The Discovery of the Top Quark

Total Page:16

File Type:pdf, Size:1020Kb

The Discovery of the Top Quark The discovery of the top quark Claudio Campagnari University of California, Santa Barbara, California 93106 Melissa Franklin Harvard University, Cambridge, Massachusetts 02138 Evidence for pair production of a new particle consistent with the standard-model top quark has been reported recently by groups studying proton-antiproton collisions at 1.8 TeV center-of-mass energy at the Fermi National Accelerator Laboratory. This paper both reviews the history of the search for the top quark in electron-positron and proton-antiproton collisions and reports on a number of precise electroweak measurements and the value of the top-quark mass that can be extracted from them. Within the context of the standard model, the authors review the theoretical predictions for top-quark production and the dominant backgrounds. They describe the collider and the detectors that were used to measure the pair-production process and the data from which the existence of the top quark is evinced. Finally, they suggest possible measurements that could be made in the future with more data, measurements that would confirm the nature of this particle, the details of its production in hadron collisions, and its decay properties. [S0034-6861(97)00101-3] CONTENTS 2. Z tt background 174 → 3. Drell-Yan background 174 4. WW background 175 I. Introduction 137 5. bb¯ and fake-lepton backgrounds 175 II. The Role of the Top Quark in the Standard Model 138 6. Results 175 III. Top Mass and Precision Electroweak Measurements 140 B. Lepton 1 jets + b tag 176 A. Measurements from neutral-current experiments 140 1. Selection of lepton 1 jets data before b 1. Asymmetries at the Z 141 tagging 177 2. Lepton tagging in CDF and D0 178 2. Rb 142 B. W mass 142 3. Displaced-vertex tagging in CDF 180 4. Summary and cross checks of the tagging- C. Global fits for Mtop and MHiggs 142 IV. Top-Quark Production 144 background calculation on Z1 jets 184 A. Production mechanisms and cross sections 144 C. Lepton + jets 184 B. Top-quark hadronization 148 1. D0 lepton + jet kinematic analysis 185 C. Underlying event 148 2. CDF lepton + jets kinematic analysis 187 D. Modeling of top-quark production 149 3. Summary of lepton 1 jets kinematic analyses 188 V. Top-Quark Signatures 151 D. Significance of the top signal 189 E. Measurement of the pp¯ tt¯ cross section 190 A. Standard-model top-quark decay modes 151 → B. Detection of the top decay products 151 IX. Measurement of the Top-Quark Mass 191 1. Detection of electrons and muons 151 A. Direct measurements of the top-quark mass 2. Detection of quarks 152 from lepton 1 jets events 192 3. Detection of neutrinos 155 1. Constrained fits, combinatorics, and top-mass 4. Detection of tau leptons 155 resolution 192 C. All-hadronic mode 156 2. CDF and D0 top-mass measurements 194 D. Dilepton mode 156 3. Jet-energy corrections and systematics on the E. Lepton + jets mode 157 Mtop measurement 195 1. W + jets background 157 4. Updated CDF and D0 top-mass measurements 197 2. Separation of W1 jets and tt¯ for B. Top mass from dilepton events and kinematic distributions 198 Mtop,MW1Mb 159 3. Kinematic differences between tt¯ and W1 C. Reconstruction of the W mass from hadronic jets 160 decays in lepton 1 jets events 200 4. b-quark tagging 162 X. Future Prospects 201 VI. Early Searches for the Top Quark 164 A. Accelerator and detector upgrades 201 A. Searches in e1e2 collisions 164 B. Improving the top-mass measurement 202 B. Early searches in pp¯ collisions assuming C. Probing the Wtb vertex 203 standard-model top-quark decay 165 D. Further tests of the standard model and searches C. Searches for non-standard-model top-quark for new physics in the top-quark sector 205 decay modes 168 XI. Conclusion 207 VII. The Fermilab Proton-Antiproton Collider 169 Acknowledgments 207 A. Linear accelerators and synchrotrons 169 References 208 B. Antiproton source 170 C. Collider 170 I. INTRODUCTION VIII. Discovery of the Top Quark 171 A. Dilepton analysis results from CDF and D0 172 The intensive experimental efforts in the search for 1. Z ee/mm background 173 the heaviest fundamental fermion culminated in 1995 → Reviews of Modern Physics, Vol. 69, No. 1, January 1997 0034-6861/97/69(1)/137(75)/$21.25 © 1997 The American Physical Society 137 138 Campagnari and Franklin: The discovery of the top quark with the discovery of the top quark in proton-antiproton annihilations at the Fermilab Tevatron Collider. Obser- vation of the top quark is the latest in a long series of triumphs for the standard model of particles and fields. The top quark is the last fundamental fermion