Economic Benefits of the Global Positioning System (GPS)

Total Page:16

File Type:pdf, Size:1020Kb

Economic Benefits of the Global Positioning System (GPS) June 2019 Economic Benefits of the Global Positioning System (GPS) Final Report Sponsored by National Institute of Standards and Technology 100 Bureau Drive Gaithersburg, MD 20899 Prepared by RTI International Alan C. O’Connor Michael P. Gallaher Kyle Clark-Sutton Daniel Lapidus Zack T. Oliver Troy J. Scott Dallas W. Wood Manuel A. Gonzalez Elizabeth G. Brown Joshua Fletcher 3040 E. Cornwallis Road Research Triangle Park, NC 27709 RTI Project Number 0215471 ECONOMIC BENEFITS OF THE GLOBAL POSITIONING SYSTEM (GPS) FINAL REPORT by Alan C. O’Connor Michael P. Gallaher Kyle Clark-Sutton Daniel Lapidus Zack T. Oliver Troy J. Scott Dallas W. Wood Manuel A. Gonzalez Elizabeth G. Brown Joshua Fletcher Recommended citation: O’Connor, A.C., Gallaher, M.P., Clark-Sutton, K., Lapidus, D., Oliver, Z.T., Scott, T.J., Wood, D.W., Gonzalez, M.A., Brown, E.G., and Fletcher, J. 2019, June. Economic Benefits of the Global Positioning System (GPS). RTI Report Number 0215471. Sponsored by the National Institute of Standards and Technology. Research Triangle Park, NC: RTI International. _________________________________ RTI International is a registered trademark and a trade name of Research Triangle Institute. Contents Section Page Acknowledgments xiii Executive Summary ES-1 ES.1 Background ......................................................................................................................... ES-1 ES.2 Analysis Scope and Overview ............................................................................................ ES-1 ES.3 Economic Benefits of GPS to U.S. Private Sector, 1984 to 2017 ....................................... ES-2 ES.4 Potential Impact of a GPS Outage ...................................................................................... ES-4 ES.5 Concluding Remarks ........................................................................................................... ES-4 1. Introduction 1-1 1.1 Defining Positioning, Navigation, and Timing ...................................................................... 1-1 1.2 How GPS Works .................................................................................................................... 1-2 1.3 Analysis Scope and Objectives .............................................................................................. 1-4 1.4 Approach Overview ............................................................................................................... 1-7 1.5 Report Organization ............................................................................................................... 1-7 2. The History of GPS Technology: National Laboratory Innovation and Technology Transfer 2-1 2.1 Project Vanguard .................................................................................................................... 2-1 2.2 Transit .................................................................................................................................... 2-4 2.3 System 621B .......................................................................................................................... 2-4 2.4 Timation ................................................................................................................................. 2-4 2.5 Atomic Clock Development ................................................................................................... 2-5 2.6 NAVSTAR GPS .................................................................................................................... 2-7 3. Methodology Overview 3-1 3.1 Conceptual Approach to Valuing Economics Benefits .......................................................... 3-1 3.2 Counterfactual A: In the Absence of the Availability of GPS for Civilian Use ..................... 3-2 3.3 Counterfactual B: An Unexpected 30-Day Outage of the GPS System ................................. 3-3 3.4 Approach for Selecting Industry Sectors ............................................................................... 3-3 3.5 Approach for Quantifying Economic Benefits by Sector ...................................................... 3-5 iii 4. Telecommunications Sector 4-1 4.1 Sector Introduction and Overview ......................................................................................... 4-1 4.1.1 The Role of Precision Timing in Telecom ................................................................ 4-1 4.1.2 Historical Context ..................................................................................................... 4-2 4.1.3 Existing Literature on the Economic Impact of GPS in Telecom ............................. 4-5 4.2 Methodological Notes ............................................................................................................ 4-6 4.2.1 Counterfactual A: If GPS Were Not Available for Civilian Use .............................. 4-6 4.2.2 Approach for Quantifying Retrospective Economic Benefits ................................... 4-8 4.2.3 Counterfactual B: Potential Impacts of a 30-Day GPS Outage ............................... 4-11 4.2.4 Approach for Quantifying Potentials Impacts of a 30-Day Outage ........................ 4-11 4.2.5 Interviews with Sector-Specific GPS Experts ......................................................... 4-12 4.3 Retrospective Economic Benefits Analysis ......................................................................... 4-13 4.4 Potential Impacts of a 30-Day Outage ................................................................................. 4-14 4.5 Future Applications .............................................................................................................. 