Role of Interleukin 33 in Chronic Rhinosinusitis

Total Page:16

File Type:pdf, Size:1020Kb

Role of Interleukin 33 in Chronic Rhinosinusitis Thorax Online First, published on February 27, 2017 as 10.1136/thoraxjnl-2016-209655 Editorial Thorax: first published as 10.1136/thoraxjnl-2016-209655 on 27 February 2017. Downloaded from identified as a ligand for the orphan IL-1 Role of interleukin 33 in chronic family receptor, suppression of tumori- genicity 2 (ST2; also known as IL-1RL1, rhinosinusitis T1, IL-33R) expressed on monocytes, mast cells, eosinophils, Th2 cells and Roma Sehmi ILC2. IL-33 exerts its cytokine activity by binding to a heterodimer of ST2 and co-receptor, IL-1 receptor accessory Chronic rhinosinusitis (CRS) is a heter- discrepancies over which isoforms of protein. IL-33 is a chromatin-associated ogenous airways disease characterised by TGF-β are increased per se and in what nuclear cytokine and as such is expressed inflammation of the upper airways and racial populations of CRSsNP, INF-γ is constitutively at high levels in the nuclei sinuses that persists for at least 12 weeks. elevated. Since CRSsNP is diagnosed by of various human and mouse tissues at CRS is frequently divided into two endo- the absence of NPs, it is by definition steady state, including endothelial, epithe- types based on the presence or absence heterogenous and thus the outcome of lial and fibroblast-like cells.9 This nuclear of nasal polyps (NPs): CRS with NPs these studies is heavily influenced by the expression can be further increased (CRSwNP) and CRS without NPs population sampled.4 Accurate subclassifi- during inflammatory conditions, viral (CRSsNP). Inflammatory patterns in the cations will be necessary to determine infection and cigarette smoke. IL-33 does two groups are different and studies indi- more accurately the inflammatory pattern not contain a signal sequence and there- cate that CRSsNP is dominated by a type 1 in each group. fore is not secreted as a conventional inflammatory profile associated with in- Inflammation in CRSwNP is charac- cytokine. Instead, it functions as an creased interferon (INF)-γ and tumour ne- terised by type 2 inflammation and inc- endogenous danger signal or nuclear crosis factor (TGF)-β expression and reased tissue eosinophilia compared with alarmin that is released after cell injury to neutrophilic inflammation.1 By compari- CRSsNP or control sinus mucosa. Type 2 alert the immune system of damage son, type 2 inflammatory responses charac- cytokines, IL-5 and IL-13, can be pro- during trauma or infection. Once released terised by interleukin (IL) 4, IL-5, IL-13 duced by several immune cells including the bioactive isoforms of IL-33 can stimu- cytokine expression and eosinophilic in- T helper two cells, mast cells and group 2 late type 2 cytokine production by ILC2 flammation are features of CRSwNP.1 This innate lymphoid cells (ILC2). IL-5 pro- and IL-13 production by macrophages categorisation may, however, be oversim- motes local differentiation of eosinophil- which in turn promote a maladaptive plified as recent studies show that this may lineage committed progenitors and TH2inflammatory response that is be subject to racial and regional differ- increased activation and prolonged sur- IgE-independent and may explain the clin- ences.23While the majority of Caucasian vival of mature eosinophils, IL-13 acti- ical observation that many patients with patients sampled in the USA and Europe vates macrophages, B cells and epithelial CRSwNP are non-allergic (figure 1).4 have a pronounced infiltration of eosino- cells to release chemoattractants that in- IL-33 expression has been shown to be phils and expression of IL-5 in the duce recruitment of eosinophils and Th2 increased in cultures of sinonasal epithelial NPs, patients with CRSwNP in East Asian cells and IgE mediated reactions and tissue cells in