Addressing Parking Garage Corrosion with Silica Fume THOMAS C

Total Page:16

File Type:pdf, Size:1020Kb

Addressing Parking Garage Corrosion with Silica Fume THOMAS C 8 TRANSPORTATION RESEARCH RECORD 1204 Addressing Parking Garage Corrosion with Silica Fume THOMAS C. WElL Because it reduces chloride penetrability, silica-fume so does the corrosion rate. The corrosion product will concrete is gaining popularity as a corrosion-protection expand in size by roughly four times its original volume, system for parking garages, bridge decks, and other creating tensile pressures on the concrete up to 10,000 psi. structures. This paper provides an overview of experience The concrete eventually ruptures, causing cracking and with silica-fume concrete in the United States. spalling which allows more chlorides to enter at an even Twenty-two hundred parking areas were built between the faster rate. Eventually, the concrete will deteriorate, years 1979 and 1984 in what would be considered the frost requiring expensive rehabilitation or causing structural belt of the United States. Of these, 630 contained 150 failure. spaces or more (according to the McGraw-Hill Obviously, steps must be taken to protect these Construction Group). With more than 100 of the larger structures against chloride-induced corrosion. Because it is structures being constructed on an annual basis, it is very unlikely that the use of deicing salt will cease, design important that precautions be taken to protect them against engineers must rely on corrosion protection methods to deicing salt-induced corrosion. The latest exciting product protect their structures. Corrosion protection in many other to enter the corrosion protection market is silica fume (microsilica). industries is a normal part of the design package. For Concrete in a nonaggressive environment is a very reinforced concrete structures, however, it is a fairly new strong, durable, and long-lasting building material. In feature. Even so, many types of corrosion protection aggressive environments, some precautions may be needed products are already available on the market, and most have to protect the concrete or embedded steel. With the use of proven their worth. deicing salts since the early 1960s to keep our roads clear of Surface sealants and membrane systems attempt to snow and ice, concrete transportation-type structures are physically block chlorides from entering the concrete and now under attack. Bridges and parking garages are prevent them from reaching the rebar. Coated reinforcing deteriorating at an alarming rate due to chloride-induced steel attempts to place a physical barrier between the corrosion. Bridge decks have deicing chemicals deposited concrete and steel, thus preventing the chlorides from directly on the surface where the chemicals affect not only attacking the steel. Calcium nitrite corrosion inhibitor the deck but also the supporting structural members due to promotes the stabilization of the steel’s natural passivating leakage. Although deicing chemicals are used only layer, thereby controlling the corrosion rate. And finally, sporadically in parking garages, cars carry salt-infested snow latex modifiers and silica fume reduce the permeability of into the garages. Much of this salt remains after the cars the concrete, considerably slowing the ingress of chlorides. leave. Each of these systems has a different operational Unlike bridges, however, which are washed by spring mechanism, but all help extend the service life of the rains, parking garages are rarely washed down in the spring. structure. The salts deposited in the winter remain all year. Indeed, Silica fume is a by-product of silicon, ferrosilicon, or when comparing concrete chloride contents of bridge decks other silicon alloy production in a submerged arc electric and parking garage decks in the same location, and all other furnace. It contains a silica (SiO2) content of 85 percent or parameters being equal, the garage decks usually show a greater and has as an extremely fine particle size, which has higher chloride content at all slab depths. This chloride caused some researchers to call it a “super pozzolan.” The content is due to the presence of larger amounts of chlorides ultra-fine particle size of roughly 0.1 micrometers allows the on the slab surface during warmer weather. As ambient silica fume to fill the voids in the cement paste and between temperatures rise, chlorides are able to diffuse through the the cement paste and aggregate while the pozzolanic feature concrete pores at a greater rate of speed. causes reaction with the excess calcium hydroxide The highly alkaline environment of concrete creates a (Ca(OH)2). This process results in a far less permeable protective passivating layer on steel that inhibits the electro- microstructure matrix that appears homogeneous and that chemical reaction of corrosion under normal conditions. has no gaps and no large crystals of Ca(OH)2 (1). Chlorides will move through the concrete pores as well as Fairly long-term studies (2) have shown that silica fume through the transition zone between the paste and aggregate reduces the apparent diffusion