and the next-to-last fundamental particle predicted by the stan- dard model. Only the Higgs boson remains unobserved. The search for the top quark started in the late seven- ties, soon after discovery of the companion bottom quark. It has been a long and arduous process because the top quark turned out to be much more massive than was originally expected. The mass of the top quark is remarkably large, approximately 200 times larger than the mass of the proton and 40 times higher than the mass of the next-lightest quark. Whether this property of the top quark is a mere accident or a manifestation of a deeper physical process is an unanswered question in particle physics. The discovery of the top quark has been made pos- FIG. 1. Leptons and quarks in SU(2)3U(1) (standard model). sible by the technological progress in high-energy phys- Also shown are the values for the SU(2) weak isospin (I3), ics in the past fifteen years. In particular, the develop- U(1) weak hypercharge (Y), and electric charge (Q, in units ment of proton-antiproton colliders, pioneered first at of the electron charge). The subscripts L and R refer to the CERN and then at Fermilab, has been a crucial ingredi- left- and right-handed components, respectively. ent in the discovery of the top. In this article we review the discovery of the top quark as well as the developments that led to it. In Sec. three generations of quarks and leptons in the model, II we discuss the top quark within the framework of the with identical quantum numbers but different masses. standard model. While the top-quark mass is a free pa- Within each generation, quarks and leptons appear in rameter in the standard model, its value enters in calcu- pairs (see Fig. 1). The left-handed quarks form weak- lations of a number of electroweak observables. The isospin doublets, with the electric charge Q512/3 and top-mass dependence of the theoretical predictions is in Q521/3 quarks having weak isospin I3511/2 and general rather weak. However, many of these measure- 21/2, respectively. ments are now accurate enough that meaningful con- The tau lepton (t) was the first particle of the third straints on the top-quark mass can be obtained by com- generation to be discovered (Perl et al., 1975). A short paring them with theoretical predictions. These time later, in 1977, the Y was discovered at Fermilab constraints constitute a test of the predictive power of (Herb et al., 1977) as a resonance in the m1m2 invariant- the standard model and are reviewed in Sec. III. The mass spectrum in the reaction p1nucleon m1m21X. → top-production mechanisms in proton-antiproton colli- This resonance was interpreted as a bb¯ bound state (the sions and the experimental signatures of top events that Y), which subsequently decays into muon pairs. As will are crucial to the understanding of the experimental re- become abundantly clear in the remainder of this paper, sults are discussed in Secs. IV and V. Early searches for the top signature in hadron collisions is much more com- the top quark are described in Sec. VI. The Tevatron plicated. Collider, whose remarkable performance played a very In the past fifteen years a tremendous amount of ex- important role in the discovery of the top quark, will be perimental data on the properties of the b quark and of described briefly in Sec. VII. The data that finally led to b-flavored hadrons has become available, mostly from the discovery of the top quark are reviewed in Sec. VIII. 1 2 The value of the top mass is of fundamental importance, experiments at e e colliders. Both the charge and the and it is needed to complete precise tests of the standard weak isospin of the bottom quark are by now well estab- model. Furthermore, from an experimental point of lished (Qb521/3 and I3521/2). view, the techniques developed to measure the top mass The value of the charge was first inferred from mea- are new and particularly interesting. The top-mass mea- surements of the Y leptonic width (Ch. Berger et al., surement is described in Sec. IX. Historically, discover- 1978; Bienlein et al., 1978; Darden et al., 1978) at the ies of new leptons or quarks have opened up new fields DORIS e1e2 storage ring. This width is proportional to of inquiry that have enhanced our understanding of el- the square of the charge of the b quark (see Fig. 2), and ementary particles and their interactions. Consequently, can be quantitatively estimated from heavy quark- this article concludes in Sec. X with a discussion of the experimental prospects for top physics. II. THE ROLE OF THE TOP QUARK IN THE STANDARD MODEL Quarks and leptons constitute the basic building blocks of matter in the standard model (SM).
