Seasonal Activity of Jasmine Moth Palpita Unionalis (Lepidoptera: Pyralidae) in Response to True Spiders and Temperature Degrees in Olive Orchard Mohamed, E

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Activity of Jasmine Moth Palpita Unionalis (Lepidoptera: Pyralidae) in Response to True Spiders and Temperature Degrees in Olive Orchard Mohamed, E Egypt. J. Plant Prot. Res. Inst. (2020), 3 (4): 992-1003 Egyptian Journal of Plant Protection Research Institute www.ejppri.eg.net Seasonal activity of jasmine moth Palpita unionalis (Lepidoptera: Pyralidae) in response to true spiders and temperature degrees in olive orchard Mohamed, E. Mostafa1; Ibrahim, E. Shehata2; Salma, Kh. Ragab1 and Nabil, M. Ghanim1 1 Plant Protection Research Institute. Agricultural Research Centre, Dokki, Giza, Egypt. 2Pests and Plant Protection Department, National Research Centre, El-Behoos St., Dokki, Egypt. ARTICLE INFO Abstract: Article History Received: 13 / 10 /2020 The jasmine moth Palpita unionalis (Hübner) Accepted: 21 / 12 /2020 (Lepidoptera: Pyralidae) is one of the serious pests infesting olive trees. The present study aimed to study some ecological aspects of P. unionalis and true spiders in olive orchard at Dakahlia Keywords Governorate during two successive years (from the 25th of th Ecological aspects, January 2018 till the 16 of January 2020). The obtained results jasmine moth, Palpita indicated that larval population of P. unionalis exhibiting four unionalis, true spiders, and five peaks of abundance during the first and second year and olive orchard and the highest activity was recorded during autumn and spring of the Dakahlia Governorate. first and second year. With respect to true spiders, it exhibited six and five peaks of abundance during the first and second year and the highest activity was recorded during spring of the two studied years. On contrary, the lowest activity of P. unionalis and true spiders was recorded during winter of the first year and summer of the second year. Statistical analysis indicated that P. unionalis population exhibited positively responses to the true spider population during the first (r = 0.092ns) and second (r = 0.601*) year. Both of P. unionalis and true spiders exhibited insignificant responses maximum, minimum and average temperature during the two studied years. Introduction applications pose the risk of Olive (Olea europaea L.) environmental pollution and growing is of great economic and socio- contamination of the olive products cultural significance for the (Jardak and Ksantini, 1996; Calbras et Mediterranean region, where 98% of al., 1997; Cirio 1997 and Moustafa et the world’s olive production is located al., 2009). The jasmine moth Palpita (Civantos, 2001). The olive tree is unionalis (Hübner) (Lepidoptera: attacked by various insect pests, which Pyralidae) is an international can cause considerable yield losses, and lepidopteran pest originating in the current olive cultivation involves Mediterranean Basin (Hegazi et al., regular use of plant protection products. 2012 and Ghoneim, 2015). It is a highly However, frequent insecticide mobile moth and is known to disperse 992 Mostafa et al. , 2020 even to Northern Europe (Tremewan, populations such as Trichogramma spp. 2002). It attracted a considerable (Hegazi et al., 2007a) and pheromone attention of some researchers during the traps (Anthanassiou et al., 2004 and last few decades because of its serious Hegazi et al., 2007b). Spiders are attack against young olive trees in important predators of the olive moth nurseries. Where, it is feeding damage Prays oleae (Bernard, 1788) by larvae can reach up to 90% of the (Lepidoptera: Yponomeutidae) and leaf area, thereby seriously affecting the may reduce its population by 80%, development of the plant shoots. During being Philodromus spp., Salticus spp. the fruit ripening season, high larvae and Iciushamatus the most common. infestations may also reduce the fruit They feed on eggs and larvae and in yield by 30% (Solaiman, 1997; Lopez- some cases have reduced the pest Villalta, 1999; Hegazi et al., 2007 a, b population by 60 to 80% in olive groves and 2012 and Ghoneim, 2015). In years in Spain (Morris et al., 1999 and of high population densities, larvae Ghavami, 2006). The occurrence of attack also olive fruits, making them spiders in olive groves can be an unsuitable for marketing (Antonelli and important contribution to reducing Rossi , 2004 and Mazomenos et al., natural populations of phytophagous 2002). This pest is one of the serious arthropods due to their exclusively olive pests in Egypt and several predator diet (Rei et al., 2011). countries (Vassilaina-Alexopoulou and Efficient control of economic Santorini, 1973; Tremewan, 2002 and insect pests requires detailed Hamadah and Abo Elsoud, 2018). investigations of its ecology as well as Spiders represent an abundant the recorded natural enemies. Some group of predators within the certain are essential for the control of agroecosystems, and in olive groves of insect pests such as population Europe spiders are important predators dynamics and peaks times of the pest and may significantly reduce the attack and its associated natural enemies of pests. Spiders