coefficient of concrete by at and eventually reach the embedded steel. Penetration of the least an order of magnitude. Other long-term salt water passivating layer takes place, and corrosion of the steel ponding studies at H. R. Grace & Co.’s Construction Prod- begins. As the chloride content around the rebar increases, ucts Division, Cambridge, Massachusetts, are beginning to corroborate these results. W. R. Grace & Company, Construction Products Division, Cambridge, Mass. Weil 9 calcium hydroxide to produce more calcium silicate hydrate TABLE 1 CHLORIDE PERMEABILITY BASED ON CHARGE paste and filling the pores between the aggregate and cement PASSED grains. More paste with fewer voids creates a better bond Charge Passed Chloride Typical between the aggregate, producing higher strengths. To (coulombs) Permeability Description continue the earlier example (4), the concrete mix 4,000 High High water-cement ratio containing a cement factor of 550 lb of type I cement with a (0.6); conventional PCC water-cement ratio of 0.45 will produce a 28-day 2,000—4,000 Moderate Moderate water-cement ratio (0.4—0.5); compressive strength of 5,500 psi. Adding 7.5 percent silica conventional PCC fume by weight of cement and a high-range water reducer to 1,000—2,000 Low Low water-cement ratio insure workability produces a 28-day strength of 9,500 psi. (0.4); conventional PCC When 15 percent silica fume is added, the 28-day strength 100—1,000 Very Low Latex-modified concrete, reaches 10,300 psi (Table 2). The engineer should take internally sealed concrete advantage of this increased compressive strength and design 100 Negligible Polymer-impregnated not only for reduced concrete chloride permeability but for concrete; polymer concrete high concrete strengths as well. Actual concrete permeability is a feature that cannot, Due to reduced concrete chloride permeability, silica- unfortunately, be measured quickly for upcoming projects. fume concrete is gaining popularity as a major corrosion- In response to this problem, the Federal Highway protection system for parking garages, bridge decks, and Administration has produced a rapid test method for other structures. To date, the two major silica-fume determining the apparent chloride permeability of various admixture suppliers have participated in the construction of concretes (3). The 4-in.-diameter by 2-in.-thick specimens 39 parking garage projects (both completed and under are subjected to a 60-V potential for 6 hr to measure the construction). The first silica-fume parking garage was charge passed in coulombs. At least a dozen parameters completed in 1984, while 27 were either completed in 1986 affect the final coulomb reading, so five chloride or under construction in 1987. The average-size project 3 permeability categories were created (Table 1). Coulomb contained 3,500 yd of concrete, with the smallest 3 3 readings from different samples that fall in the same containing 150 yd . The largest, 45,000 yd is under category are considered to be equivalent as far as chloride construction. Dosage rates ranged from 3.75 percent silica permeability is concerned. Design engineers who have fume by weight of cement to 16 percent with an average of specified silica fume thus far required concrete coulomb 7.5 percent. Types of projects include less permeable over- readings to be in the 100—1,000 coulomb category (very lays, toppings on prestressed double tees, rehabilitation low). ranging from large-scale patching to completed deck Some engineers believe inaccuracies exist in the FHWA replacement, and standard cast-in-place new construction. test and are not specifying coulomb levels, but rather Even with all its advantages, silica-fume concrete does “percent silica fume by weight of cement.” Usually a require extra attention during finishing and curing. Due to specified silica fume quantity is based on prespecification the cohesiveness of silica-fume concrete, it is recommended testing at a local laboratory to see what amount will attain a that slumps at least an inch higher than normally placed be coulomb level of 1,000 or less. As an example, tests (4) run used. Another area of caution is the reduced amount of on a 550-lb cement factor mix with a water-cement ratio of bleed water after a slab is placed. Above a dosage rate of 5 0.45 yielded a coulomb reading of 3,600. When 7.5 percent percent silica fume by weight of cement, the bleed rate silica fume by weight of cement was added, a coulomb drops dramatically. As the silica-fume content increases, the reading of 850 was produced; while a 15 percent silica-fume bleed rate correspondingly decreases. ACI 302, Guide for addition gave 200 coulombs. It is not uncommon to see Concrete Floor and Slab Construction, or ACI 3()~, silica-fume specifications of 7.5 percent by weight of Standard Practice for Curing Concrete, should be followed cement. to reduce the possibility of plastic shrinkage cracks. Besides reducing concrete chloride permeability, silica- Recommended procedures include fogging during finishing fume concrete has many other benefits: increased abrasion and wet burlap or the use of curing compounds during curing.