recalcitrant CRSwNP, and it is countries including Japan, Korea and remodelling.1 In contrast to CRSsNP, further enhanced in a bacteria associated http://thorax.bmj.com/ China, exhibit a mixed inflammatory fibrin deposition in the submucosa of NPs molecular pattern.10 In addition, other profile. About half the Asian patients with is especially high and thought to represent studies have shown that expression of ST2 CRSwNP exhibit an eosinophilic chronic a key event in the tissue remodelling is increased in the ethmoid sinus mucosa rhinosinusitis (ECRS) while the rest have a process of CRSwNP.4 Several studies have of CSRwNP compared with CRSsNP.11 non-eosinophilic more neutrophilic or now shown that the inflammatory profile Similarly, in subjects with CRS with mixed inflammatory chronic rhinosinusitis of CRSwNP varies among racial groups eosinophilic NPs, increased ST2 levels (non-ECRS) characterised by type 1 dom- although the exact aetiology of these dif- were detected at the mRNA and protein inant inflammation. Although a number of ferences remains to be clarified. It is levels, compared with non-eosinophilic on September 29, 2021 by guest. Protected copyright. hypotheses have been proposed regarding undeniable that this may also reflect a lack CRS and normals. The levels of IL-33 the pathogenesis of CRSwNP, the precise of international consensus for defining mRNA were however not different molecular mechanisms remain unclear and tissue eosinophilia. While some groups between these groups12 and correlation of likely lie beyond rudimentary clinical clas- define eosinophilia as an absolute number the cytokine expression to various proin- sifications of CRS. An emphasis on defin- of eosinophils (five to eight) per random flammatory cell types was not investigated. ing CRS endotypes based on distinct high powered field,356others use a The study by Kim et al, published in functional or pathobiological mechanisms cut-off percentage of eosinophils (5–15%) Thorax, assessed lL-33 expression at the of disease may be more effective at identi- for a number of high power fields protein and message level with correla- fying patient groups that would respond to counted in areas of greatest cellularity.78 tions to differential groups of proinflam- therapeutic interventions targeting specific It has become evident that disruption matory cells and cytokine expression in proinflammatory mediators or infectious of the mucosal interface in response to Korean subjects with CRSwNP and agents that trigger the disease pathology. environmental and microbial stimuli or by CRSsNP versus normal control.13 This The inflammatory profile of CRSsNP cellular damage may drive local inflamma- study found that IL-33 expression is is largely type 1, although there are tory responses. IL-33 is a recently increased in two mucosal sites: NP and described airway epithelial-derived cyto- uncinate process from CRS and that IL-33 kine recognised as a key activator of immunostaining is colocalised to CD68+ Correspondence to Dr Roma Sehmi, innate and adaptive cells that drive type 2 macrophage. Although several studies CardioRespiratory Research Group, Department of Medicine, Health Sciences Building, Rm 3U32, immune responses, contributing to tissue have shown that CD45+ haemopoietic McMaster University, 1200 Main St West, Hamilton, homoeostasis and response to environ- cells can be induced to express IL-33 Ontario, Canada L8N 3Z5; [email protected] mental stresses (figure 1). IL-33 was under inflammatory conditions, the levels Sehmi R. Thorax Month 2017 Vol 0 No 0 1 Copyright Article author (or their employer) 2017. Produced by BMJ Publishing Group Ltd (& BTS) under licence. Editorial Thorax: first published as 10.1136/thoraxjnl-2016-209655 on 27 February 2017. Downloaded from that generated a mixed inflammatory infil- trate, Kim et al showed that anti-IL-33 attenuated