comprise a large (Öztürk and Ulusoy, 2012 and Abdel fraction of predator species in Kareim et al., 2018). According to agroecosystems, where insects Witzgall et al. (2010), the first step in (especially flies and moths) are the managing any pest species begins with main preys. These arachnids are more a proper monitoring program. sensitive to pesticide application than Therefore, the present study deals with their prey, and therefore are good some ecological aspects of jasmine bioindicators of the risk of an outbreak moth P. unionalis and true spiders in of pests in olive groves (Loverre and olive orchard at Dakahlia Governorate. Addante, 2011). The intensive use of Material and methods many conventional insecticides led to An area of two feddans (One several dramatic problems, such as feddan = 4200 m2) cultivated with olive destruction of the natural enemies, trees was selected for the present study environmental hazards and serious at Mansoura district, Dakahlia toxicological problems to humans, as governorate. The present study lasted well as the development of insect two successive years, starting from the resistance toward different insecticides 25th of January 2018 till the 16th of (Davies et al., 2007; Costa et al., 2008; January 2020. Five trees (Homogenous Mosallanejad and Smagghe, 2009 and in size and age) were selected randomly Sharifian et al., 2012). There are several from all the area. Every week, five attempts to use different bio control newly branches (Each branch was about tactics to control P. unionalis 20 cm) of each tree were cut from the 993 Egypt. J. Plant Prot. Res. Inst. (2020), 3 (4): 992-1003 cardinal direction (North, south, east as true spiders were correlated with and west) and center of the tree (On each temperature degree and the simple branch per direction). Then, branched & multi regressions in addition to were put in paper bags, well tied and explained variance were analyzed by transported to laboratory for using the computer program of CoHort investigation. On each branch, numbers Software (2004). of P. unionalis larvae and true spiders Results and discussion were counted and recorded. Among the As shown as in Figure (1), larval available meteorological data of population of P. unionalis occurred in Dakahlia region, daily averaged olive trees during the period from 17th temperature degrees (Maximum, of May till 29th of November 2018 minimum and average) were obtained during the first year. The pest from the Central Laboratory for population was recorded four peaks. Agricultural Climate, Agricultural These peaks were recorded on the 17th Research Center, during the period of May (4 individuals / sample), 23th of from the 25th of January 2018 till the August (6 individuals / sample), 13th of 16th of January 2020. The daily records September (5 individuals / sample) and of each temperature degree were 11th of October (16 individuals / grouped into weekly means according sample). to the sampling dates. The mean weekly numbers of P. unionalis larvae as well 20 P. unionalis True spider 15 twigs 25 10 5 0 No. of ndividuals / ndividualsNo. of Sampling date Figure (1): Seasonal abundance of Palpita unionalis and true spiders population on olive trees in Dakahlia Governorate during 2018/19. With respect to true spiders, it May 2019; while, the second period was recorded all over the first year was recorded from the 12th of (Figure 1). True spiders exhibited six September till the 26th of December peaks of abundance recorded as 18, 9, 2019 (Figure 2). P. unionalis exhibited 13, 13, 11, 6 and 16 individuals / sample five peaks during the second year. (On 25th January, 8th of March, 5th of These peaks were recorded during 11th April, 17th of May, 5th of July, 4th of of April (15 individuals / sample), 2nd of October and 8th of November 2018, May (10 individuals / sample), 19th of respectively). During the second year, September (6 individuals / sample), 10th P. unionalis showed two periods of of October (6 individuals / sample) and activity. The first period was recorded 19th of December 2019 (6 individuals / from the 21st of March till the 23rd of sample). 994 Mostafa et al. , 2020 16 P. unionalis True spider 12 twigs 25 8 4 0 No. of ndividuals / ndividualsNo. of Sampling date Figure (2): Seasonal abundance of Palpita unionalis and true spiders population on olive trees in Dakahlia Governorate during 2019/20. As shown as in Figure (2), true January and February. On the contrary, spiders exhibited five peaks of activity this pest showed its highest population during the second year. These peaks during October of the first year (with a were recorded as 13, 4, 8, 8 and 6 mean of 14 individuals / sample) and individuals / sample on the 4th of April, during April of the second year (with a 9th of May, 12th of September, 14th of mean of 7 individuals / sample). During November and 19th of December, all of the rest months, the pest respectively. Data illustrated in Figure population showed moderate numbers (3) indicated that P. unionalis was and varied from year to other. recorded with no numbers during 15 P. unionalis True spider 2018/19 12 / sample / 9 6 3 Mean number Mean 0 15 2019/20 12 9 / sample / 6 3 0 Mean number Meannumber Feb.