Recommended publications
  • Experimental Investigation on Concrete by Using Hemp Fibers and Combined Replacement of Cement with Ggbs
    Science, Technology and Development ISSN : 0950-0707 EXPERIMENTAL INVESTIGATION ON CONCRETE BY USING HEMP FIBERS AND COMBINED REPLACEMENT OF CEMENT WITH GGBS AND MARBLE POWDER 1GADDAM SAI KRISHNA 1 Assistant Professor, Department of Civil Engineering, NRI Institute of Technology, JNTU Kakinada, Guntur, Andhra Pradesh, India. (e-mail: [email protected]) 2N. RAVI KUMAR 2 B.Tech Student, Department of Civil Engineering, NRI Institute of Technology, JNTU Kakinada, Guntur, Andhra Pradesh, India. (e-mail: [email protected]) 3 Dr.K. CHANDRAMOUI 3 Professor, Department of Civil Engineering, NRI Institute of Technology, JNTU Kakinada, Guntur, Andhra Pradesh, India. (e-mail: [email protected]) Abstract— Concrete is the composition of cement, is the type of concrete that uses to replace the lime coarse aggregate, fine aggregate, water. Concrete is good cements in binder. in compression. In we discuss about the different uses of addition of hemp fibers and combine replacement of Nano concrete is a form of concrete that contains cement with GGBS and sand with marble powder to the Portland cement particles with size not greater than 100 concrete. μm and also silica particles with size not greater than In this we use different percentages of GGBS and 500 μm, which fill voids that would otherwise occur in marble powder as replacement for cement and adding normal concrete, thereby substantially increasing the 0.5% of hemp fibers respectively. The percentages of material's strength. It is a product of high-energy GGBS and marble powder combinely replaced in M50 grade of concrete i.e, different percentages mixing (HEM) of cement, sand and water.
    [Show full text]
  • Recycled Polymer Materials As Aggregates for Concrete and Blocks
    53 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 1, June, 2012 Recycled Polymer Materials as Aggregates for Concrete and Blocks 1* 1 2 2 Md. Mostafizur Rahman , Md. Akhtarul Islam , Mainuddin Ahmed and Md. Abdus Salam 1Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology (SUST), Sylhet- 3114, Bangladesh 2Housing and Building Research Institute, Darus-salam Road, Mirpur, Dhaka-1216 Phone: 02-8060989, Fax: 02-8060773, E-mail:[email protected] Abstract The potential of recycled waste polymeric materials as a substitute for aggregates in concrete has been investigated in the study. Two different types of waste polymer, namely polyurethane formaldehyde (PUF) based packaging waste and high density polyethylene (HDPE) were recycled and used in the experiment. Concrete and masonry poly block specimens were prepared using recycled polymer materials, and test specimens were characterized. The effects of waste polymer materials on the mechanical, physical and morphological properties of concrete and poly blocks have been investigated. The result shows that the inclusion of waste polymer materials decreases density, porosity and water absorption of concrete and poly blocks significantly. Polyurethane formaldehyde (PUF) based block exhibited lower density than that of HDPE-based concrete. Due to exceptionally low density, recycled polymer modified blocks and concrete can be used in non-load bearing structures, floating structures and where light weight materials recommended. Keywords: Waste Polymer, recycling, concrete, masonry poly block, porosity 1. Introduction it may appear to be valuable property as construction material. Inclusion of polymer waste in concrete can be The rapid urbanization and industrialization all over the a proper utilization of this valuable property.
