1 To: Distribution From: Stephen Smith, Technical Writer Thru: Ernestine Bryant, Storage and Retrieval (STORET), Project Manager
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SALT TOLERANT PLANTS Recommended for Pender County Landscapes
North Carolina Cooperative Extension NC STATE UNIVERSITY SALT TOLERANT PLANTS Recommended for Pender County Landscapes Pender County Cooperative Extension Urban Horticulture Leaflet 14 Coastal Challenges Plants growing at the beach are subjected to environmental conditions much different than those planted further inland. Factors such as blowing sand, poor soils, high temperatures, and excessive drainage all influence how well plants perform in coastal landscapes, though the most significant effect on growth is salt spray. Most plants will not tolerate salt accumulating on their foliage, making plant selection for beachfront land- scapes particularly challenging. Salt Spray Salt spray is created when waves break on the beach, throwing tiny droplets of salty water into the air. On-shore breezes blow this salt laden air landward where it comes in contact with plant foliage. The amount of salt spray plants receive varies depending on their proximity to the beachfront, creating different vegetation zones as one gets further away from the beachfront. The most salt-tolerant species surviving in the frontal dune area. As distance away from the ocean increases, the level of salt spray decreases, allowing plants with less salt tolerance to survive. Natural Protection The impact of salt spray on plants can be lessened by physically blocking salt laden winds. This occurs naturally in the maritime forest, where beachfront plants protect landward species by creating a layer of foliage that blocks salt spray. It is easy to see this effect on the ocean side of maritime forest plants, which are “sheared” by salt spray, causing them to grow at a slant away from the oceanfront. -
Plants for Sun & Shade
Plants for Dry Shade Blue Shade Ruellia Ruellia tweediana Bugleweed Ajuga Cast Iron Plant Aspidistra Cedar Sage Salvia roemeriana Columbine Aquilegia Coral Bells Heuchera Flax Lily Dianella tasmanica ‘variegata’ Frog Fruit Phyla nodiflora Heartleaf Skullcap Scutellaria ovata ssp. Bracteata Japanese Aralia Fatsia japonica Katie Ruellia Ruellia tweediana Majestic Sage Salvia guaranitica Red Skullcap Scuttelaria longifolia Tropical or Scarlet Sage Salvia coccinea Turk’s Cap Malvaviscus arboreus var. drummondii Virginia Creeper Parthenocissus quinquefolia Plants for Moist Shade Australian Violet Viola hederacea Carex grass Sedge spp. Cardinal Flower Lobelia cardinalis Chinese Ground Orchid Bletilla striata Creeping Daisy Wedelia trilobata Creeping Jenny Lysimachia nummularia Crinum lily Crinum spp. False Spirea Astilbe spp. Fall Obedient Plant Physostegia virginiana Firespike Odontenema strictum Ferns various botanical names Gingers various botanical names Gulf Coast Penstemon Penstemon tenuis Inland Sea Oats Chasmanthium latifolium Ligularia Ligularia spp. Spikemoss Selaginella kraussiana Toadlily Tricyrtis spp. Turk’s Cap Malvaviscus arboreus var. drummondii Tropical or Scarlet Sage Salvia coccinea Water Celery Oenanthe javanica This and other plant care tip sheets are available at Buchanansplants.com. 01/15/16 Plants for Dry Sun Artemisia Artemisia spp. BiColor Iris Dietes bicolor Black-eyed Susan Rudbeckia spp. Blackfoot Daisy Melampodium leucanthum Blanket Flower Gaillardia spp. Bougainvillea Bougainville Bulbine Bulbine frutescens Butterfly Iris Dietes iridioides (Morea) Copper Canyon Daisy Tagetes lemmonii Coral Vine Antigonon leptopus Crossvine Bignonia capreolata Coreopsis Coreopsis spp. Dianella Dianella spp. Four Nerve Daisy Tetraneuris scaposa (Hymenoxys) Gulf Coast Muhly Muhlenbergia capillaris Ice Plant Drosanthemum sp. Mexican Hat Ratibida columnaris Plumbago Plumbago auriculata Rock Rose Pavonia spp. Sedum Sedum spp. Salvias Salvia spp. -
Chromosome Numbers in Compositae, XII: Heliantheae
SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII. -
STORET Version 2.0.6 Report Module Reference Guide
STORET Version 2.0.6 Report Module Reference Guide STORET Technical Support 1-800-424-9067 [email protected] United States Environmental Protection Agency Office of Water CONTENTS REPORT TECHNICAL SPECIFICATIONS ......................................1 Report Design Standards ................................................1 Technical Specifications .................................................2 Organization Summary .............................................3 Personnel Summary ................................................6 Program Summary .................................................9 Cooperating Organization Summary ..................................12 Field/Lab Analytical Procedures and Equipment Summary ................15 Field/Lab Analytical Procedures and