Recommended publications
  • Oviposition Preference and Olfactory Response of Diaphania Indica (Lepidoptera: Pyralidae) to Volatiles of Uninfested and Infested Cucurbitaceous Host Plants
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 116: 392–401, 2019 http://www.eje.cz doi: 10.14411/eje.2019.040 ORIGINAL ARTICLE Oviposition preference and olfactory response of Diaphania indica (Lepidoptera: Pyralidae) to volatiles of uninfested and infested cucurbitaceous host plants AMIN MOGHBELI GHARAEI 1, MAHDI ZIAADDINI 1, *, MOHAMMAD AMIN JALALI 1 and BRIGITTE FREROT 2 1 Department of Plant Protection, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran; e-mails: [email protected], [email protected], [email protected] 2 INRA, UMR 1392, iEES Paris, Route de St Cyr, 78000 Versailles, France; e-mail: [email protected] Key words. Lepidoptera, Pyralidae, Diaphania indica, cucumber moth, host volatiles, olfactory response, wind tunnel, oviposition, Cucurbitaceae, Citrullus lanatus, Cucumis melo, Cucumis sativus, Cucurbita pepo Abstract. The cucumber moth, Diaphania indica (Saunders) (Lepidoptera: Pyralidae), is a major pest of cucurbitaceous plants. The oviposition preference and olfactory response of larvae, mated and unmated male and female adults to volatiles emanating from uninfested and infested plants of four species of cucurbitaceous host plants and odours of conspecifi cs were recorded. Also the role of experience in the host fi nding behaviour of D. indica was evaluated. The experiments were done using a wind tunnel, olfactometer attraction assays and oviposition bioassays. The results reveal that fewer eggs were laid on infested plants than on uninfested plants. Females signifi cantly preferred cucumber over squash, melon and watermelon. Cucurbitaceous plants elicited adults of D. indica to fl y upwind followed by landing on the plants.
    [Show full text]
  • Developing Biodiverse Green Roofs for Japan: Arthropod and Colonizer Plant Diversity on Harappa and Biotope Roofs
    20182018 Green RoofsUrban and Naturalist Urban Biodiversity SpecialSpecial Issue No. Issue 1:16–38 No. 1 A. Nagase, Y. Yamada, T. Aoki, and M. Nomura URBAN NATURALIST Developing Biodiverse Green Roofs for Japan: Arthropod and Colonizer Plant Diversity on Harappa and Biotope Roofs Ayako Nagase1,*, Yoriyuki Yamada2, Tadataka Aoki2, and Masashi Nomura3 Abstract - Urban biodiversity is an important ecological goal that drives green-roof in- stallation. We studied 2 kinds of green roofs designed to optimize biodiversity benefits: the Harappa (extensive) roof and the Biotope (intensive) roof. The Harappa roof mimics vacant-lot vegetation. It is relatively inexpensive, is made from recycled materials, and features community participation in the processes of design, construction, and mainte- nance. The Biotope roof includes mainly native and host plant species for arthropods, as well as water features and stones to create a wide range of habitats. This study is the first to showcase the Harappa roof and to compare biodiversity on Harappa and Biotope roofs. Arthropod species richness was significantly greater on the Biotope roof. The Harappa roof had dynamic seasonal changes in vegetation and mainly provided habitats for grassland fauna. In contrast, the Biotope roof provided stable habitats for various arthropods. Herein, we outline a set of testable hypotheses for future comparison of these different types of green roofs aimed at supporting urban biodiversity. Introduction Rapid urban growth and associated anthropogenic environmental change have been identified as major threats to biodiversity at a global scale (Grimm et al. 2008, Güneralp and Seto 2013). Green roofs can partially compensate for the loss of green areas by replacing impervious rooftop surfaces and thus, contribute to urban biodiversity (Brenneisen 2006).