Recommended publications
  • Jet Quenching in Quark Gluon Plasma: flavor Tomography at RHIC and LHC by the CUJET Model
    Jet quenching in Quark Gluon Plasma: flavor tomography at RHIC and LHC by the CUJET model Alessandro Buzzatti Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2013 c 2013 Alessandro Buzzatti All Rights Reserved Abstract Jet quenching in Quark Gluon Plasma: flavor tomography at RHIC and LHC by the CUJET model Alessandro Buzzatti A new jet tomographic model and numerical code, CUJET, is developed in this thesis and applied to the phenomenological study of the Quark Gluon Plasma produced in Heavy Ion Collisions. Contents List of Figures iv Acknowledgments xxvii Dedication xxviii Outline 1 1 Introduction 4 1.1 Quantum ChromoDynamics . .4 1.1.1 History . .4 1.1.2 Asymptotic freedom and confinement . .7 1.1.3 Screening mass . 10 1.1.4 Bag model . 12 1.1.5 Chiral symmetry breaking . 15 1.1.6 Lattice QCD . 19 1.1.7 Phase diagram . 28 1.2 Quark Gluon Plasma . 30 i 1.2.1 Initial conditions . 32 1.2.2 Thermalized plasma . 36 1.2.3 Finite temperature QFT . 38 1.2.4 Hydrodynamics and collective flow . 45 1.2.5 Hadronization and freeze-out . 50 1.3 Hard probes . 55 1.3.1 Nuclear effects . 57 2 Energy loss 62 2.1 Radiative energy loss models . 63 2.2 Gunion-Bertsch incoherent radiation . 67 2.3 Opacity order expansion . 69 2.3.1 Gyulassy-Wang model . 70 2.3.2 GLV . 74 2.3.3 Multiple gluon emission . 78 2.3.4 Multiple soft scattering .
    [Show full text]
  • The Particle World
    The Particle World ² What is our Universe made of? This talk: ² Where does it come from? ² particles as we understand them now ² Why does it behave the way it does? (the Standard Model) Particle physics tries to answer these ² prepare you for the exercise questions. Later: future of particle physics. JMF Southampton Masterclass 22–23 Mar 2004 1/26 Beginning of the 20th century: atoms have a nucleus and a surrounding cloud of electrons. The electrons are responsible for almost all behaviour of matter: ² emission of light ² electricity and magnetism ² electronics ² chemistry ² mechanical properties . technology. JMF Southampton Masterclass 22–23 Mar 2004 2/26 Nucleus at the centre of the atom: tiny Subsequently, particle physicists have yet contains almost all the mass of the discovered four more types of quark, two atom. Yet, it’s composite, made up of more pairs of heavier copies of the up protons and neutrons (or nucleons). and down: Open up a nucleon . it contains ² c or charm quark, charge +2=3 quarks. ² s or strange quark, charge ¡1=3 Normal matter can be understood with ² t or top quark, charge +2=3 just two types of quark. ² b or bottom quark, charge ¡1=3 ² + u or up quark, charge 2=3 Existed only in the early stages of the ² ¡ d or down quark, charge 1=3 universe and nowadays created in high energy physics experiments. JMF Southampton Masterclass 22–23 Mar 2004 3/26 But this is not all. The electron has a friend the electron-neutrino, ºe. Needed to ensure energy and momentum are conserved in ¯-decay: ¡ n ! p + e + º¯e Neutrino: no electric charge, (almost) no mass, hardly interacts at all.