Equipment Detail ...................17 Lab Sample Preparation Procedures ..................................20 Characteristic Group Summary ......................................23 Characteristic Group Details ........................................25 Sample Collection/Creation Procedures ...............................32 Sample Collection/Creation Gear/Equipment Configurations ...............35 Sample Preservation, Transport and Storage Profiles .....................37 Laboratories .....................................................39 Citations ........................................................42 External Station ID Schemes ........................................45 Project Summary .................................................47 Project Details ...................................................50 -
University of Florida's
variety information University of Florida’s For more information on the varieties discussed in this article, direct your inquiries Best to the following companies. AMERICAN TAKII INC. (831) 443-4901 www.takii.com The best of times, the worst of times and things ERNST BENARY OF AMERICA to come for seed-propagated bedding plants. (815) 895-6705 www.benary.com By Rick Kelly, Rick Schoellhorn, FLORANOVA PLANT BREEDERS Zhanao Deng and Brent K. Harbaugh (574) 674-4200 www.floranova.co.uk GOLDSMITH SEEDS rowers around the sive replicated trials. Cultivars to be cultivar to compare new entries in (800) 549-0158 country face a deci- evaluated are placed into classes by each new trial. If the new entry per- www.goldsmithseeds.com sion when producing species, flower and foliage color, forms better, it takes the best-of- bedding plants for plant height and growth habit. Two class position; if only one plant is KIEFT SEEDS HOLLAND (360) 445-2031 the Deep South and similar cli- duplicate fields are planted. One entered in a class, it becomes the www.kieftseeds.com mates around the world. There, field is scouted and sprayed, as uncontested best-of-class. We coop- needed. Plant measurements, per- erate with four of Florida’s premier flowers may flourish year-round; PANAMERICAN SEED however,G the moderate to high tem- formance, flowering data and culti- public gardens to display the best- (630) 231-1400 peratures and ample moisture fuel var performance are evaluated of-class selections in their formal www.panamseed.com the fires of disaster, as plant pests there. -
SAN DIEGO COUNTY NATIVE PLANTS in the 1830S
SAN DIEGO COUNTY NATIVE PLANTS IN THE 1830s The Collections of Thomas Coulter, Thomas Nuttall, and H.M.S. Sulphur with George Barclay and Richard Hinds James Lightner San Diego Flora San Diego, California 2013 SAN DIEGO COUNTY NATIVE PLANTS IN THE 1830s Preface The Collections of Thomas Coulter, Thomas Nuttall, and Our knowledge of the natural environment of the San Diego region H.M.S. Sulphur with George Barclay and Richard Hinds in the first half of the 19th century is understandably vague. Referenc- es in historical sources are limited and anecdotal. As prosperity peaked Copyright © 2013 James Lightner around 1830, probably no more than 200 inhabitants in the region could read and write. At most one or two were trained in natural sciences or All rights reserved medicine. The best insights we have into the landscape come from nar- No part of this document may be reproduced or transmitted in any form ratives of travelers and the periodic reports of the missions’ lands. They without permission in writing from the publisher. provide some idea of the extent of agriculture and the general vegeta- tion covering surrounding land. ISBN: 978-0-9749981-4-5 The stories of the visits of United Kingdom naturalists who came in Library of Congress Control Number: 2013907489 the 1830s illuminate the subject. They were educated men who came to the territory intentionally to examine the flora. They took notes and col- Cover photograph: lected specimens as botanists do today. Reviewing their contributions Matilija Poppy (Romneya trichocalyx), Barrett Lake, San Diego County now, we can imagine what they saw as they discovered plants we know. -
Plants for Bats
Suggested Native Plants for Bats Nectar Plants for attracting moths:These plants are just suggestions based onfloral traits (flower color, shape, or fragrance) for attracting moths and have not been empirically tested. All information comes from The Lady Bird Johnson's Wildflower Center's plant database. Plant names with * denote species that may be especially high value for bats (based on my opinion). Availability denotes how common a species can be found within nurseries and includes 'common' (found in most nurseries, such as Rainbow Gardens), 'specialized' (only available through nurseries such as Medina Nursery, Natives of Texas, SA Botanical Gardens, or The Nectar Bar), and 'rare' (rarely for sale but can be collected from wild seeds or