polyp formation, neutrophilia and CXCL2 levels but had no effect on eosinophil recruitment and IL-4 levels. As a note of caution, in assessing the role of IL-33 in animal models of disease, species-specific differences should be taken into account. For example, whereas in humans IL-33 is expressed constitu- tively by the lung airway epithelium, in mice it is expressed by alveolar type 2 pneumocytes.16 17 These differences may be important when extrapolating results from mouse models for therapeutic target- ing of IL-33 in human patients. In closing, Kim et al have shown that IL-33 expression is elevated in nasal tissues of patients with CRSwNP, and expression of this cytokine is associated Figure 1 Potential mechanisms for amplification of neutrophilic inflammation in CRSwNP. with Th1/Th17 cytokines, neutrophil Several factors including fungi, proteases, bacteria viruses and allergens can activate nasal recruitment and remodelling. It is likely epithelial cells and resident myeloid dendritic cells (mDCs) to produce alarmin cytokines including that IL-33 is one of the crucial mediators IL-33 which drive maladaptive innate type 2 inflammatory responses. IL-33 stimulates resident of pathogenesis in CRSwNP through neu- group 2 innate lymphoid to secrete IL-4, IL-5 and IL-13 in an allergen non-specific manner which promotes dysregulated type 2 immune responses. mDCs activation also promotes naive CD4+ T trophil recruitment, but further study is cell differentiation into Th2 CD4+ T cells, which then further release type 2 cytokines. IL-4 and required to understand if this is a promis- IL-13 induce B cell isotype switching and leads to IgE-mediated reactions through activation of ing target for the treatment of patients basophils and mast cells. Nasal mast cells can also be activated directly by IL-33, leading to with all endotypes of CRSwNP or specific downstream release of cysteinyl leukotrienes (CysLT), which activate ILC2s, and IL-5 and IL-13, to pathobiological initiators of this upper which further contribute to downstream type 2 inflammation. IL-5 production from activated Th2 airway inflammatory condition. CD4+ T cells and ILC2s promote eosinophil recruitment, as well as eotaxin produced by nasal epithelial cells and M2 macrophages. In addition, IL-33 which can indirectly promote neutrophilia Competing interests None declared. by activating resident proinflammatory cells such as M2 macrophages to secrete (1) Provenance and peer review Commissioned; chemoattractants that recruit neutrophils including CXCL2 or (2) produce more IL-33 that prevents externally peer reviewed.
Recommended publications
  • From IL-15 to IL-33: the Never-Ending List of New Players in Inflammation
    From IL-15 to IL-33: the never-ending list of new players in inflammation. Is it time to forget the humble Aspirin and move ahead? Fulvio d’Acquisto, Francesco Maione, Magali Pederzoli-Ribeil To cite this version: Fulvio d’Acquisto, Francesco Maione, Magali Pederzoli-Ribeil. From IL-15 to IL-33: the never-ending list of new players in inflammation. Is it time to forget the humble Aspirin and move ahead?. Bio- chemical Pharmacology, Elsevier, 2009, 79 (4), pp.525. 10.1016/j.bcp.2009.09.015. hal-00544816 HAL Id: hal-00544816 https://hal.archives-ouvertes.fr/hal-00544816 Submitted on 9 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: From IL-15 to IL-33: the never-ending list of new players in inflammation. Is it time to forget the humble Aspirin and move ahead? Authors: Fulvio D’Acquisto, Francesco Maione, Magali Pederzoli-Ribeil PII: S0006-2952(09)00769-2 DOI: doi:10.1016/j.bcp.2009.09.015 Reference: BCP 10329 To appear in: BCP Received date: 30-7-2009 Revised date: 9-9-2009 Accepted date: 10-9-2009 Please cite this article as: D’Acquisto F, Maione F, Pederzoli-Ribeil M, From IL- 15 to IL-33: the never-ending list of new players in inflammation.