    [Show full text]
  • Aspects of the Biology of Diaphania Indica (Lepidoptera : Pyralidae)
    J. Natn. Sci. Coun. Sri Lanka 1997 25(4): 203-209 ASPECTS OF THE BIOLOGY OF DIAPHANIA INDICA (LEPIDOPTERA : PYRALIDAE) G.A.S.M. GANEHIARACHCHI Department of Zoology, University of Kelaniya, Kelaniya (Received: 19 January 1995;accepted: 5 September 1997) Abstract: Diaphan ia indica (Saunders)isamajor LepidopteranpestofCucurbits. Some aspects of the biology and natural enemiesofthis pest on snalre gourd were studied. Larvae of D. indica collected from snake gourd vines were reared in the laboratory. Females laid eggs two days after copulation. The average fecundity was observed to be 267 eggs. The incubation period at room temperature was 3- 5 days. The larval period was 8-10 days and pupal period 7-9days. Themaximum longevity of the adult moth was 9 days. Two species of Braconid endoparasites (E1asn~u.sindicus and Apanteles taragamne) and an unidentified Ichneumonid ectoparasite were fbund to parasitize larvae of D.irzdica in the field. Due to the high level of parasitism by Elasn~usindicus (58.5%),the damage by D. indica to snalre gourd was not severe during the study period. Key Words: Cucurbitaceae, Diaphania indica, pests, Pyralidae, snake gourd, vegetable pests. INTRODUCTION Diaplzania indica (Saunders) (Lepidoptera: Pyralidae) known as pumpkin caterpillar, is one of the major pests of most Cucurbitaceae all over the w0r1d.l.~It was also reported to attack soya beans.Tost plant preference and seasonal fluctuation of this pest have also been st~died.~ In Sri Lanka, D. indica is one of the major pests of cucurbits some of which are economically important such as snake gourd (Triclzosantlzes anguina) and gherkins (Cucrsmis sativus) (M.B.
    [Show full text]
  • December 2013 Number of Harmful Organism Interceptions: 142 (Number of Interceptions for Other Reasons: 280)
    Interceptions of harmful organisms in EUROPHYT- European Union commodities imported into the EU or Switzerland Notification System For Plant Health Interceptions Notified during the month of: December 2013 Number of harmful organism interceptions: 142 (Number of interceptions for other reasons: 280) Plants or produce No. of Country of Commodity Plant Species Harmful Organism Interceptio Export ns CITRUS LATIFOLIA XANTHOMONAS AXONOPODIS PV. CITRI 1 CITRUS LIMON XANTHOMONAS AXONOPODIS PV. CITRI 1 OTHER LIVING PLANTS : BANGLADESH MOMORDICA CHARANTIA BACTROCERA SP. 1 FRUIT & VEGETABLES BACTROCERA SP. 1 TRICHOSANTHES CUCUMERINA TEPHRITIDAE (NON-EUROPEAN) 1 BANGLADESH Sum: 5 OTHER LIVING PLANTS : MANGIFERA INDICA CERATITIS CAPITATA 1 FRUIT & VEGETABLES BRAZIL OTHER LIVING PLANTS : STORED PRODUCTS ARECACEAE BRUCHIDAE 1 CAPABLE OF GERMINATING BRAZIL Sum: 2 APIUM GRAVEOLENS LIRIOMYZA SP. 2 OTHER LIVING PLANTS : CAMBODIA FRUIT & VEGETABLES ARTEMISIA SP. LIRIOMYZA SP. 1 No. of Country of Commodity Plant Species Harmful Organism Interceptio Export ns ARTEMISIA SP. SPODOPTERA LITURA 1 CAPSICUM FRUTESCENS BACTROCERA SP. 1 MOMORDICA SP. THRIPIDAE 1 OTHER LIVING PLANTS : CAMBODIA FRUIT & VEGETABLES BEMISIA TABACI 2 OCIMUM BASILICUM LIRIOMYZA SATIVAE 1 OCIMUM SP. BEMISIA TABACI 3 CAMBODIA Sum: 12 PRODUCTS : WOOD AND CAMEROON ENTANDROPHRAGMA CYLINDRICUM SCOLYTIDAE 1 BARK CAMEROON Sum: 1 CANARY OTHER LIVING PLANTS : OCIMUM BASILICUM LIRIOMYZA SP. 2 ISLANDS FRUIT & VEGETABLES CANARY Sum: 2 ISLANDS OTHER LIVING PLANTS : CUT COLOMBIA FLOWERS AND BRANCHES LIRIOMYZA SP. 1 DENDRANTHEMA SP. WITH FOLIAGE COLOMBIA Sum: 1 CAPSICUM SP. SPODOPTERA FRUGIPERDA 1 DOMINICAN OTHER LIVING PLANTS : REPUBLIC FRUIT & VEGETABLES MOMORDICA CHARANTIA THRIPS PALMI 1 No. of Country of Commodity Plant Species Harmful Organism Interceptio Export ns MOMORDICA SP. THRIPIDAE 2 DOMINICAN OTHER LIVING PLANTS : THRIPIDAE 1 REPUBLIC FRUIT & VEGETABLES SOLANUM MELONGENA THYSANOPTERA 1 DOMINICAN Sum: 6 REPUBLIC ERYNGIUM SP.