    [Show full text]
  • Geopolymer Concrete with Replacement of Cement
    Special Issue - 2016 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 NCACE - 2016 Conference Proceedings Geopolymer Concrete with Replacement of Cement Hamid Khan, Dushyant Purohit, Deependra Bagara, Hanuman Sahay Pahadiya Department of Civil Engineering Poornima group of institutions, Jaipur Abstract- Concrete is the most abundant manmade material ‘inorganic polymer’ has emerged as a ‘green’ binder with in the world. One of the main ingredients in a normal concrete wide potentials for manufacturing sustainable materials for mixture is Portland cement. However, the production of cement environmental, refractory and construction applications. Geo- is responsible for approximately 5% of the world’s carbon polymer concrete (gpc) has ingredients required for creation of dioxide emissions. In order to create a more sustainable world, geo-polymer binders such as Geo-polymer source materials engineers and scientists must develop and put into use a green such as fly ash, ggbs, Metakaolin, rice husk ash, etc. building material. Geo-polymer concrete is also much more durable that ordinary concrete due to its resistance to corrosion. B. Properties Of Geo-Polymer Concrete It is also much stronger than ordinary concrete. Geo-polymer is made by the mixture of fly ash, sodium hydroxide, sodium Geopolymer are inorganic binders, which are identified by Silicate and water. In this paper, we will present different the basic properties such as Compressive strength depends on properties like compressive strength, durability etc. of geo- curing time and curing temperature. As the curing time and polymer concrete with comparison to Portland cement. temperature increases, the compressive strength increases. Then, Resistance to corrosion, since no limestone is used as a Keywords - Geo-Polymer Concrete, Fly Ash, Ggbs, Portland material, Geopolymer cement has excellent properties within Cement both acid and salt environments.
    [Show full text]
  • Armorhab: Design Reference Architecture (DRA) for Human
    Copyright © 2016 by Dark Sea Industries LLC and the University of New Mexico. Published by The Mars Society with permission ArmorHab: Design Reference Architecture (DRA) for human habitation in deep space Peter Vorobieff Professor and Assistant Chair, Assistant Chair of Facilities, Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: (505) 277-8347 email: [email protected] Affiliation: University of New Mexico Craig Davidson Administrator 4808 Downey NE Albuquerque, NM 87109 Phone: 505-720-2321 email: [email protected] Affiliation: Dark Sea Industries LLC Dr. Mahmoud Reda Taha, Peng Professor and Chair, Department of Civil Engineering University of New Mexico, Albuquerque, NM 87131-0001 Office: (505) 277-1258, Cell: (505) 385-8930, Fax (505) 277-1988 http://civil.unm.edu/faculty-staff/faculty-profiles/mahmoud-taha.html www.unm.edu/~mrtaha/index.htm Affiliation: University of New Mexico Christos Christodoulou Associate Dean for Research Distinguished Professor, Electrical & Computer Engineering University of New Mexico Albuquerque, NM 87131 Tel: (505) 277-6580 www.ece.unm.edu/faculty/cgc www.cosmiac.org Affiliation: University of New Mexico Anil K. Prinja Professor and Chair Department of Nuclear Engineering University of New Mexico Albuquerque, NM 87131-1070 -1- Copyright © 2016 by Dark Sea Industries LLC and the University of New Mexico. Published by The Mars Society with permission Phone: (505)-277-4600, Fax: (505)-277-5433 [email protected] Affiliation: University of New Mexico Svetlana V. Poroseva Assistant Professor Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: 1(505) 277-1493, Fax: 1(505) 277-1571 email: poroseva at unm.edu Affiliation: University of New Mexico Mehran Tehrani Assistant Professor Department of Mechanical Engineering University of New Mexico, Albuquerque, NM, 87131 Phone: 1(505) 277-1493, Fax: 1(505) 277-1571 email: [email protected] Affiliation: University of New Mexico David T.