    [Show full text]
  • The IL-1-Like Cytokine IL-33 Is Inactivated After Maturation by Caspase-1
    The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1 Corinne Cayrola,b and Jean-Philippe Girarda,b,1 aCentre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France; and bUniversite´de Toulouse, Universite´Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France Edited by Charles A. Dinarello, University of Colorado Health Sciences Center, Denver, CO, and approved April 10, 2009 (received for review December 13, 2008) IL-33 is a chromatin-associated cytokine of the IL-1 family that has that nuclear IL-33 possesses transcriptional regulatory proper- recently been linked to many diseases, including asthma, rheuma- ties and associates with chromatin in vivo (5). Recently, we found toid arthritis, atherosclerosis, and cardiovascular diseases. IL-33 that IL-33 mimics Kaposi sarcoma herpesvirus for attachment to signals through the IL-1 receptor-related protein ST2 and drives chromatin, and docks, through a short chromatin-binding pep- production of pro-inflammatory and T helper type 2-associated tide, into the acidic pocket formed by the histone H2A-H2B cytokines in mast cells, T helper type 2 lymphocytes, basophils, dimer at the surface of the nucleosome (22). Together, our eosinophils, invariant natural killer T cells, and natural killer cells. findings suggested IL-33 is a dual-function protein that may play It is currently believed that IL-33, like IL-1␤ and IL-18, requires important roles as both a cytokine and an intracellular nuclear processing by caspase-1 to a mature form (IL-33112–270) for biolog- factor (5, 22).
    [Show full text]
  • Interleukin-33 Signaling Exacerbates Experimental Infectious Colitis by Enhancing Gut Permeability and Inhibiting Protective Th17 Immunity
    www.nature.com/mi ARTICLE OPEN Interleukin-33 signaling exacerbates experimental infectious colitis by enhancing gut permeability and inhibiting protective Th17 immunity Vittoria Palmieri1, Jana-Fabienne Ebel1, Nhi Ngo Thi Phuong1, Robert Klopfleisch2, Vivian Pham Vu3,4, Alexandra Adamczyk1, Julia Zöller1, Christian Riedel5, Jan Buer1, Philippe Krebs3, Wiebke Hansen1, Eva Pastille1 and Astrid M. Westendorf 1 A wide range of microbial pathogens is capable of entering the gastrointestinal tract, causing infectious diarrhea and colitis. A finely tuned balance between different cytokines is necessary to eradicate the microbial threat and to avoid infection complications. The current study identified IL-33 as a critical regulator of the immune response to the enteric pathogen Citrobacter rodentium.We observed that deficiency of the IL-33 signaling pathway attenuates bacterial-induced colitis. Conversely, boosting this pathway strongly aggravates the inflammatory response and makes the mice prone to systemic infection. Mechanistically, IL-33 mediates its detrimental effect by enhancing gut permeability and by limiting the induction of protective T helper 17 cells at the site of infection, thus impairing host defense mechanisms against the enteric pathogen. Importantly, IL-33-treated infected mice supplemented with IL-17A are able to resist the otherwise strong systemic spreading of the pathogen. These findings reveal a novel IL-33/IL-17A crosstalk that controls the pathogenesis of Citrobacter rodentium-driven infectious colitis. Manipulating the dynamics of cytokines may offer new therapeutic strategies to treat specific intestinal infections. 1234567890();,: Mucosal Immunology (2021) 14:923–936; https://doi.org/10.1038/s41385-021-00386-7 INTRODUCTION epithelial cells, and endothelial cells in response to injury6.
    [Show full text]
  • Interleukin-18 in Health and Disease
    International Journal of Molecular Sciences Review Interleukin-18 in Health and Disease Koubun Yasuda 1 , Kenji Nakanishi 1,* and Hiroko Tsutsui 2 1 Department of Immunology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan; [email protected] 2 Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-798-45-6573 Received: 21 December 2018; Accepted: 29 January 2019; Published: 2 February 2019 Abstract: Interleukin (IL)-18 was originally discovered as a factor that enhanced IFN-γ production from anti-CD3-stimulated Th1 cells, especially in the presence of IL-12. Upon stimulation with Ag plus IL-12, naïve T cells develop into IL-18 receptor (IL-18R) expressing Th1 cells, which increase IFN-γ production in response to IL-18 stimulation. Therefore, IL-12 is a commitment factor that induces the development of Th1 cells. In contrast, IL-18 is a proinflammatory cytokine that facilitates type 1 responses. However, IL-18 without IL-12 but with IL-2, stimulates NK cells, CD4+ NKT cells, and established Th1 cells, to produce IL-3, IL-9, and IL-13. Furthermore, together with IL-3, IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as histamine. Therefore, IL-18 is a cytokine that stimulates various cell types and has pleiotropic functions. IL-18 is a member of the IL-1 family of cytokines. IL-18 demonstrates a unique function by binding to a specific receptor expressed on various types of cells.