4-19 4.6 Concluding Remarks ............................................................................................................ 4-19 5. Precision Agriculture 5-1 5.1 Sector Introduction and Overview ......................................................................................... 5-1 5.2 Sector Applications ................................................................................................................ 5-5 5.3 Methodological Notes ............................................................................................................ 5-6 5.3.1 Approach for Quantifying Retrospective Benefits .................................................... 5-7 5.3.2 Approach for Quantifying the Potential Impacts of a 30-Day Outage ...................... 5-8 5.3.3 Expert Interviews ...................................................................................................... 5-9 5.4 Retrospective Economic Benefits Analysis ........................................................................... 5-9 5.5 Potential Impacts of a 30-Day GPS Outage ......................................................................... 5-13 5.6 Notes on Technology Transfer ............................................................................................. 5-14 5.7 Concluding Remarks ............................................................................................................ 5-16 6. Electricity Sector 6-1 6.1 Sector Applications ................................................................................................................ 6-1 6.2 Methodological Notes ............................................................................................................ 6-3 6.2.1 Precision Timing Needs ............................................................................................ 6-3 6.2.2 Approach for Quantifying Retrospective Benefits .................................................... 6-5 6.2.3 Approach for Quantifying the Potential Impacts of a 30-Day GPS Outage .............. 6-6 6.2.4 Interviews with Sector-Specific GPS Experts ........................................................... 6-6 6.3 Retrospective Economic Benefits Analysis ........................................................................... 6-8 6.3.1 Qualitative Findings .................................................................................................. 6-8 iv 6.3.2 Quantitative Findings .............................................................................................. 6-11 6.4 Potential Impacts of a 30-Day GPS Outage ......................................................................... 6-17 6.4.1 Qualitative Discussion of 30-Day Outage ............................................................... 6-17 6.4.2 Quantitative Costs Associated with 30-Day Outage ............................................... 6-19 6.5 Notes on Technology Transfer ............................................................................................. 6-20 6.5.1 Technology Transfer Moving Forward ................................................................... 6-21 6.6 Future Applications .............................................................................................................. 6-22 6.7 Concluding Remarks ............................................................................................................ 6-22 7. Financial Services Sector 7-1 7.1 Sector Introduction and Overview ......................................................................................... 7-1 7.2 Sector Applications ................................................................................................................ 7-2 7.2.1 How GPS Is Used .....................................................................................................
Recommended publications
  • Mobile Positioning in Cellular Networks Yogesh S
    International Journal of Trend in Research and Development, Volume 3(5), ISSN: 2394-9333 www.ijtrd.com Mobile Positioning in Cellular Networks Yogesh S. Tippe and Pramila S. Shinde Information Technology Department, Shah & Anchor Kutchhi Engineering College, Mumbai, India Abstract- Over the past few decades, Mobile Communication have become important in humans life. The use of mobiles is increased and access to information has become requirement. The increased demand for the information access has created a huge potential for opportunities and it has promoted the innovation towards the development of new technologies. Furthermore, with the fast development of mobile communication networks, positioning information becomes the great interest, because positioning information can be used in emergencies, rescues and navigation. In this paper, a comparative analysis of positioning techniques is presented. Some of the technologies that are used commonly are discussed in this paper. Figure 1 Classification of Mobile Positioning Techniques Keywords: Angle of Arrival, Time of Arrival, Time Difference of Arrival, Assisted GPS, Global Positioning System, Cell Identity, II. TECHNOLOGIES Location, Positioning. A. Handset based Mobile Positioning I. INTRODUCTION In this technique the handset participates in the position Wireless communication is among technologies biggest determination. The location of the mobile phone can be contribution to mankind. Wireless communication involves the determined using client software installed on the handset. This transmission of information over a distance without any wires or technique determines the location of handset by putting its cables. Now a days Position estimation with communication location by cell identification, signal strength of the home and technologies is hot topic to research.