cuttings). All are native to TX, most are native to Bexar. Common Name Scientific Name Family Light Leaves Water Availability Notes Trees: Sabal palm * Sabal mexicana Arecaceae Sun Evergreen Moderate Common Dead fronds for yellow bats Yaupon holly Ilex vomitoria Aquifoliaceae Any Evergreen Any Common Possumhaw is equally great Desert false willow Chilopsis linearis Bignoniaceae Sun Deciduous Low Common Avoid over-watering Mexican olive Cordia boissieri Boraginaceae Sun/Part Evergreen Low Common Protect from deer Anacua, sandpaper tree * Ehretia anacua Boraginaceae Sun Evergreen Low Common Tough evergreen tree Rusty blackhaw * Viburnum rufidulum Caprifoliaceae Partial Deciduous Low Specialized Protect from deer Anacacho orchid Bauhinia lunarioides Fabaceae Partial Evergreen Low Common South Texas species -
Ground Covers for Arizona Landscapes
Cooperative Extension Ground Covers for Arizona Landscapes ELIZABETH DAVISON Lecturer Department of Plant Sciences AZ1110 April 1999 Contents Why Use a Ground Cover? .......................................................................................................... 3 Caveats .......................................................................................................................................... 3 How to Select a Ground Cover ................................................................................................... 3 General Planting Instructions ...................................................................................................... 4 Care of Established Plantings....................................................................................................... 4 Water ............................................................................................................................................. 5 Exposure ........................................................................................................................................ 5 Plant Climate (Hardiness) Zones ................................................................................................ 5 Plant Climate Zone Map .............................................................................................................. 6 Plant List ........................................................................................................................................ 7 Plant Name Cross Reference -
Paraguay Burr (Acanthospermum Australe)
FEBRUARY 2010 TM YOUR ALERT TO NEW AND EMERGING THREATS. 1. 2. 3. 4. 1. Toothed leaves and inconspicuous flowers.2. Burr-like fruit with tiny hooked prickles. 3. Close-up of creeping stem with roots. 4. Infestation in Robina, Queensland. Paraguay burr (Acanthospermum australe) TURF GROUNDCOVER Introduced Not Declared Paraguay burr is a long-lived, or rarely short-lived, creeping plant that Quick Facts is an emerging weed of roadsides, footpaths, lawns, gardens, waste > Creeping plant that forms dense areas and disturbed sites. It is a member of the Asteraceae plant mats in mown areas family that is native to South America and the Caribbean. > Prefers sandy soils in near-coastal areas Distribution > This plant has recently become naturalised in the near-coastal parts of south-eastern Queensland. Produces burr-like fruit covered in small hooked prickles It is also more widely naturalised in the coastal districts of central New South Wales, between the Hunter Valley and Wollongong. This species was first recorded in south-eastern Queensland on South Stradbroke Island in 1994. Most herbarium records are from the coastal parts of the Gold Coast (i.e. Southport, Habitat South Stradbroke Island and The Spit). More recently it has been recorded at Robina, in the Gold Paraguay burr is currently found in sand dunes Coast hinterland, and there are also anecdotal reports from Redland City Council. It seems to be and sandy soils along footpaths and roadsides in spreading northwards and may soon be found in other parts of this region. the near-coastal areas of eastern Australia. It is also a weed of relatively dry, open, disturbed sites Description in the USA and Hawaii and has been recorded Usually a long-lived plant with creeping stems (10-60 cm long) that can form dense mats of as a weed of crops in South Africa and South vegetation. -
LCR MSCP Species Accounts, 2008