    [Show full text]
  • New Cytokines in the Pathogenesis of Atopic Dermatitis—New Therapeutic Targets
    International Journal of Molecular Sciences Review New Cytokines in the Pathogenesis of Atopic Dermatitis—New Therapeutic Targets Jolanta Klonowska 1,* , Jolanta Gle ´n 2, Roman J. Nowicki 2 and Magdalena Trzeciak 2 1 Military Specialist Clinic, Allergy Clinic, ul. D ˛abrowskiego 1, 87-100 Toru´n,Poland 2 Department of Dermatology, Venereology and Allergology Medical University of Gdansk, ul. Kliniczna 1a, 80-401 Gda´nsk,Poland; [email protected] (J.G.); [email protected] (R.J.N.); [email protected] (M.T.) * Correspondence: [email protected]; Tel.: +48-56-622-74-32 Received: 10 September 2018; Accepted: 2 October 2018; Published: 9 October 2018 Abstract: Atopic dermatitis (AD) is a recurrent, chronic, and inflammatory skin disease, which processes with severe itchiness. It often coexists with different atopic diseases. The number of people suffering from AD is relatively high. Epidemiological research demonstrates that 15–30% of children and 2–10% adults suffer from AD. The disease has significant negative social and economic impacts, substantially decreasing the quality of life of the patients and their families. Thanks to enormous progress in science and technology, it becomes possible to recognise complex genetic, immunological, and environmental factors and epidermal barrier defects that play a role in the pathogenesis of AD. We hope that the new insight on cytokines in AD will lead to new, individualised therapy and will open different therapeutic possibilities. In this article, we will focus on the cytokines, interleukin (IL)-17, IL-19, IL-33, and TSLP (thymic stromal lymphopoietin), which play a significant role in AD pathogenesis and may become the targets for future biologic therapies in AD.
    [Show full text]
  • Modulation of the IL-33/IL-13 Axis in Obesity by IL-13Rα2
    Modulation of the IL-33/IL-13 Axis in Obesity by IL-13R α2 Jennifer Duffen, Melvin Zhang, Katherine Masek-Hammerman, Angela Nunez, Agnes Brennan, Jessica This information is current as E. C. Jones, Jeffrey Morin, Karl Nocka and Marion Kasaian of September 27, 2021. J Immunol 2018; 200:1347-1359; Prepublished online 5 January 2018; doi: 10.4049/jimmunol.1701256 http://www.jimmunol.org/content/200/4/1347 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2018/01/05/jimmunol.170125 Material 6.DCSupplemental http://www.jimmunol.org/ References This article cites 64 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/200/4/1347.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Modulation of the IL-33/IL-13 Axis in Obesity by IL-13Ra2 Jennifer Duffen,* Melvin Zhang,* Katherine Masek-Hammerman,† Angela Nunez,‡ Agnes Brennan,* Jessica E.
    [Show full text]
  • Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
    UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: [email protected]; [email protected] Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type.