    [Show full text]
  • The Positons of the Three Quarks Composing the Proton Are Illustrated
    The posi1ons of the three quarks composing the proton are illustrated by the colored spheres. The surface plot illustrates the reduc1on of the vacuum ac1on density in a plane passing through the centers of the quarks. The vector field illustrates the gradient of this reduc1on. The posi1ons in space where the vacuum ac1on is maximally expelled from the interior of the proton are also illustrated by the tube-like structures, exposing the presence of flux tubes. a key point of interest is the distance at which the flux-tube formaon occurs. The animaon indicates that the transi1on to flux-tube formaon occurs when the distance of the quarks from the center of the triangle is greater than 0.5 fm. again, the diameter of the flux tubes remains approximately constant as the quarks move to large separaons. • Three quarks indicated by red, green and blue spheres (lower leb) are localized by the gluon field. • a quark-an1quark pair created from the gluon field is illustrated by the green-an1green (magenta) quark pair on the right. These quark pairs give rise to a meson cloud around the proton. hEp://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html Nucl. Phys. A750, 84 (2005) 1000000 QCD mass 100000 Higgs mass 10000 1000 100 Mass (MeV) 10 1 u d s c b t GeV HOW does the rest of the proton mass arise? HOW does the rest of the proton spin (magnetic moment,…), arise? Mass from nothing Dyson-Schwinger and Lattice QCD It is known that the dynamical chiral symmetry breaking; namely, the generation of mass from nothing, does take place in QCD.
    [Show full text]
  • Differences Between Quark and Gluon Jets As Seen at LEP 1 Introduction
    UA0501305 Differences between Quark and Gluon jets as seen at LEP Marek Tasevsky CERN, CH-1211 Geneva 28, Switzerland E-mail: [email protected] Abstract The differences between quark and gluon jets are stud- ied using LEP results on jet widths, scale dependent multi- plicities, ratios of multiplicities, slopes and curvatures and fragmentation functions. It is emphasized that the ob- served differences stem primarily from the different quark and gluon colour factors. 1 Introduction The physics of the differences between quark and gluonjets contin- uously attracts an interest of both, theorists and experimentalists. Hadron production can be described by parton showers (successive gluon emissions and splittings) followed by formation of hadrons which cannot be described perturbatively. The gluon emission, being dominant process in the parton showers, is proportional to the colour factor associated with the coupling of the emitted gluon to the emitter. These colour factors are CA = 3 when the emit- ter is a gluon and Cp = 4/3 when it is a quark. Consequently, U6 the multiplicity from a gluon source is (asymptotically) 9/4 higher than from a quark source. In QCD calculations, the jet properties are usually defined in- clusively, by the particles in hemispheres of quark-antiquark (qq) or gluon-gluon (gg) systems in an overall colour singlet rather than by a jet algorithm. In contrast to the experimental results which often depend on a jet finder employed (biased jets), the inclusive jets do not depend on any jet finder (unbiased jets). 2 Results 2.1 Jet Widths As a consequence of the greater radiation of soft gluons in a gluon jet compared to a quark jet, gluon jets are predicted to be broader.
    [Show full text]
  • Introduction to QCD and Jet I
    Introduction to QCD and Jet I Bo-Wen Xiao Pennsylvania State University and Institute of Particle Physics, Central China Normal University Jet Summer School McGill June 2012 1 / 38 Overview of the Lectures Lecture 1 - Introduction to QCD and Jet QCD basics Sterman-Weinberg Jet in e+e− annihilation Collinear Factorization and DGLAP equation Basic ideas of kt factorization Lecture 2 - kt factorization and Dijet Processes in pA collisions kt Factorization and BFKL equation Non-linear small-x evolution equations. Dijet processes in pA collisions (RHIC and LHC related physics) Lecture 3 - kt factorization and Higher Order Calculations in pA collisions No much specific exercise. 1. filling gaps of derivation; 2. Reading materials. 2 / 38 Outline 1 Introduction to QCD and Jet QCD Basics Sterman-Weinberg Jets Collinear Factorization and DGLAP equation Transverse Momentum Dependent (TMD or kt) Factorization 3 / 38 References: R.D. Field, Applications of perturbative QCD A lot of detailed examples. R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and Collider Physics CTEQ, Handbook of Perturbative QCD CTEQ website. John Collins, The Foundation of Perturbative QCD Includes a lot new development. Yu. L. Dokshitzer, V. A. Khoze, A. H. Mueller and S. I. Troyan, Basics of Perturbative QCD More advanced discussion on the small-x physics. S. Donnachie, G. Dosch, P. Landshoff and O. Nachtmann, Pomeron Physics and QCD V. Barone and E. Predazzi, High-Energy Particle Diffraction 4 / 38 Introduction to QCD and Jet QCD Basics QCD QCD Lagrangian a a a b c with F = @µA @ν A gfabcA A . µν ν − µ − µ ν Non-Abelian gauge field theory.