    [Show full text]
  • Accurate Location Detection 911 Help SMS App
    System and method that allows for cost effective location detection accuracy that exceeds current FCC standards. Accurate Location Detection 911 Help SMS App White Paper White Paper: 911 Help SMS App 1 Cost Effective Location Detection Techniques Used by the 911 Help SMS App to Overcome Smartphone Flaws and GPS Discrepancies Minh Tran, DMD Box 1089 Springfield, VA 22151 Phone: (267) 250-0594 Email: [email protected] Introduction As of April 2015, approximately 64% of Americans own smartphones. Although there has been progress with E911 and NG911, locating cell phone callers remains a major obstacle for 911 dispatchers. This white papers gives an overview of techniques used by the 911 Help SMS App to more accurately locate victims indoors and outdoors when using smartphones. Background Location information is not only transmitted to the call center for the purpose of sending emergency services to the scene of the incident, it is used by the wireless network operator to determine to which PSAP to route the call. With regards to E911 Phase 2, wireless network operators must provide the latitude and longitude of callers within 300 meters, within six minutes of a request by a PSAP. To locate a mobile telephone geographically, there are two general approaches. One is to use some form of radiolocation from the cellular network; the other is to use a Global Positioning System receiver built into the phone itself. Radiolocation in cell phones use base stations. Most often this is done through triangulation between radio towers. White Paper: 911 Help SMS App 2 Problem GPS accuracy varies and could incorrectly place the victim’s location at their neighbor’s home.
    [Show full text]
  • D5.2: Process Map for Autonomous Navigation
    Grant Agreement number: 314286 Project acronym: MUNIN Project title: Maritime Unmanned Navigation through Intelligence in Networks Funding Scheme: SST.2012.5.2‐5: E‐guided vessels: the 'autonomous' ship D5.2: Process map for autonomous navigation Due date of deliverable: 2013‐07‐31 Actual submission date: Start date of project: 2012‐09‐01 Project Duration: 36 months Lead partner for deliverable: Fraunhofer CML Distribution date: 2013‐09‐27 Document revision: 1.0 Project co‐funded by the European Commission within the Seventh Framework Programme (2007‐2013) Dissemination Level PU Public Public PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) MUNIN – FP7 GA‐No 314286 D5.2 ‐ Print date: 14/01/07 Document summary information Deliverable D5.2: Process map for autonomous navigation Classification PU (public) Initials Author Organization Role WB Wilko Bruhn CML Editor HCB Hans‐Christoph Burmeister CML Editor LW Laura Walther CML Contributor JM Jonas Moræus APT Contributor ML Matt Long APT Contributor MS Michèle Schaub HSW Contributor EF Enrico Fentzahn MsoftContributor Rev. Who Date Comment 0.1 WB 2013‐08‐01 First draft 0.2 ØJR 2013‐08‐12 Partner review 0.3 AV 2013‐08‐13 Partner review 0.4 BS 2013‐08‐13 Partner review 0.5 WB 2013‐08‐30 Second draft after comments 1.0 HCB 2013‐08‐27 Formating Internal review needed: [ X ] yes [ ] no Initials Reviewer Approved Not approved FS Fariborz Safari X AV Ari Vésteinsson X Disclaimer The content of the publication herein is the sole responsibility of the publishers and it does not necessarily represent the views expressed by the European Commission or its services.
    [Show full text]
  • AEN-88: the Global Positioning System
    AEN-88 The Global Positioning System Tim Stombaugh, Doug McLaren, and Ben Koostra Introduction cies. The civilian access (C/A) code is transmitted on L1 and is The Global Positioning System (GPS) is quickly becoming freely available to any user. The precise (P) code is transmitted part of the fabric of everyday life. Beyond recreational activities on L1 and L2. This code is scrambled and can be used only by such as boating and backpacking, GPS receivers are becoming a the U.S. military and other authorized users. very important tool to such industries as agriculture, transporta- tion, and surveying. Very soon, every cell phone will incorporate Using Triangulation GPS technology to aid fi rst responders in answering emergency To calculate a position, a GPS receiver uses a principle called calls. triangulation. Triangulation is a method for determining a posi- GPS is a satellite-based radio navigation system. Users any- tion based on the distance from other points or objects that have where on the surface of the earth (or in space around the earth) known locations. In the case of GPS, the location of each satellite with a GPS receiver can determine their geographic position is accurately known. A GPS receiver measures its distance from in latitude (north-south), longitude (east-west), and elevation. each satellite in view above the horizon. Latitude and longitude are usually given in units of degrees To illustrate the concept of triangulation, consider one satel- (sometimes delineated to degrees, minutes, and seconds); eleva- lite that is at a precisely known location (Figure 1). If a GPS tion is usually given in distance units above a reference such as receiver can determine its distance from that satellite, it will have mean sea level or the geoid, which is a model of the shape of the narrowed its location to somewhere on a sphere that distance earth.