    [Show full text]
  • The IL-33-ILC2 Pathway Protects from Amebic Colitis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448450; this version posted June 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The IL-33-ILC2 pathway protects from amebic colitis 2 Md Jashim Uddin1,4, Jhansi L. Leslie1, Stacey L. Burgess1, Noah Oakland1, Brandon Thompson2, Mayuresh 3 Abhyankar1, Alyse Frisbee2, Alexandra N Donlan2, Pankaj Kumar3, William A Petri, Jr1,2,4# 4 1Department of Medicine: Infectious Diseases and International Health, University of Virginia School of 5 Medicine, Charlottesville, VA, USA 6 2Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, 7 Charlottesville, VA, USA 8 3Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 9 Charlottesville, Virginia, USA, 10 4Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA 11 # Address correspondence to: 12 William A. Petri, Jr., M.D., Ph.D. 13 Division of Infectious Diseases and International Health 14 Department of Medicine, University of Virginia 15 Charlottesville, Virginia, 22908-1340 USA 16 Email: [email protected] 17 Tel: (001) 434/924-5621 18 Fax: (001) 434/924-0075 19 The authors have no conflict of interest to declare. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448450; this version posted June 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 20 Abstract 21 Entamoeba histolytica is a pathogenic protozoan parasite that causes intestinal colitis, diarrhea, and in 22 some cases, liver abscess.
    [Show full text]
  • Serum Level of Interleukin 33 and Its Relation with Disease Activity And
    erimenta xp l D E e r & m l a a t c o i l n o i Journal of Clinical & Experimental l g y C f R o e l ISSN: 2155-9554 s a e n Toama et al., J Clin Exp Dermatol Res 2017, 8:3 a r r u c o h J Dermatology Research DOI: 10.4172/2155-9554.1000390 Research Article Open Access Serum Level of Interleukin 33 and its Relation with Disease Activity and Clinical Presentation in Systemic Lupus Erythematosus Mohamed A Toama1, Abdalla H Kandil1, Mohamed H Mourad2, Mohamed I Soliman1, and Abdulla M Esawy*1 1 Dermatology & Venereology Department, Faculty of Medicine, Zagazig University, Egypt 2 Clinical Pathology Department, Faculty of Medicine, Zagazig University, Egypt *Corresponding author: Abdulla M Esawy, Department of Dermatology & Venereology, Faculty of Medicine, Zagazig University, Egypt, Tel: 1143156920; Fax: +201143156920; E-mail: [email protected] Received date: March 24, 2017; Accepted date: April 04, 2017; Published date: April 06, 2017 Copyright: © 2017 Toama AM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Background: Systemic lupus erythematosus (SLE) is a systemic autoimmune inflammatory disease characterized by abnormal production of autoantibodies and proinflammatory cytokines. Both Th1 and Th2 responses have been implicated in the pathogenesis of SLE. IL-33 is involved in the pathogenesis of chronic inflammatory arthritis like as family members, IL-1 and IL-18. IL-33 induce production of IL-5, IL-13 and hypergammaglobulinaemia.
    [Show full text]
  • Early Treatment of Interleukin-33 Can Attenuate Lupus Development in Young NZB/W F1 Mice
    cells Article Early Treatment of Interleukin-33 can Attenuate Lupus Development in Young NZB/W F1 Mice Fatin Nurizzati Mohd Jaya, Zhongyi Liu and Godfrey Chi-Fung Chan * Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; [email protected] (F.N.M.J.); [email protected] (Z.L.) * Correspondence: [email protected] Received: 27 August 2020; Accepted: 5 November 2020; Published: 10 November 2020 Abstract: Interleukin-33 (IL-33), a member of the IL-1 cytokine family, has been recently associated with the development of autoimmune diseases, including systemic lupus erythematosus (SLE). IL-33 is an alarmin and a pleiotropic cytokine that affects various types of immune cells via binding to its receptor, ST2. In this study, we determine the impact of intraperitoneal IL-33 treatments in young lupus, NZB/W F1 mice. Mice were treated from the age of 6 to 11 weeks. We then assessed the proteinuria level, renal damage, survival rate, and anti-dsDNA antibodies. The induction of regulatory B (Breg) cells, changes in the level of autoantibodies, and gene expression were also examined. In comparison to the control group, young NZB/W F1 mice administered with IL-33 had a better survival rate as well as reduced proteinuria level and lupus nephritis. IL-33 treatments significantly increased the level of IgM anti-dsDNA antibodies, IL-10 expressing Breg cells, and alternatively-induced M2 macrophage gene signatures. These results imply that IL-33 exhibits a regulatory role during lupus onset via the expansion of protective IgM anti-dsDNA as well as regulatory cells such as Breg cells and M2 macrophages.
