Present-Day Formation and Seasonal Evolution of Linear Dune Gullies on Mars Kelly Pasquon, J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
11 Prospectus.Indd
2011 SPRING PROSPECTUS Portland State VIKINGS 2011 PORTLAND STATE VIKINGS SCHEDULE Date Opponent Location Kickoff Sept. 3 SOUTHERN OREGON JELD-WEN FIELD TBA Sept. 10 open Sept. 17 NORTHERN ARIZONA* JELD-WEN FIELD TBA Sept. 24 @ TCU Fort Worth, TX TBA Oct. 1 @ Idaho State* Pocatello, ID TBA Oct. 8 MONTANA STATE* JELD-WEN FIELD TBA Oct. 15 @ Montana* Missoula, MT TBA Oct. 22 WILLAMETTE JELD-WEN FIELD TBA Oct. 29 @ Eastern Washington* Cheney, WA TBA Nov. 5 SACRAMENTO STATE* JELD-WEN FIELD TBA Nov. 12 @ Northern Colorado* Greeley, CO TBA Nov. 19 WEBER STATE* JELD-WEN FIELD TBA NCAA Playoffs: First Round, Nov. 20; Second Round, Dec. 3; Quarterfinals, Dec. 10 Semifinals, Dec. 16/17; National Championship, Jan. 6, Frisco, TX * Big Sky Conference game Game times will be released in June Radio: KXFD Freedom 970 AM TV: TBA Live Streaming Video: www.b2tv.com Live Stats: www.GoViks.com SR QB Connor Kavanaugh SR RB Cory McCaffrey Honorable Mention 1st team All-Big Sky All-Big Sky Conference Conference 2011 Spring Practice Portland State will practice every Monday, Wednesday and Friday from April 4 through May 4. Practice takes place at Stott Com- munity Field on the PSU campus from 1:30-4 p.m. 2011 Spring Game SR SS DeShawn Shead Portland State’s Annual Spring Game takes place on Saturday, 2nd team All-Big Sky Conference May 7, at 1 p.m. at Lincoln High School 2011 SPRING PROSPECTUS Portland State VIKINGS Physical Address ____________ 527 SW Hall, Suite 415, Portland, OR 97201 VIKING FOOTBALL COACHING STAFF Mailing Address _______________________ -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km. -
HAND-ROLLED Omelets GERMAN PANCAKES TRADITIONAL
Add “the ADD FRUIT HAND-ROLLED omelets works” to GERMAN PANCAKES Topping! crepes & waffles sandwiches your hash Northwest Triple-Berry, Fluffy three-egg omelets served with choice of Famous Buttermilk browns Almost as big as Crater Lake! A delightful combination of farm-fresh “AA” Strawberry, Freshly-made crepes and waffles accompanied by two farm-fresh “AA” eggs*, and your choice of Served with your choice of Northwest Fries, cottage cheese or creamy coleslaw. Substitute sweet Pancakes, Northwest Hash Browns or fresh seasonal fruit. Hash brown Daily’s® smokehouse bacon, eggs, milk and flour is blended and baked to golden brown. Cinnamon Apple breakfast meat. onion rings, a cup of soup or a Yellow Bowl Dinner Salad for an additional charge. Tillamook® Cheddar cheese, or Lingonberry Butter and seasonal fruit choice also accompanied by a freshly-baked buttermilk green onions and a dollop biscuit. Omelets may be prepared with egg whites upon request. of sour cream for an CLASSIC GERMAN PANCAKE BELGIAN WAFFLE FRUIT FESTIVAL CREPES CASCADE CLUB GARDEN FRESH additional charge. Lemon wedges, whipped butter and powdered sugar. Thick and crispy Belgian waffle served with whipped Two freshly-made crepes with your choice of Daily’s® smokehouse bacon, honey-cured ham, Fresh avocado, baby spinach, sweet onion, DENVER & TILLAMOOK® FARMER’s Add fruit topping for an additional charge. butter and your choice of warm Elmer’s pancake Northwest triple-berry, strawberry, or cinnamon roasted turkey breast, Tillamook® Cheddar cheese provolone cheese, sliced hard-boiled egg, tomato CHEDDAR Hickory smoked ham, Daily’s® smokehouse syrup or Oregon Marionberry syrup. apple drizzled with cream cheese icing. -
THE CHANTICLEER Jacksonville State University Jacksonville
Jacksonville State University JSU Digital Commons Chanticleer Historical Newspapers 1985-01-11 Chanticleer | Vol 32, Issue 15 Jacksonville State University Follow this and additional works at: https://digitalcommons.jsu.edu/lib_ac_chanty Recommended Citation Jacksonville State University, "Chanticleer | Vol 32, Issue 15" (1985). Chanticleer. 871. https://digitalcommons.jsu.edu/lib_ac_chanty/871 This Book is brought to you for free and open access by the Historical Newspapers at JSU Digital Commons. It has been accepted for inclusion in Chanticleer by an authorized administrator of JSU Digital Commons. For more information, please contact [email protected]. C Entertainment THE CHANTICLEER Jacksonville State university Jacksonville. Alabama Vol. &No. W January 11, 1985 Mild controversy erupts over - senate resolution By JAN DICKINSON A resolution calling for a faculty-wide vote of "no confidence" in Resident Theron Montgomery was presented to the Faculty Senate at its December 10 meeting, two days before Montgomery anriounced his resignation to the Board of Trustees. Now the sponsor of the resolution, Dr. Gene Blanton, of the English Department, says that he intends to withdraw the resolution at the January 14 meeting of the senate. 