Lower Colorado River Multi-Species Conservation Program Steering Committee Members Federal Participant Group California Participant Group Bureau of Reclamation California Department of Fish and Game U.S. Fish and Wildlife Service City of Needles National Park Service Coachella Valley Water District Bureau of Land Management Colorado River Board of California Bureau of Indian Affairs Bard Water District Western Area Power Administration Imperial Irrigation District Los Angeles Department of Water and Power Palo Verde Irrigation District Arizona Participant Group San Diego County Water Authority Southern California Edison Company Arizona Department of Water Resources Southern California Public Power Authority Arizona Electric Power Cooperative, Inc. The Metropolitan Water District of Southern Arizona Game and Fish Department California Arizona Power Authority Central Arizona Water Conservation District Cibola Valley Irrigation and Drainage District Nevada Participant Group City of Bullhead City City of Lake Havasu City Colorado River Commission of Nevada City of Mesa Nevada Department of Wildlife City of Somerton Southern Nevada Water Authority City of Yuma Colorado River Commission Power Users Electrical District No. 3, Pinal County, Arizona Basic Water Company Golden Shores Water Conservation District Mohave County Water Authority Mohave Valley Irrigation and Drainage District Native American Participant Group Mohave Water Conservation District North Gila Valley Irrigation and Drainage District Hualapai Tribe Town of Fredonia Colorado River Indian Tribes Town of Thatcher The Cocopah Indian Tribe Town of Wickenburg Salt River Project Agricultural Improvement and Power District Unit “B” Irrigation and Drainage District Conservation Participant Group Wellton-Mohawk Irrigation and Drainage District Yuma County Water Users’ Association Ducks Unlimited Yuma Irrigation District Lower Colorado River RC&D Area, Inc. -
Annotated Checklist of the Vascular Plant Flora of Grand Canyon-Parashant National Monument Phase II Report
Annotated Checklist of the Vascular Plant Flora of Grand Canyon-Parashant National Monument Phase II Report By Dr. Terri Hildebrand Southern Utah University, Cedar City, UT and Dr. Walter Fertig Moenave Botanical Consulting, Kanab, UT Colorado Plateau Cooperative Ecosystems Studies Unit Agreement # H1200-09-0005 1 May 2012 Prepared for Grand Canyon-Parashant National Monument Southern Utah University National Park Service Mojave Network TABLE OF CONTENTS Page # Introduction . 4 Study Area . 6 History and Setting . 6 Geology and Associated Ecoregions . 6 Soils and Climate . 7 Vegetation . 10 Previous Botanical Studies . 11 Methods . 17 Results . 21 Discussion . 28 Conclusions . 32 Acknowledgments . 33 Literature Cited . 34 Figures Figure 1. Location of Grand Canyon-Parashant National Monument in northern Arizona . 5 Figure 2. Ecoregions and 2010-2011 collection sites in Grand Canyon-Parashant National Monument in northern Arizona . 8 Figure 3. Soil types and 2010-2011 collection sites in Grand Canyon-Parashant National Monument in northern Arizona . 9 Figure 4. Increase in the number of plant taxa confirmed as present in Grand Canyon- Parashant National Monument by decade, 1900-2011 . 13 Figure 5. Southern Utah University students enrolled in the 2010 Plant Anatomy and Diversity course that collected during the 30 August 2010 experiential learning event . 18 Figure 6. 2010-2011 collection sites and transportation routes in Grand Canyon-Parashant National Monument in northern Arizona . 22 2 TABLE OF CONTENTS Page # Tables Table 1. Chronology of plant-collecting efforts at Grand Canyon-Parashant National Monument . 14 Table 2. Data fields in the annotated checklist of the flora of Grand Canyon-Parashant National Monument (Appendices A, B, C, and D) . -
Desert Plants of Utah
DESERT PLANTS OF UTAH Original booklet and drawings by Berniece A. Andersen Revised May 1996 HG 505 FOREWORD The original Desert Plants of Utah by Berniece A. Andersen has been a remarkably popular book, serving as a tribute to both her botanical knowledge of the region and to her enthusiastic manner. For these reasons, we have tried to retain as much of the original work, in both content and style, as possible. Some modifications were necessary. We have updated scientific names in accordance with changes that have occurred since the time of the first publication and we have also incorporated new geographic distributional data that have accrued with additional years of botanical exploration. The most obvious difference pertains to the organization of species. In the original version, species were organized phylogenetically, reflecting the predominant concepts of evolutionary relationships among plant families at that time. In an effort to make this version more user-friendly for the beginner, we have chosen to arrange the plants primarily by flower color. We hope that these changes will not diminish the enjoyment gained by anyone familiar with the original. We would also like to thank Larry A. Rupp, Extension Horticulture Specialist, for critical review of the draft and for the cover photo. Linda Allen, Assistant Curator, Intermountain Herbarium Donna H. Falkenborg, Extension Editor TABLE OF CONTENTS The Nature of Deserts ........................................................1 Utah’s Deserts ........................................................2