    [Show full text]
  • The Large Hadron Collider Lyndon Evans CERN – European Organization for Nuclear Research, Geneva, Switzerland
    34th SLAC Summer Institute On Particle Physics (SSI 2006), July 17-28, 2006 The Large Hadron Collider Lyndon Evans CERN – European Organization for Nuclear Research, Geneva, Switzerland 1. INTRODUCTION The Large Hadron Collider (LHC) at CERN is now in its final installation and commissioning phase. It is a two-ring superconducting proton-proton collider housed in the 27 km tunnel previously constructed for the Large Electron Positron collider (LEP). It is designed to provide proton-proton collisions with unprecedented luminosity (1034cm-2.s-1) and a centre-of-mass energy of 14 TeV for the study of rare events such as the production of the Higgs particle if it exists. In order to reach the required energy in the existing tunnel, the dipoles must operate at 1.9 K in superfluid helium. In addition to p-p operation, the LHC will be able to collide heavy nuclei (Pb-Pb) with a centre-of-mass energy of 1150 TeV (2.76 TeV/u and 7 TeV per charge). By modifying the existing obsolete antiproton ring (LEAR) into an ion accumulator (LEIR) in which electron cooling is applied, the luminosity can reach 1027cm-2.s-1. The LHC presents many innovative features and a number of challenges which push the art of safely manipulating intense proton beams to extreme limits. The beams are injected into the LHC from the existing Super Proton Synchrotron (SPS) at an energy of 450 GeV. After the two rings are filled, the machine is ramped to its nominal energy of 7 TeV over about 28 minutes. In order to reach this energy, the dipole field must reach the unprecedented level for accelerator magnets of 8.3 T.
    [Show full text]
  • First Determination of the Electric Charge of the Top Quark
    First Determination of the Electric Charge of the Top Quark PER HANSSON arXiv:hep-ex/0702004v1 1 Feb 2007 Licentiate Thesis Stockholm, Sweden 2006 Licentiate Thesis First Determination of the Electric Charge of the Top Quark Per Hansson Particle and Astroparticle Physics, Department of Physics Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2006 Cover illustration: View of a top quark pair event with an electron and four jets in the final state. Image by DØ Collaboration. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stock- holm framl¨agges till offentlig granskning f¨or avl¨aggande av filosofie licentiatexamen fredagen den 24 november 2006 14.00 i sal FB54, AlbaNova Universitets Center, KTH Partikel- och Astropartikelfysik, Roslagstullsbacken 21, Stockholm. Avhandlingen f¨orsvaras p˚aengelska. ISBN 91-7178-493-4 TRITA-FYS 2006:69 ISSN 0280-316X ISRN KTH/FYS/--06:69--SE c Per Hansson, Oct 2006 Printed by Universitetsservice US AB 2006 Abstract In this thesis, the first determination of the electric charge of the top quark is presented using 370 pb−1 of data recorded by the DØ detector at the Fermilab Tevatron accelerator. tt¯ events are selected with one isolated electron or muon and at least four jets out of which two are b-tagged by reconstruction of a secondary decay vertex (SVT). The method is based on the discrimination between b- and ¯b-quark jets using a jet charge algorithm applied to SVT-tagged jets. A method to calibrate the jet charge algorithm with data is developed. A constrained kinematic fit is performed to associate the W bosons to the correct b-quark jets in the event and extract the top quark electric charge.
