE portfolio that add significant value to the HydroWIRES initiative. HydroWIRES operates in conjunction with the DOE Grid Modernization Initiative,2 which focuses on the development of new architectural concepts, tools, and technologies that measure, analyze, predict, protect, and control the grid of the future, and on enabling the institutional conditions that allow for quicker development and widespread adoption of these tools and technologies.
    [Show full text]
  • Finding of No Significant Impact
    INTRODUCTION The Bureau of Reclamation (Reclamation) has prepared an Environmental Assessment (EA) to disclose the potential environmental impacts resulting from the proposed construction and operation of Maricopa County Parks and Recreation Department’s (MCPRD) proposed Scorpion Bay Marina & Yacht Club (Marina). The Marina would be located along the western shore of Lake Pleasant within Lake Pleasant Regional Park (LPRP). LPRP encompasses 23,361 acres of federally-owned land, including Lake Pleasant itself, which are managed for recreation by MCPRD pursuant to a recreational management agreement between Reclamation and Maricopa County (Contract No. 9-07- 30-L0298, executed June 29, 1990 [1990 Contract]). Lake Pleasant, the reservoir formed by New Waddell Dam, occupies approximately 9,970 surface acres when the reservoir is at its maximum conservation storage elevation of 1,702 feet. New Waddell Dam and Lake Pleasant are part of the Central Arizona Project, a Federal project authorized by the Colorado River Basin Project Act of 1968 (Public Law 90-537). The general project area falls within northern Maricopa and southern Yavapai counties. The Marina would be located in Section 8, Township 6 North, Range 1 East, of the Gila and Salt River Baseline and Meridian. The Marina complex encompasses 164 acres, 93 acres of which are below elevation 1,702 feet. As the recreation land management agency for LPRP, MCPRD has determined there is a need for a marina and its associated amenities at LPRP. A marina was included in the LPRP 1995 Master Recreation Plan (MRP), which was the culmination of a comprehensive multi-year planning effort led by MCPRD in its role as Park manager.
    [Show full text]
  • Arizona-Water-Story-Teachers-Guide
    1 Author Alison Smith, SRP Original text by Judy Wheatley, Water Education Foundation Editorial Assistance Catherine May, SRP Crystal Thompson, Central Arizona Project Greg Kornrumph, SRP Karen Collins, SRP Rebecca Davidson, SRP Robert Pane, SRP Shelly Dudley, SRP Steve Westwood, SRP Teacher Review Panel Angela Conklin Carla Hedge Dawn Koberstein Deborah Patton James Cassidy Jean White Joanne Toms Joshua Briese Julia Goucher Kim Wallis-Lindvig Leslie Zraick Sarah Sleasman Photos Arizona Game and Fish Department Central Arizona Project SRP Water Education Foundation Program Sponsors Central Arizona Project and SRP The Arizona Water Story: An Upper Elementary School Unit of Study Unit Overview Introduction .................................................................................................................................. 6 Lesson 1: What We Know About Water ................................................................................................. 8 Activity 1.1: Building Background for the Unit .................................................................................. 9 Students list things they already know about water in an informal pre-assessment of their knowledge level. Activity 1.2: Globe Toss – Water Sources on Earth .......................................................................... 10 Students explore the global water budget through a hands-on game in which the ratio of water to land on Earth is analyzed. Activity 1.3: Global Water Budget ...............................................................................................
    [Show full text]
  • Status of the Species in the Action Area
    United States Department of the Interior U.S. Fish and Wildlife Service 2321 West Royal Palm Road, Suite 103 Phoenix, Arizona 85021-4951 Telephone: (602) 242-0210 FAX: (602) 242-2513 In Reply Refer To: AESO/SE 02-21-90-F-119 02-21-91-F-406 22410-2007-F-0081 May 15, 2008 Memorandum To: Area Manager, Bureau of Reclamation, Phoenix, Arizona From: Field Supervisor Subject: Reinitiated Biological Opinion on Transportation and Delivery of Central Arizona Project Water to the Gila River Basin in Arizona and New Mexico and its Potential to Introduce and Spread Nonindigenous Aquatic Species Thank you for your request to reinitiate formal consultation with the U.S. Fish and Wildlife Service (Service) under section 7 of the Endangered Species Act of 1973, as amended (16 U.S.C. 1531 et seq.), on transportation and delivery of water through the Central Arizona Project (CAP) in the Gila River basin and its potential to introduce and spread nonindigenous aquatic species. This biological opinion (BO) is a reinitiation of the April 17, 2001, biological opinion for the Gila River basin (Gila BO, 2-21-90-F-119) and replaces the draft Biological Opinion of June 11, 1999, on the same subject for the Santa Cruz River (SCR) subbasin (Santa Cruz BO, 2-21-91-F- 406). Your request was dated December 22, 2006, and received by us on December 28, 2006. The consultation request for the Santa Cruz has been withdrawn. You requested reinitiation of consultation to include the SCR subbasin and to consider impacts to the endangered Gila chub (Gila intermedia) with designated critical habitat and threatened Chiricahua leopard frog (Rana chiricahuensis).
    [Show full text]