    [Show full text]
  • Global Maritime Distress and Safety System (GMDSS) Handbook 2018 I CONTENTS
    FOREWORD This handbook has been produced by the Australian Maritime Safety Authority (AMSA), and is intended for use on ships that are: • compulsorily equipped with GMDSS radiocommunication installations in accordance with the requirements of the International Convention for the Safety of Life at Sea Convention 1974 (SOLAS) and Commonwealth or State government marine legislation • voluntarily equipped with GMDSS radiocommunication installations. It is the recommended textbook for candidates wishing to qualify for the Australian GMDSS General Operator’s Certificate of Proficiency. This handbook replaces the tenth edition of the GMDSS Handbook published in September 2013, and has been amended to reflect: • changes to regulations adopted by the International Telecommunication Union (ITU) World Radiocommunications Conference (2015) • changes to Inmarsat services • an updated AMSA distress beacon registration form • changes to various ITU Recommendations • changes to the publications published by the ITU • developments in Man Overboard (MOB) devices • clarification of GMDSS radio log procedures • general editorial updating and improvements. Procedures outlined in the handbook are based on the ITU Radio Regulations, on radio procedures used by Australian Maritime Communications Stations and Satellite Earth Stations in the Inmarsat network. Careful observance of the procedures covered by this handbook is essential for the efficient exchange of communications in the marine radiocommunication service, particularly where safety of life at sea is concerned. Special attention should be given to those sections dealing with distress, urgency, and safety. Operators of radiocommunications equipment on vessels not equipped with GMDSS installations should refer to the Marine Radio Operators Handbook published by the Australian Maritime College, Launceston, Tasmania, Australia. No provision of this handbook or the ITU Radio Regulations prevents the use, by a ship in distress, of any means at its disposal to attract attention, make known its position and obtain help.
    [Show full text]
  • Solving the Multilateration Problem Without Iteration
    Article Solving the Multilateration Problem without Iteration Thomas H. Meyer 1 and Ahmed F. Elaksher 2,* 1 Department of Natural Resources and the Environment, College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, CT 06269-4087, USA; [email protected] 2 Geomatics Program, College of Engineering, New Mexico State University, Las Cruces, NM 88003, USA * Correspondence: [email protected] Abstract: The process of positioning, using only distances from control stations, is called trilateration (or multilateration if the problem is over-determined). The observation equation is Pythagoras’s formula, in terms of the summed squares of coordinate differences and, thus, is nonlinear. There is one observation equation for each control station, at a minimum, which produces a system of simultaneous equations to solve. Over-determined nonlinear systems of simultaneous equations are typically solved using iterative least squares after forming the system as a truncated Taylor’s series, omitting the nonlinear terms. This paper provides a linearization of the observation equation that is not a truncated infinite series—it is exact—and, thus, is solved exactly, with full rigor, without iteration and, thus, without the need of first providing approximate coordinates to seed the iteration. However, there is a cost of requiring an additional observation beyond that required by the non-linear approach. The examples and terminology come from terrestrial land surveying, but the method is fully general: it works for, say, radio beacon positioning, as well. The approach can use slope distances directly, which avoids the possible errors introduced by atmospheric refraction into the zenith-angle observations needed to provide horizontal distances.
    [Show full text]
  • Part V: the Global Positioning System ______
    PART V: THE GLOBAL POSITIONING SYSTEM ______________________________________________________________________________ 5.1 Background The Global Positioning System (GPS) is a satellite based, passive, three dimensional navigational system operated and maintained by the Department of Defense (DOD) having the primary purpose of supporting tactical and strategic military operations. Like many systems initially designed for military purposes, GPS has been found to be an indispensable tool for many civilian applications, not the least of which are surveying and mapping uses. There are currently three general modes that GPS users have adopted: absolute, differential and relative. Absolute GPS can best be described by a single user occupying a single point with a single receiver. Typically a lower grade receiver using only the coarse acquisition code generated by the satellites is used and errors can approach the 100m range. While absolute GPS will not support typical MDOT survey requirements it may be very useful in reconnaissance work. Differential GPS or DGPS employs a base receiver transmitting differential corrections to a roving receiver. It, too, only makes use of the coarse acquisition code. Accuracies are typically in the sub- meter range. DGPS may be of use in certain mapping applications such as topographic or hydrographic surveys. DGPS should not be confused with Real Time Kinematic or RTK GPS surveying. Relative GPS surveying employs multiple receivers simultaneously observing multiple points and makes use of carrier phase measurements. Relative positioning is less concerned with the absolute positions of the occupied points than with the relative vector (dX, dY, dZ) between them. 5.2 GPS Segments The Global Positioning System is made of three segments: the Space Segment, the Control Segment and the User Segment.