    [Show full text]
  • Searching for a Heavy Partner to the Top Quark
    SEARCHING FOR A HEAVY PARTNER TO THE TOP QUARK JOSEPH VAN DER LIST 5e Abstract. We present a search for a heavy partner to the top quark with charge 3 , where e is the electron charge. We analyze data from Run 2 of the Large Hadron Collider at a center of mass energy of 13 TeV. This data has been previously investigated without tagging boosted top quark (top tagging) jets, with a data set corresponding to 2.2 fb−1. Here, we present the analysis at 2.3 fb−1 with top tagging. We observe no excesses above the standard model indicating detection of X5=3 , so we set lower limits on the mass of X5=3 . 1. Introduction 1.1. The Standard Model One of the greatest successes of 20th century physics was the classification of subatomic particles and forces into a framework now called the Standard Model of Particle Physics (or SM). Before the development of the SM, many particles had been discovered, but had not yet been codified into a complete framework. The Standard Model provided a unified theoretical framework which explained observed phenomena very well. Furthermore, it made many experimental predictions, such as the existence of the Higgs boson, and the confirmation of many of these has made the SM one of the most well-supported theories developed in the last century. Figure 1. A table showing the particles in the standard model of particle physics. [7] Broadly, the SM organizes subatomic particles into 3 major categories: quarks, leptons, and gauge bosons. Quarks are spin-½ particles which make up most of the mass of visible matter in the universe; nucleons (protons and neutrons) are composed of quarks.
    [Show full text]
  • Three Lectures on Meson Mixing and CKM Phenomenology
    Three Lectures on Meson Mixing and CKM phenomenology Ulrich Nierste Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany I give an introduction to the theory of meson-antimeson mixing, aiming at students who plan to work at a flavour physics experiment or intend to do associated theoretical studies. I derive the formulae for the time evolution of a neutral meson system and show how the mass and width differences among the neutral meson eigenstates and the CP phase in mixing are calculated in the Standard Model. Special emphasis is laid on CP violation, which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK ,∆MBd ,∆MBd /∆MBs and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact of a future measurement of CP violation in flavour-specific Bd decays is also shown. 1 First lecture: A big-brush picture 1.1 Mesons, quarks and box diagrams The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles. These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs have opposite flavour quantum numbers: K sd, D cu, B bd, B bs, ∼ ∼ d ∼ s ∼ K sd, D cu, B bd, B bs, (1) ∼ ∼ d ∼ s ∼ Here for example “Bs bs” means that the Bs meson has the same flavour quantum numbers as the quark pair (b,s), i.e.∼ the beauty and strangeness quantum numbers are B = 1 and S = 1, respectively.
    [Show full text]
  • Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007
    Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007 Monte Carlo Methods 3 Bryan Webber Structure of LHC Events 1. Hard process 2. Parton shower 3. Hadronization 4. Underlying event Monte Carlo Methods 3 Bryan Webber Lecture 3: Hadronization Partons are not physical 1. Phenomenological particles: they cannot models. freely propagate. 2. Confinement. Hadrons are. 3. The string model. 4. Preconfinement. Need a model of partons' 5. The cluster model. confinement into 6. Underlying event hadrons: hadronization. models. Monte Carlo Methods 3 Bryan Webber Phenomenological Models Experimentally, two jets: Flat rapidity plateau and limited Monte Carlo Methods 3 Bryan Webber Estimate of Hadronization Effects Using this model, can estimate hadronization correction to perturbative quantities. Jet energy and momentum: with mean transverse momentum. Estimate from Fermi motion Jet acquires non-perturbative mass: Large: ~ 10 GeV for 100 GeV jets. Monte Carlo Methods 3 Bryan Webber Independent Fragmentation Model (“Feynman—Field”) Direct implementation of the above. Longitudinal momentum distribution = arbitrary fragmentation function: parameterization of data. Transverse momentum distribution = Gaussian. Recursively apply Hook up remaining soft and Strongly frame dependent. No obvious relation with perturbative emission. Not infrared safe. Not a model of confinement. Monte Carlo Methods 3 Bryan Webber Confinement Asymptotic freedom: becomes increasingly QED-like at short distances. QED: + – but at long distances, gluon self-interaction makes field lines attract each other: QCD: linear potential confinement Monte Carlo Methods 3 Bryan Webber Interquark potential Can measure from or from lattice QCD: quarkonia spectra: String tension Monte Carlo Methods 3 Bryan Webber String Model of Mesons Light quarks connected by string.
