This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Cellular/Molecular Protein kinase C enhances electrical synaptic transmission by acting on junctional and postsynaptic Ca2+ currents Christopher C. Beekharry, Yueling Gu and Neil S. Magoski Department of Biomedical and Molecular Sciences, Experimental Medicine Graduate Program, Queen's University, Kingston, ON, K7L 3N6, Canada DOI: 10.1523/JNEUROSCI.2619-17.2018 Received: 12 September 2017 Revised: 15 January 2018 Accepted: 2 February 2018 Published: 13 February 2018 Author contributions: NSM designed research; CBB and AG performed research; CBB, AG, and NSM analyzed data; CBB and NSM wrote the paper.; Supported by a Natural Sciences and Engineer Research Council discovery grant (NSM).; The authors thank CA London and HM Hodgson for technical assistance, as well as NM Magoski for critical review of the paper. Conflict of Interest: The authors declare no competing financial interests. Correspondence: Dr. N.S. Magoski, Department of Biomedical and Molecular Sciences, Queen's University, 4th Floor, Botterell Hall, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada, Tel: (613) 533-3173, Fax: (613) 533-6880, E-mail:
[email protected] Cite as: J. Neurosci ; 10.1523/JNEUROSCI.2619-17.2018 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published. Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process. Copyright © 2018 the authors 1 Protein kinase C enhances electrical synaptic transmission by 2+ 2 acting on junctional and postsynaptic Ca currents 3 4 5 by: 6 7 8 Christopher C.