    [Show full text]
  • The Insect Database in Dokdo, Korea: an Updated Version in 2020
    Biodiversity Data Journal 9: e62011 doi: 10.3897/BDJ.9.e62011 Data Paper The Insect database in Dokdo, Korea: An updated version in 2020 Jihun Ryu‡,§, Young-Kun Kim |, Sang Jae Suh|, Kwang Shik Choi‡,§,¶ ‡ School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea § Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea | School of Applied Biosciences, Kyungpook National University, Daegu, South Korea ¶ Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, South Korea Corresponding author: Kwang Shik Choi ([email protected]) Academic editor: Paulo Borges Received: 14 Dec 2020 | Accepted: 20 Jan 2021 | Published: 26 Jan 2021 Citation: Ryu J, Kim Y-K, Suh SJ, Choi KS (2021) The Insect database in Dokdo, Korea: An updated version in 2020. Biodiversity Data Journal 9: e62011. https://doi.org/10.3897/BDJ.9.e62011 Abstract Background Dokdo, a group of islands near the East Coast of South Korea, comprises 89 small islands. These volcanic islands were created by an eruption that also led to the formation of the Ulleungdo Islands (located in the East Sea), which are approximately 87.525 km away from Dokdo. Dokdo is important for geopolitical reasons; however, because of certain barriers to investigation, such as weather and time constraints, knowledge of its insect fauna is limited compared to that of Ulleungdo. Until 2017, insect fauna on Dokdo included 10 orders, 74 families, 165 species and 23 undetermined species; subsequently, from 2018 to 2019, we discovered 23 previously unrecorded species and three undetermined species via an insect survey.
    [Show full text]
  • Diversity and Ecology of Butterflies and Moths in Wadi Gaza, Gaza Strip, Palestine
    International Journal of Scientific and Research Publications, Volume 5, Issue 11, November 2015 707 ISSN 2250-3153 Diversity and Ecology of Butterflies and Moths in Wadi Gaza, Gaza strip, Palestine Zuhair .W. Dardona*, Ayman .W. Dardona**, Mohammed.A.Albayoumi * * Msc Microbiology ** Msc Limnology Abstract- Butterflies and moths were studied in regions of Wadi Gaza, extending from Salahe El-deen bridge west to Wadi Abo- Qatron near Wadi Gaza village to the east. The research is based on studying the diversity of butterflies and moths in terms of taxa diversity, Genera compositions, and family abundance. In terms of family abundance, the survey showed that all recorded butterflies are belonging to five main families (Pieridae, Hesperiidae, Lycaenidae, Nymphalidae, Papilionidae). The recorded moths are also belonging to five families (Arctiidae, Crambidae, Geometridae, Noctuidae, Sphingidae). In terms of species and genera compositions and diversity, the survey revealed that butterflies are more abundant concerning diversity and richness than moths. The five families of butterflies are consisting of (19 genera) and (25 species) while the five families of moths are consisting of only (10 genera) and (11species).The butterflies represented (69 %) of recorded species in the area of study while the moths were represented in (31 %) of the findings. The most abundant family of butterflies is Pieridae with (36%) of all recorded butterflies, followed by Lycaenidae (32%). As for moths, the abundant families are Noctuidae, Geometridae, and Crambidae were each family was represented by (3 species), and they form (82%) of recorded moths. In this study all genera, in both moths and butterflies are represented only by one specie except six genera of butterflies and one genus of moths as each one is represented with two species, these six genera of butterflies are zizeeria,Vanessa, Colias, Pieris, Carcharodus, and Pointa and that genues of moths is Stemorrhages.