    [Show full text]
  • QCD at Colliders
    Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 10: QCD at Colliders !Renormalisation in QCD !Asymptotic Freedom and Confinement in QCD !Lepton and Hadron Colliders !R = (e+e!!hadrons)/(e+e!"µ+µ!) !Measuring Jets !Fragmentation 1 From Last Lecture: QCD Summary • QCD: Quantum Chromodymanics is the quantum description of the strong force. • Gluons are the propagators of the QCD and carry colour and anti-colour, described by 8 Gell-Mann matrices, !. • For M calculate the appropriate colour factor from the ! matrices. 2 2 • The coupling constant #S is large at small q (confinement) and large at high q (asymptotic freedom). • Mesons and baryons are held together by QCD. • In high energy collisions, jets are the signatures of quark and gluon production. 2 Gluon self-Interactions and Confinement , Gluon self-interactions are believed to give e+ q rise to colour confinement , Qualitative picture: •Compare QED with QCD •In QCD “gluon self-interactions squeeze lines of force into Gluona flux tube self-Interactions” ande- Confinementq , + , What happens whenGluon try self-interactions to separate two are believedcoloured to giveobjects e.g. qqe q rise to colour confinement , Qualitativeq picture: q •Compare QED with QCD •In QCD “gluon self-interactions squeeze lines of force into a flux tube” e- q •Form a flux tube, What of happensinteracting when gluons try to separate of approximately two coloured constant objects e.g. qq energy density q q •Require infinite energy to separate coloured objects to infinity •Form a flux tube of interacting gluons of approximately constant •Coloured quarks and gluons are always confined within colourless states energy density •In this way QCD provides a plausible explanation of confinement – but not yet proven (although there has been recent progress with Lattice QCD) Prof.
    [Show full text]
  • Properties of Baryons in the Chiral Quark Model
    Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teknologie licentiatavhandling Kungliga Tekniska Hogskolan¨ Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Licentiate Dissertation Theoretical Physics Department of Physics Royal Institute of Technology Stockholm, Sweden 1997 Typeset in LATEX Akademisk avhandling f¨or teknologie licentiatexamen (TeknL) inom ¨amnesomr˚adet teoretisk fysik. Scientific thesis for the degree of Licentiate of Engineering (Lic Eng) in the subject area of Theoretical Physics. TRITA-FYS-8026 ISSN 0280-316X ISRN KTH/FYS/TEO/R--97/9--SE ISBN 91-7170-211-3 c Tommy Ohlsson 1997 Printed in Sweden by KTH H¨ogskoletryckeriet, Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teoretisk fysik, Institutionen f¨or fysik, Kungliga Tekniska H¨ogskolan SE-100 44 Stockholm SWEDEN E-mail: [email protected] Abstract In this thesis, several properties of baryons are studied using the chiral quark model. The chiral quark model is a theory which can be used to describe low energy phenomena of baryons. In Paper 1, the chiral quark model is studied using wave functions with configuration mixing. This study is motivated by the fact that the chiral quark model cannot otherwise break the Coleman–Glashow sum-rule for the magnetic moments of the octet baryons, which is experimentally broken by about ten standard deviations. Configuration mixing with quark-diquark components is also able to reproduce the octet baryon magnetic moments very accurately. In Paper 2, the chiral quark model is used to calculate the decuplet baryon ++ magnetic moments. The values for the magnetic moments of the ∆ and Ω− are in good agreement with the experimental results.
    [Show full text]