13lanton stated in the January 6 edition of the Anniston Star that, because of comments made by several members of the Board of bstees, the wssibility of dropping the resolution was strong. According to that article, trustee Paul Carpenter said, "It (the vote) wouid make absolutely no difference in my opinion. We have studied the entire situation, and we are satisfied with the decision." Another board member, Dwaine Luce, stated, "....the bard is responsible for running the school, and the faculty is responsible for iristructing the students." Echoing the sentiments of Carpenter, he added, "'I'he board has inade its decision and the board, in my pinion, will stand by its decision." According to Dr. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
In Pdf Format
lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te . -
This Article Appeared in a Journal Published by Elsevier. the Attached
(This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Aeolian Research 8 (2013) 29–38 Contents lists available at SciVerse ScienceDirect Aeolian Research journal homepage: www.elsevier.com/locate/aeolia Review Article Summary of the Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes, Flagstaff, Arizona, USA, June 12–15, 2012 ⇑ Lori K. Fenton a, , Rosalyn K. Hayward b, Briony H.N. Horgan c, David M. Rubin d, Timothy N. Titus b, Mark A. Bishop e,f, Devon M. Burr g, Matthew Chojnacki g, Cynthia L. Dinwiddie h, Laura Kerber i, Alice Le Gall j, Timothy I. Michaels a, Lynn D.V. Neakrase k, Claire E. Newman l, Daniela Tirsch m, Hezi Yizhaq n, James R. Zimbelman o a Carl Sagan Center at the SETI Institute, 189 Bernardo Ave., Suite 100, Mountain View, CA 94043, USA b United States Geological Survey, Astrogeology Science Center, 2255 N. -
Dark Dunes on Mars
CHAPTER II: PLANET MARS – THE BACKGROUND Like Earth, its neighbour planet, Mars, is a terrestrial planet with a solid surface, an atmosphere, two ice-covered pole caps, and not one but two moons (Phobos and Deimos). Some differences, such as a greater distance to the sun, a smaller diameter, a thinner atmosphere, and the longer duration of a year distinguish Mars from the Earth, not to forget the absence of life…so far. Nevertheless, there are many correlations between terrestrial and Martian geological and geomorphological processes, permitting researchers to apply knowledge from terrestrial studies more or less directly to Mars. However, a closer look reveals that the dissimilarities, though few, can make fundamental differences in process background and development. The following chapter provides a brief but necessary insight into the geological and physical background of this planet, imparting to the reader some fundamental knowledge about Mars, which is useful for understanding this work. Fig. 1 presents an impression of Mars viewed from space. Figure 1: The planet Mars: a global view (Viking 1 Orbiter mosaic [NASA]). Chapter II Planet Mars – The Background 5 Table 1 provides a summary of some major astronomical and physical parameters of Mars, giving the reader an impression of the extent to which they differ from terrestrial values. Table 1: Parameters of Mars [Kieffer et al., 1992a]. Property Dimension Orbit 227 940 000 km (1.52 AU) mean distance to the Sun Diameter 6794 km Mass 6.4185 * 1023 kg 3 Mean density ~3.933 g/cm Obliquity -
Jeans Escape
TheThe lossloss ofof thethe earlyearly MartianMartian atmosphereatmosphere andand itsits waterwater inventoryinventory duedue toto thethe activeactive youngyoung SunSun H. Lammer (1), Yu. N. Kulikov (2), N. Terada (3), I. Ribas (4), D. Langmayr (1), N. V. Erkaev (5), G. Jaritz (6), H. K. Biernat (1,6) (1) Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria (2) Polar Geophysical Institute (PGI), Russian Academy of Sciences, Khalturina Str. 15, Murmansk, 183010, Russian Federation (3) Solar-Terrestrial Environment Laboratory, Nagoya University, Japan (4) Institute for Space Studies of Catalonia (IEEC) and Instituto de Ciencias del Espacio (CSIC), E-08034, Barcelona, Spain (5) Institute for Computational Modelling, Russian Academy of Sciences, Ru-660036 Krasnoyarsk 