    [Show full text]
  • A Non-Indigenous Moth for Control of Ivy Gourd, Coccinia Grandis
    United States Department of Field Release of Agriculture Marketing and Melittia oedipus Regulatory Programs Animal and (Lepidoptera: Sessidae), a Plant Health Inspection Service Non-indigenous Moth for Control of Ivy Gourd, Coccinia grandis (Cucurbitaceae), in Guam and the Northern Mariana Islands Draft Environmental Assessment, April 2006 Field Release of Melittia oedipus (Lepidoptera: Sessidae), a Non- indigenous Moth for Control of Ivy Gourd, Coccinia grandis (Cucurbitaceae), in Guam and the Northern Mariana Islands Draft Environmental Assessment April 2006 Agency Contact: Joseph Vorgetts Pest Permit Evaluations Branch Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 133 Riverdale, MD 20737–1236 Telephone: 301–734–8758 The U.S. Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (braille, large print, audiotape, etc.) should contact the USDA’s TARGET Center at 202–720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer. Mention of companies or commercial products does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned.
    [Show full text]
  • Phylogeny and Nomenclature of the Box Tree Moth, Cydalima Perspectalis (Walker, 1859) Comb
    Eur. J. Entomol. 107: 393–400, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1550 ISSN 1210-5759 (print), 1802-8829 (online) Phylogeny and nomenclature of the box tree moth, Cydalima perspectalis (Walker, 1859) comb. n., which was recently introduced into Europe (Lepidoptera: Pyraloidea: Crambidae: Spilomelinae) RICHARD MALLY and MATTHIAS NUSS Museum of Zoology, Koenigsbruecker Landstrasse 159, 01109 Dresden, Germany; e-mails: [email protected]; [email protected] Key words. Crambidae, Spilomelinae, box tree moth, generic placement, Diaphania, Glyphodes, Neoglyphodes, Palpita, Cydalima perspectalis, new combination, taxonomy, phylogeny, morphology, nomenclature Abstract. The box tree moth, Cydalima perspectalis (Walker, 1859) comb. n., is native to India, China, Korea, Japan and the Rus- sian Far East. Its larvae are a serious pest of different species of Buxus. Recently, C. perspectalis was introduced into Europe and first recorded from Germany in 2006. This species has been placed in various spilomeline genera including Palpita Hübner, 1808, Diaphania Hübner, 1818, Glyphodes Guenée, 1854 and the monotypic Neoglyphodes Streltzov, 2008. In order to solve this nomen- clatural confusion and to find a reasonable and verifiable generic placement for the box tree moth, the morphology of the above mentioned and some additional spilomeline taxa was investigated and their phylogeny analysed. The results show that C. perspec- talis belongs to a monophylum that includes three of the genera in which it was previously placed: Glyphodes, Diaphania and Pal- pita. Within this monophylum, it is closely related to the Asian Cydalima Lederer, 1863. As a result of this analysis, Sisyrophora Lederer, 1863 syn. rev. and Neoglyphodes Streltzov, 2008 syn.