    [Show full text]
  • Project GREAT PTTI-2006 PPT-PDF
    Project GREAT (2005) General Relativity Einstein / Essen Anniversary Test Tom Van Baak [email protected] PTTI 2006 Washington DC Introduction • Project GREAT in 2005 – Attempt to prove the theory of relativity – Take cesium clocks up a mountain – Do clocks really speed up or slow down? • Celebrate 100th anniversary of 1905 – Albert Einstein’s “Annus Mirabilis” • Celebrate 50th anniversary of 1955 – Louis Essen’s NPL cesium clock 06-Dec-2006 Project GREAT 2 Albert Einstein • Who was Einstein? – Need I say more… – Theory of relativity – Time is not absolute – SR, GR, space-time – Bold predictions – Later confirmed – Enormous influence 06-Dec-2006 Project GREAT 3 Einstein and 2005 •100th anniversary of relativity: books, magazines, radio, TV, web sites, “Physics Year”, lectures… 06-Dec-2006 Project GREAT 4 Louis Essen • Who was Essen? –First Cesium Clock – Joint NPL USNO project to calibrate atomic time against astronomical time – 9 192 631 770 Hz – Book: “Famous for a second” 06-Dec-2006 Project GREAT 5 Essen and 2005 •50th anniversary of atomic time •NPL Caesium Jack Parry and Louis Essen Photo from www.npl.co.uk/essen/ 06-Dec-2006 Project GREAT 6 Cs Second • 1954…1958 •How long is a second? 06-Dec-2006 Project GREAT 7 Louis Essen •10 years later … • Essen at NPL with a HP 5060A “Flying Clock” 06-Dec-2006 Project GREAT 8 Flying Clocks in the 1960’s • Starting in 1964 with HP 5060A • Portable transistorized cesium clock • Hundreds of clock trips • Remote synchronization to µs levels • See HP Journals: 1964, 65, 66, 67 • 1965 world-wide time synchronization • Paved the way for flying clock relativity experiments in the 1970’s 06-Dec-2006 Project GREAT 9 Relativity and Clocks • High-level summary: – Clocks run slower if they move at high velocity (SR) – Clocks run slower in the presence of greater gravity (GR) – Clocks lose time traveling East (Sagnac) •This implies: – According to general relativity, stationary clocks on mountains run faster.
    [Show full text]
  • Global Navigation Satellite Systems and Their Applications Dr
    ISSN (Print): 2279-0063 International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Online): 2279-0071 International Journal of Software and Web Sciences (IJSWS) www.iasir.net Global Navigation Satellite Systems and Their Applications Dr. G. Manoj Someswar1, T. P. Surya Chandra Rao2, Dhanunjaya Rao. Chigurukota3 1Principal and Professor, Department of CSE, AUCET, Vikarabad, A.P. 2Associate Professor in Department of CSE 3Associate Professor in Nasimhareddy Engineering Collge ABSTRACT: Global Navigation Satellite System (GNSS) plays a significant role in high precision navigation, positioning, timing, and scientific questions related to precise positioning. Ofcourse in the widest sense, this is a highly precise, continuous, all-weather and a real-time technique. This Research Article is devoted to presenting recent results and developments in GNSS theory, system, signal, receiver, method and errors sources such as multipath effects and atmospheric delays. To make it more elaborative, this varied GNSS applications are demonstrated and evaluated in hybrid positioning, multi- sensor integration, height system, Network Real Time Kinematic (NRTK), wheeled robots, status and engineering surveying. This research paper provides a good reference for GNSS designers, engineers, and scientists as well as the user market. I. USE AND APPLICATIONS OF GLOBAL NAVIGATION SATELLITE SYSTEMS In the year 2001, pursuant to the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE-III), the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) established the Action Team on Global Navigation Satellite Systems (GNSS) under the leadership of the United States and Italy and with the voluntary participation of 38 Member States and 15 organizations.