    [Show full text]
  • Polymer Concretes: a Description and Methods for Modification and Improvement
    Journal of Materials Education Vol. 33 (1-2): 37 - 52 (2011) POLYMER CONCRETES: A DESCRIPTION AND METHODS FOR MODIFICATION AND IMPROVEMENT G. Martínez-Barrera 1*, E. Vigueras-Santiago 1, O. Gencel 2 and H.E. Hagg Lobland 3 1 Laboratorio de Investigación y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Química, Universidad Autónoma del Estado de México, Km.12 de la carretera Toluca-Atlacomulco, San Cayetano 50200, México; [email protected]; http://www.uaemex.mx/fquimica/ 2 Civil Engineering Department, Faculty of Engineering, Bartin University, 74100 Bartin, Turkey; 3 Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering and Center for Advanced Research and Technology (CART), University of North Texas, 1150 Union Circle # 305310, Denton TX 76203-5017, USA; [email protected]; http://www.unt.edu/LAPOM/ * corresponding author after publication ABSTRACT Portland cement concrete (PCC) has been successful in many applications. However, since the 1960s technological investigations concerning modifications of concrete by polymeric materials have been conducted. Attention has been focused on concretes in which the continuous phase is some kind of polymeric resin and the discrete phase is some type of mineral aggregate. Such composite materials are known as Polymer concrete (PCt) and boast several advantages such as higher strength and a shorter curing process. In spite of these advantages, there are deficiencies that could be addressed by fiber incorporation into PCts, however this kind of approach is not typical. Here we acquaint readers with the nature of polymer concretes as these materials have not yet gained wide recognition. We describe recent developments regarding the influence of fiber reinforcements on PCts.
    [Show full text]
  • 548.1R-97 Guide for the Use of Polymers in Concrete
    ACI 548.1R-97 Guide for the Use of Polymers in Concrete Reported by ACI Committee 548 Members of the committee who voted on the original document David W. Fowler* Glen W. DePuy* Chairman Secretary Souad Al-Bahar Floyd E. Dimmick Lawrence E. Kukacka Charles R. McClaskey Allan F. Soderberg Hiram P. Ball, Jr. Arhtur M. Dinitz Joseph A. Lavelle Peter Mendis Rodney J. Stebbins John J. Bartholomew Wolfgang O. Eisenhut Dah-Yinn Lee Scott S. Pickard R. N. Swamy John Bukovatz† Larry J. Farrell V. Mohan Malhotra Sandor Popovics Alan H. Vroom Richard P. Chmiel Harold L. Fike John A. Manson* Ernest K. Schrader* David D. Watson John Chrysogelos, Jr. Jack J. Fontana* Darrell E. Maret† Surendra P. Shah Gerald A. Woelfl Thomas R. Clapp George C. Hoff* Henry N. Marsh, Jr.* W. Glenn Smoak* Robert L. Yuan James T. Dikeou* Louis A. Kuhlmann* * Members of the Committee who prepared this guide † Deceased Members of the committee who voted on the 1994 and 1995 revisions D. Gerry Walters Paul D. Krauss Chairman Secretary Phillip L. Andreas Larry J. Farrell Lou A. Kuhlmann Shreerang Nabar W. Glenn Smoak John J. Bartholomew Jack J. Fontana William Lee Michael J. O’Brien Joe Solomon Douglas J. Bolton David W. Fowler Henry N. Marsh, Jr. Sandor Popvics Micheal M. Sprinkel Gary Billiard Robert Gaul James Maass Kenneth A. Poss Baren K. Talukdar W. Barry Butler Arthur H. Gerber Stella L. Marusin John R. Robinson Cumaras Vipulanandan Robert R. Cain George C. Hoff William C. McBee Rockwell T. Rookey Alan H. Vroom Paul D.