    [Show full text]
  • Interleukin-33 Plasma Levels in Patients with Relapsing-Remitting Multiple Sclerosis
    BioMol Concepts 2017; 8(1): 55–60 Fereshteh Alsahebfosoul, Ilnaz Rahimmanesh, Mansour Shajarian*, Masoud Etemadifar*, Nahid Sedaghat, Zahra Hejazi and Shamsi Naderi Interleukin-33 plasma levels in patients with relapsing-remitting multiple sclerosis DOI 10.1515/bmc-2016-0026 Received November 4, 2016; accepted November 25, 2016 Introduction Abstract: Cytokines are implicated in the immunopatho- Multiple sclerosis (MS) is a neuroinflammatory disease genesis of multiple sclerosis (MS). Interleukin (IL)-33, one of the central nervous system (CNS), identified by lesions of the recently discovered members of the IL-1 superfam- in the brain’s white matter and progressive disability in ily, is a dual functional cytokine involved in various auto- neuronal function (1). The age of onset of MS has been immune disorders. In a case-control study, venous blood reported to be varying between 20 and 40 years (2). Some was collected from healthy subjects categorized as con- studies report that MS might slightly develop in either trol group (n = 44) and MS patients (n = 44). All recruited children or people above 60 years (3–5). Researchers patients were clinically diagnosed with relapsing-remit- have conflicting ideas on whether MS is a pathological ting MS (RRMS), including patients without treatment disease, as MS presents with a variety of signs and symp- (new identified cases, n = 16) and those treated with toms (6, 7). Clinical investigations have demonstrated the interferon beta (IFN-β) (n = 28). The plasma levels of IL-33 role of immune cells in the progression of neural lesions in subjects were measured with ELISA. Significantly ele- during the acute early phase of MS, where relapses occur vated IL-33 plasma levels were observed in RRMS patients in the white matter of neurons and inside tracts in the (p = 0.005).
    [Show full text]
  • Human Cytokine Response Profiles
    Comprehensive Understanding of the Human Cytokine Response Profiles A. Background The current project aims to collect datasets profiling gene expression patterns of human cytokine treatment response from the NCBI GEO and EBI ArrayExpress databases. The Framework for Data Curation already hosted a list of candidate datasets. You will read the study design and sample annotations to select the relevant datasets and label the sample conditions to enable automatic analysis. If you want to build a new data collection project for your topic of interest instead of working on our existing cytokine project, please read section D. We will explain the cytokine project’s configurations to give you an example on creating your curation task. A.1. Cytokine Cytokines are a broad category of small proteins mediating cell signaling. Many cell types can release cytokines and receive cytokines from other producers through receptors on the cell surface. Despite some overlap in the literature terminology, we exclude chemokines, hormones, or growth factors, which are also essential cell signaling molecules. Meanwhile, we count two cytokines in the same family as the same if they share the same receptors. In this project, we will focus on the following families and use the member symbols as standard names (Table 1). Family Members (use these symbols as standard cytokine names) Colony-stimulating factor GCSF, GMCSF, MCSF Interferon IFNA, IFNB, IFNG Interleukin IL1, IL1RA, IL2, IL3, IL4, IL5, IL6, IL7, IL9, IL10, IL11, IL12, IL13, IL15, IL16, IL17, IL18, IL19, IL20, IL21, IL22, IL23, IL24, IL25, IL26, IL27, IL28, IL29, IL30, IL31, IL32, IL33, IL34, IL35, IL36, IL36RA, IL37, TSLP, LIF, OSM Tumor necrosis factor TNFA, LTA, LTB, CD40L, FASL, CD27L, CD30L, 41BBL, TRAIL, OPGL, APRIL, LIGHT, TWEAK, BAFF Unassigned TGFB, MIF Table 1.
    [Show full text]