    [Show full text]
  • Moths of Trinity River National Wildlife Refuge
    U.S. FishFish & & Wildlife Wildlife Service Service Moths of Trinity River National Wildlife Refuge Established in 1994, the 25,000-acre Givira arbeloides Trinity River National Wildlife Refuge Prionoxystus robiniae is a remnant of what was once a much Carpenterworm Moth larger, frequently flooded, bottomland hardwood forest. You are still able to Crambid Snout Moths (Crambidae) view vast expanses of ridge and swale Achyra rantalis floodplain features, numerous bayous, Garden Webworm Moth oxbow lakes, and cypress/tupelo swamps Aethiophysa invisalis along the Trinity River. It is one of Argyria lacteella only 14 priority-one bottomland sites Milky Urola Moth identified for protection in the Texas Carectocultus perstrialis Bottomland Protection Plan. Texas is Reed-boring Crambid Moth home to an estimated 4,000 species of Chalcoela iphitalis moths. Most of the nearly 400 species of Sooty-winged Chalcoela moths listed below were photographed Chrysendeton medicinalis around the security lights at the Refuge Bold Medicine Moth Headquarters building located adjacent Colomychus talis to a bottomland hardwood forest. Many Distinguished Colomychus more moths are not even attracted to Conchylodes ovulalis lights, so additional surveys will need Zebra Conchylodes to be conducted to document those Crambus agitatellus species. These forests also support a Double-banded Grass-veneer wide diversity of mammals, reptiles, Crambus satrapellus amphibians, and fish with many feeding Crocidophora tuberculalis on moths or their larvae. Pale-winged Crocidophora Moth Desmia funeralis For more information, visit our website: Grape leaf-folder www.fws.gov/southwest Desmia subdivisalis Diacme elealis Contact the Refuge staff if you should Paler Diacme Moth find an unlisted or rare species during Diastictis fracturalis your visit and provide a description.
    [Show full text]
  • Butterflies and Moths of Cumberland County, Tennessee, United
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Olive Shootworm, Palpita Persimilis Munroe (Insecta: Lepidoptera: Crambidae)1 James E
    EENY556 doi.org/10.32473/edis-in995-2013 Olive Shootworm, Palpita persimilis Munroe (Insecta: Lepidoptera: Crambidae)1 James E. Hayden and Lyle J. Buss2 The Featured Creatures collection provides in-depth profiles leaves and silk in which they consume the leaves and, in of insects, nematodes, arachnids and other organisms some species, also the fruit. relevant to Florida. These profiles are intended for the use of interested laypersons with some knowledge of biology as well as academic audiences. Introduction Palpita persimilis Munroe (Lepidoptera: Crambidae) is a defoliator of olives and privet in South America (Gomez 1999; Chiaradia and Da Croce 2008). Examination of specimens submitted to UF/IFAS and FDACS-DPI prompted the discovery that the species has been estab- lished in Florida for many years, having been confused with two similar native species. The confusion parallels historical misidentifications in Peru (Gomez 1999). To date, most vouchered specimens in Florida with host information were Figure 1. Palpita persimilis, adult habitus. Scale = 1 cm. found feeding on leaves of Ligustrum japonicum Thunb. Credits: James E. Hayden (Japanese privet). The initial detection in Florida was an infestation of ornamental privet trees in Sumter County in July 2012. Palpita Hübner includes several dozen tropical and temper- The homeowner indicated that other infestations were ate species globally, most of which feed on Oleaceae if the unreported in the area. More specimens were subse- host is known. Palpitavitrealis (Rossi), better known by the quently found in the Florida State Collection of Arthropods synonym Palpita unionalis (Hübner), is a major pest of olive (FSCA), the earliest of which were raised on privet in and jasmine in Europe and Asia (Yilmaz and Genç 2012).
    [Show full text]
  • The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia
    The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia: Distribution, Importance and Origin D.F. Waterhouse (ACIAR Consultant in Plant Protection) ACIAR (Australian Centre for International Agricultural Research) Canberra AUSTRALIA The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MO'lOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or deemed relevant to ACIAR's research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for 1I1lernational Agricultural Resl GPO Box 1571, Canberra, ACT, 2601 Waterhouse, D.F. 1993. The Major Arthropod Pests an Importance and Origin. Monograph No. 21, vi + 141pI- ISBN 1 86320077 0 Typeset by: Ms A. Ankers Publication Services Unit CSIRO Division of Entomology Canberra ACT Printed by Brown Prior Anderson, 5 Evans Street, Burwood, Victoria 3125 ii Contents Foreword v 1. Abstract 2. Introduction 3 3. Contributors 5 4. Results 9 Tables 1. Major arthropod pests in Southeast Asia 10 2. The distribution and importance of major arthropod pests in Southeast Asia 27 3. The distribution and importance of the most important arthropod pests in Southeast Asia 40 4. Aggregated ratings for the most important arthropod pests 45 5. Origin of the arthropod pests scoring 5 + (or more) or, at least +++ in one country or ++ in two countries 49 6.
    [Show full text]