    [Show full text]
  • SILICA FUME in SHOTCRETE Authors: D.R
    SILICA FUME IN SHOTCRETE Authors: D.R. Morgan and J.T. Wolsiefer This paper was originally published in the proceedings of the CANMET/ACI International Workshop on the use of Silica in Concrete in Washington, D.C., USA during April of 1991. © 1991 Silica Fume in Shotcrete By John Wolsiefer, Sr. and D.R. Morgan S YNOPSIS : Silica fume was first used in shotcrete in Norway in the nineteen seventies. In the early nineteen eighties the use of silica fume developed in North America, first in Western Canada and then in the United States. Silica fume has been added to both wet-mix and dry-mix shotcrete in a variety of different forms, including: as-produced, uncompacted silica fume; compacted low density silica fume; compacted high density silica fume; and as a slurry. This paper examines the influence of addition of the first three of the above forms of silica fume on the properties of plastic and hardened wet-mix and dry-mix shotcrete, compared to the performance of plain control Portland cement shotcretes. Parameters evaluated included the batching, mixing, conveying and shooting characteristics of the shotcretes. Plastic shotcrete properties evaluated included: slump and air content in the as-batched and applied wet-mix shotcrete; thickness to bond break (sloughing) on shotcrete applied to both vertical and overhead surfaces; and rebound on vertical and overhead surfaces. Properties of the hardened shotcrete evaluated included: compressive strength at 1, 7, 28 and 63 days; flexural strength at 7 and 28 days; boiled absorption and volume of permeable voids; drying shrinkage; rapid chloride permeability, and electrical resistivity.
    [Show full text]
  • Fly Ash Polymer Concretes
    Fly Ash Polymer Concretes Lech Czarnecki, Andrzej Garbacz, and Joanna J. Sokołowska Department of Building Materials Engineering, Faculty of Civil Engineering of Warsaw University of Technology – Al. Armii Ludowej 16, 00-637 Warsaw, Poland. E-mail: <[email protected]>, <[email protected]>, <[email protected]>. ABSTRACT In the paper the effect of silica microfiller replacement by calcium fly ashes on polymer concrete mechanical properties, as well as binder hardening characteristics were investigated. This approach follows the sustainable development requirements in a building industry. Additionally, replacing components with less expensive equivalents lowers the material cost. Although fly ashes are commonly used in portland cement concrete technology, the calcium fly ashes are difficult to utilize in CC, mainly due to high variation in chemical composition. Investigation was carried out for polyester resin and calcium fly ashes from brown and hard coal combustion, with special attention given to the second one, as fly ash of lignite showed substantial similarities in properties to silica microfiller – quartzite meal. Twenty mixes with different polymer/microfiller, aggregate/polymer and microfiller/aggregate ratios were tested using statistical design of experiment. The obtained results were used for optimization of composition of PC containing calcium fly ash. INTRODUCTION FC – polymer concrete, the concrete-like composite where portland cement binder is substituted with an organic resin [Czarnecki 2005] is considered as a high performance material due to its main advantages – high values of mechanical parameters and chemical resistance. Those demanded in civil engineering features cause that the range of application of PC is wide [Fowler 1999, Czarnecki 2007] – e.g.