36, Russian Federation (6) Institute for Geophysics, Astrophysics, and Meteorology, University of Graz, Universitätsplatz 5, A-8010 Graz, Austria IEEC/CSIC TheThe casecase forfor aa wet,wet, warmwarm Mars:Mars: ButBut wherewhere isis allall thethe waterwater andand thethe atmosphereatmosphere ?? ¾ Observations of a network of valleys in crater rich areas of the southern hemisphere suggests that Mars had once a significant hydrologic activity [e.g., Carr Nature 326, 30, 1987; Baker Nature 412, 228, 2001; Carr & Head III JGR 108, E5, 5042, 2003] ¾ Asteroids and comets from beyond 2.5 AU provide the source of Mars’ water, which totals 6 – 27 % of the Earth’s present ocean equivalent to 600 – 2700 m depth on the Martian surface or in the crustal regolith [Lunine et al. Icarus 165, 1, 2003] ¾ Enrichment and fractionation of heavy isotopes [e.g., Pepin Icarus 111, 289, 1994] ¾ Estimations of volumes of potential early Martian water reservoirs from geo-morphological analysis of possible shorelines by MGS images and MOLA data → d ≈ 150 - 160 m [Carr & Head III JGR 108, E5, 5042, 2003] - Stored in present polar caps → d ≈ 20 - 30 m - Surface ground water → d ≈ 80 m ? - Escaped to space → d ≈ 50 - 80 m ? ¾ Early atmosphere ≈ 1 – 5 bars [e.g., Pollack, Kasting et al. -
Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America
Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America There are approximately 101,135sexual abuse claims filed. Of those claims, the Tort Claimants’ Committee estimates that there are approximately 83,807 unique claims if the amended and superseded and multiple claims filed on account of the same survivor are removed. The summary of sexual abuse claims below uses the set of 83,807 of claim for purposes of claims summary below.1 The Tort Claimants’ Committee has broken down the sexual abuse claims in various categories for the purpose of disclosing where and when the sexual abuse claims arose and the identity of certain of the parties that are implicated in the alleged sexual abuse. Attached hereto as Exhibit 1 is a chart that shows the sexual abuse claims broken down by the year in which they first arose. Please note that there approximately 10,500 claims did not provide a date for when the sexual abuse occurred. As a result, those claims have not been assigned a year in which the abuse first arose. Attached hereto as Exhibit 2 is a chart that shows the claims broken down by the state or jurisdiction in which they arose. Please note there are approximately 7,186 claims that did not provide a location of abuse. Those claims are reflected by YY or ZZ in the codes used to identify the applicable state or jurisdiction. Those claims have not been assigned a state or other jurisdiction. Attached hereto as Exhibit 3 is a chart that shows the claims broken down by the Local Council implicated in the sexual abuse. -
Desert Skies
Tucson Amateur Astronomy Association Volume LVIII, Number 10 October 2012 Impact Craters in the Solar System Valhalla crater on Callisto Gale crater on Mars Herschel crater on Mimas Endeavor Over Tucson! Barringer Crater, Winslow, AZ Kitt Peak Star-B-Que & Star Party Chiricahua Astronomy Complex Report Pages 4 Page 7 2013 TAAA Calendars Coming Soon Community Star Parties Scheduled Page 3 Page 6 General Meeting October 5th Steward Observatory Lecture Hall, Room N210 6:30pm Space Weather — Terri Lappin, TAAA 7:30pm The dramatic formation of Gale crater: What happens when a meteor hits a planet? — Dr Veronica Bray, UA LPL Affiliates Volume LVIII, Number 10 2 Desert Skies October 2012 TAAA Meeting Friday, Oct 5 Steward Observatory Lecture Hall, Room N210, U of A campus 6:30pm Astronomy Essentials Lecture Title: Space Weather Speaker: Terri Lappin, TAAA Construction Alert! Most of us want to hear a daily weather report. It may The construction mess on campus determine what we wear and to some level, what we do during has improved since the summer. the day. In some ways, space weather is similar to atmospheric The Cherry and 2nd Street weather—predictions can be made, and those predictions intersection is open, but much of 2nd Street iremains change our behavior. However, space weather is a totally closed. First Street is two-way traffic. The 2nd Street different animal! This animal will likely never be tamed. Come garage is accessible but it’s best to check the UA learn about space weather, how it’s monitored, and how it website to find out how (recently it’s been from the affects you.