    [Show full text]
  • EMERGENCY NAVIGATION SYSTEM Swati R
    G.J. E.D.T., Vol. 2(4): 23-28 (July-August, 2013) ISSN: 2319 – 7293 EMERGENCY NAVIGATION SYSTEM Swati R. Dhabarde Department of Information Technology Priyadarshini Indira Gandhi College of Engineering , Nagpur, India 1 Abstract In my project I am developing a computer program that will simulate and explain the need of technology and advance system for any person moving or navigating in a car (or any vehicle). Every person in day to day life requires some navigation for the proper working of his work .it is the human nature that ever man takes some guidance about some or another work without guidance the job taken by a human being will be completed properly or not is not known. So, for a proper working of your decided schedule you should know everything about the place where you live. You do know and if you ought to know then you can use “Emergency Navigation System”. ‘Emergency Navigation System’ is specialized software which is able to track the current position (of any person driving vehicles) and tell the path and other detailed information about your destination. If there are occurrences of multiple paths to the same destination then it can show the shortest one among them. 1.1 Keywords SAPI,GPS,GSM,SMS SDK,NAVIGATION 2. Introduction The project is an application to facilitate the car drivers with some artificial intelligence and other helping features/guidance. This will be used or implemented in the near future by various car companies. So our project is mainly a navigation system for car drivers along with a map of the city with some intelligent helping and guidance features i.e.
    [Show full text]
  • Traceability in Time and Frequency Metrology
    Traceability in Time and Frequency Metrology Michael A. Lombardi National Institute of Standards and Technology Time and Frequency Division 325 Broadway Boulder, CO 80303 United States of America (303) 497-3212 [email protected] Abstract This paper discusses the techniques and reference signals used to establish traceability to national and international standards when making time and tlequency measurements. It explains how traceable time and frequency tiormation is distributed by NIST and other national metrology institutes through radio, telephone, and Internet signals. It also describes how signals broadcast by the Global Positioning System (GPS) satellites can serve as a traceable time and frequency reference that is available worldwide. 1. Introduction Traceability is a desired characteristic of every measurement. Traceability is defined as: The property of a result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties. [1] Metrologists are required to complete the traceability chain by stating the uncertainty of their measurements with respect to a National Metrology Institute (NMI). The W is required to show traceability to the International System (S1) of units maintained by the Bureau International des Poids et Mesures (BIPM). Traceability is often a legal or contractual requirement, and its importance to quality control systems cannot be overstated. The International Organization for Standardization (ISO) Guide 25 lists the requirements for competence of calibration and testing laboratories. Section 9.2 of Guide 25 states: The overall programme of calibration and40r verij%ation and validation of equipment shall be designed and operated so as to ensure that, wherever applicable, measurements made by the laboratory are traceable to national stanakwds of measurement, where available.
    [Show full text]
  • The Global Positioning System
    The Global Positioning System Assessing National Policies Scott Pace • Gerald Frost • Irving Lachow David Frelinger • Donna Fossum Donald K. Wassem • Monica Pinto Prepared for the Executive Office of the President Office of Science and Technology Policy CRITICAL TECHNOLOGIES INSTITUTE R The research described in this report was supported by RAND’s Critical Technologies Institute. Library of Congress Cataloging in Publication Data The global positioning system : assessing national policies / Scott Pace ... [et al.]. p cm. “MR-614-OSTP.” “Critical Technologies Institute.” “Prepared for the Office of Science and Technology Policy.” Includes bibliographical references. ISBN 0-8330-2349-7 (alk. paper) 1. Global Positioning System. I. Pace, Scott. II. United States. Office of Science and Technology Policy. III. Critical Technologies Institute (RAND Corporation). IV. RAND (Firm) G109.5.G57 1995 623.89´3—dc20 95-51394 CIP © Copyright 1995 RAND All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from RAND. RAND is a nonprofit institution that helps improve public policy through research and analysis. RAND’s publications do not necessarily reflect the opinions or policies of its research sponsors. Cover Design: Peter Soriano Published 1995 by RAND 1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138 RAND URL: http://www.rand.org/ To order RAND documents or to obtain additional information, contact Distribution Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Internet: [email protected] PREFACE The Global Positioning System (GPS) is a constellation of orbiting satellites op- erated by the U.S.
    [Show full text]