    [Show full text]
  • Applications of Permanent Precast Polymer Concrete Forms for Concrete Rehabilitation
    46 Transportation Research Record 1003 3. R.D. Eash and H.H. Shafer. In Transportation Re­ 6. Grand Rapids City--County Parking Garage. Con­ search Record 542, TRB, National Research Coun­ crete Repair Method Evaluation. Grand Rapids, cil, Washington, D.C., 1975. Mich., 1980. 4. Portland Cement Association. Properties of Latex 7. American Concrete Institute. Specifications for Modified Shotcrete. Construction Technology Lab­ Materials, Proportioning and Application of oratories, Skokie, Ill., 1978. Shotcrete. Standard ACI 506.2-77. Detroit, 5 . Bonneville Second Powerhouse. Report on Tests on Mich., 1977. Latex Modified Shotcrete and Conventional Shot­ 8 . Styrene-Butadiene Latex Modifiers for Bridge crete Panels. North Pacific Division Materials Deck Overlay Concrete. FHWA-RD-78-35. FHWA, U.S. Laboratory, u.s. Army Corps of Engineers, Trout­ Department of Transportation, 1978. dale, Oreg., 1980. Applications of Permanent Precast Polymer Concrete Forms for Concrete Rehabilitation DOUGLAS BARNABY and JAMES T. DIKEOU ABSTRACT fects, use of polymer concretes have increased. The high strength-to-weight ratio of polymer concretes and their resistance to freeze-thaw cycles and road Two case studies are presented of the use of salts enable them to be used for rehabilitating and precast polymer concrete stay-in-place forms upgrading highway and transportation structures. Be­ for rehabilitation of transportation struc­ cause polymer concrete formulations do not include tures. The first study is on p recast median water, the tiny capillaries that remain in conven­ barrier shells used by the Pennsylvania tional cement concrete after the curing water evapo­ Turnpike Commission. The new barrier re­ rates are not present. Therefore, the material is placed an obsolete, deteriorated 4-ft-wide nonporous and provides a sealing and protective bar­ concrete island.
    [Show full text]
  • Silica Fume in Shotcrete Tremely Low, Being in the "Excellent" *Morgan
    Silica ume in Shotcrete by John Wolsiefer, Sr., and Dudley R. Morgan 28 Shotcrete • Winter 2003 Table 3 - Plastic properties of wet-mix shotcrete Table 1 - Wet-mix shotcrete mix Mix A B c D designs, kgfm3 Mix type PC USF CLDSF CHDSF Ambient temperature, C 9 10 13 14 Mix A B D c Shotcrete temperature, C 14 12 15 13 Mix type PC USF CLDSF CHDSF Slump, mm Portland cement, Type I 401 350 353 359 Base shotcrete 40 50 45 100 Silica fume - 47 48 46 After SF & superplasticizer - 50 35 20 Coarse aggregate, 10 mm, 462 485 475 467 Air content, percent SSD Base shotcrete 8.5 7.2 8.0 7A Concrete sand, SSD 1258 1213 1239 1263 After SF & superplasticizer - 6A 5.8 5.8 Water 171 177 177 176 As-shot 4.8 3.9 3.2 2.6 Water-reducing 887 1952 1952 1922 admixture, ml Thickness to bond break Superplasticizer, m1 - 1597 1597 1360 Overhead application, mm 95 130 280 180 Air-entraining admixture, 118 296 296 296 Vertical application, mm 305 330 380 405 ml Overhead rebound, percent - 12.9 12.3 10.4 Total 2294 2297 2296 2314 Vertical rebound. nercent 3.4 2.7 3.7 3.9 Table- 2 Dry-mix shotcrete mix Table 4 - Plastic properties of dry-mix designs, kg/m3 shotcrete Mix E , F G H Mix E F .G H Mix type PC USF CLDSF CHDSF Mix type PC USF CLDSF CHDSF Portland cement, Type I 425 373 373 373 Ambient temperature, C 6 6 8 7 Silica fume - 49 49 49 Shotcrete temperature, C 14 16 14 13 Coarse aggregate, 10 mm, 495 491 491 491 Thickness to bond bread SSD Overhead application, mm 65 380 280 230 Concrete sand, SSD 1216 1204 1204 1204 Vertical application, mm 205 460 560 460 Water (estimated) 163 165 165 165 Overhead rebound, percent 42.7 20.4 25.2 18.6 Total 2300 2281 2281 2281 Vertical rebound percent 45.4 21.1 22.9 24.6 Shotcrete test program Mix designs and supply water reacting with the cement and sil­ ica fume is too short for effective A study was undertaken to evaluate the The wet- and dry-mix shotcrete mix water reduction before the mix is actu­ performance characteristics of three designs used are shown in Tables 1 ally consolidated in place on the shot­ different silica fume product forms in and 2.
    [Show full text]
  • Current Sustainable Trends of Using Waste Materials in Concrete—A Decade Review
    sustainability Review Current Sustainable Trends of Using Waste Materials in Concrete—A Decade Review Malindu Sandanayake * , Yanni Bouras, Robert Haigh and Zora Vrcelj ISILC, College of Engineering and Science, Victoria University, Melbourne VIC3011, Australia; [email protected] (Y.B.); [email protected] (R.H.); [email protected] (Z.V.) * Correspondence: [email protected]; Tel.: +61-399195746 Received: 27 October 2020; Accepted: 15 November 2020; Published: 18 November 2020 Abstract: Concrete is the most used construction material in the world. Consequently, the mass extraction of virgin materials required for concrete production causes major environmental impacts. With a focus on promoting sustainability, numerous research studies on incorporating waste materials to replace virgin substances in concrete were undertaken. Despite this vast volume of published literature, systematic research studies on these sustainable concrete mixes that inform various stakeholders on current research trends, future research directions, and marketability options products are seldom conducted. This paper presents a decade review on sustainable concrete with a focus on virgin materials being replaced with waste materials. It aims to inform researchers of current research trends and gaps in the research area of waste material use in concrete. The review also identifies key parameters that restrict the marketability of these sustainable concrete products. The three-step research methodology involves a bibliometric assessment, a key review of selected waste materials, and an interview with a panel of experts focusing on impediments towards the transition of sustainable concrete products into the industry market. Bibliometric assessment was based on 1465 research publications in which five key materials (plastic, glass, fly ash, slag) and construction and demolition waste were selected for the review.
    [Show full text]
  • Shapes of Gray: Concepts in Concrete
    Syracuse University SURFACE School of Architecture Dissertations and Architecture Senior Theses Theses Spring 2013 Shapes of Gray: Concepts in Concrete Ford Bostwick Syracuse University Follow this and additional works at: https://surface.syr.edu/architecture_theses Part of the Architecture Commons Recommended Citation Bostwick, Ford, "Shapes of Gray: Concepts in Concrete" (2013). Architecture Senior Theses. 162. https://surface.syr.edu/architecture_theses/162 This Thesis, Senior is brought to you for free and open access by the School of Architecture Dissertations and Theses at SURFACE. It has been accepted for inclusion in Architecture Senior Theses by an authorized administrator of SURFACE. For more information, please contact [email protected]. FORD BOSTWICK SHAPES OF GRAY: CONCEPTS IN CONCRETE CONCRETE CONCEPTS IN GRAY: SHAPES OF FORD BOSTWICK TABLE OF CONTENTS INTRODUCTION 1 A HISTORY OF 30 - 32 RELEVANT ARTWORK WHAT CON- 2 - 10 PROPOSITIONS 33 - 46 CRETE IS FOR FUTURE CONCRETE A HISTORY OF 11 - 16 RESEARCH AND 47 - 58 CONCRETE DEVELOPMENT A HISTORY OF 17 - 21 END NOTES 59 - 62 CHAIR DESIGN A HISTORY OF 22 - 25 PNEUMATIC STRUCTURES A HISTORY OF 26 - 29 CONCRETE BLOCKS 1 Concrete is plastic and highly manipulatable. Its characteristics and the forms it takes are vastly diverse and its history as a building material is broken and nonlinear. By charting the trajectory of its manifestations and uses over time, as well as the trajectories of constituent things (chairs, pneumatic structures, blocks, and relevant artwork), I’ve reached an understanding of what some possible valuable futures for concrete might look like. I have proposed three of these possible futures in doodle form.
    [Show full text]