Raised Serum Concentrations of Pancreaticenzymes in Cigarette
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Plasma and Recombinant Hemopexins: Heme Binding Revisited
International Journal of Molecular Sciences Article Human Plasma and Recombinant Hemopexins: Heme Binding Revisited Elena Karnaukhova 1,*, Catherine Owczarek 2, Peter Schmidt 2, Dominik J. Schaer 3 and Paul W. Buehler 4,5,* 1 Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA 2 CSL Limited, Bio21 Institute, Parkville, Victoria 3010, Australia; [email protected] (C.O.); [email protected] (P.S.) 3 Division of Internal Medicine, University Hospital of Zurich, 8091 Zurich, Switzerland; [email protected] 4 Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA 5 The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, MD 21201, USA * Correspondence: [email protected] (E.K.); [email protected] (P.W.B.) Abstract: Plasma hemopexin (HPX) is the key antioxidant protein of the endogenous clearance pathway that limits the deleterious effects of heme released from hemoglobin and myoglobin (the term “heme” is used in this article to denote both the ferrous and ferric forms). During intra-vascular hemolysis, heme partitioning to protein and lipid increases as the plasma concentration of HPX declines. Therefore, the development of HPX as a replacement therapy during high heme stress could be a relevant intervention for hemolytic disorders. A logical approach to enhance HPX yield involves recombinant production strategies from human cell lines. The present study focuses on a biophysical assessment of heme binding to recombinant human HPX (rhHPX) produced in the Expi293FTM (HEK293) cell system. -
MASSHEALTH TRANSMITTAL LETTER LAB-22 July 2002 TO
Commonwealth of Massachusetts Executive Office of Health and Human Services Division of Medical Assistance 600 Washington Street Boston, MA 02111 www.mass.gov/dma MASSHEALTH TRANSMITTAL LETTER LAB-22 July 2002 TO: Independent Clinical Laboratories Participating in MassHealth FROM: Wendy E. Warring, Commissioner RE: Independent Clinical Laboratory Manual (Laboratory HCPCS) The federal government has revised the HCFA Common Procedure Coding System (HCPCS) for MassHealth billing. This letter transmits changes for your provider manual that contain the new and revised codes. The revised Subchapter 6 is effective for dates of service on or after April 30, 2002. The codes introduced under the 2002 HCPCS code book are effective for dates of service on or after April 30, 2002. We will accept either the new or the old codes for dates of service through July 28, 2002. For dates of service on or after July 29, 2002, you must use the new codes to receive payment. If you wish to obtain a fee schedule, you may purchase Division of Health Care Finance and Policy regulations from either the Massachusetts State Bookstore or from the Division of Health Care Finance and Policy (see addresses and telephone numbers below). You must contact them first to find out the price of the publication. The Division of Health Care Finance and Policy also has the regulations available on disk. The regulation title for laboratory is 114.3 CMR 20.00: Laboratory. Massachusetts State Bookstore Division of Health Care Finance and Policy State House, Room 116 Two Boylston Street -
Detailed Structure and Pathophysiological Roles of the Iga-Albumin Complex in Multiple Myeloma
International Journal of Molecular Sciences Article Detailed Structure and Pathophysiological Roles of the IgA-Albumin Complex in Multiple Myeloma Yuki Kawata 1, Hisashi Hirano 1, Ren Takahashi 1, Yukari Miyano 1, Ayuko Kimura 1, Natsumi Sato 1, Yukio Morita 2, Hirokazu Kimura 1,* and Kiyotaka Fujita 1 1 Department of Health Sciences, Gunma Paz University Graduate School of Health Sciences, 1-7-1, Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan; [email protected] (Y.K.); [email protected] (H.H.); [email protected] (R.T.); [email protected] (Y.M.); [email protected] (A.K.); [email protected] (N.S.); [email protected] (K.F.) 2 Laboratory of Public Health II, Azabu University School of Veterinary Medicine, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-27-365-3366; Fax: +81-27-388-0386 Abstract: Immunoglobulin A (IgA)-albumin complexes may be associated with pathophysiology of multiple myeloma, although the etiology is not clear. Detailed structural analyses of these protein– protein complexes may contribute to our understanding of the pathophysiology of this disease. We analyzed the structure of the IgA-albumin complex using various electrophoresis, mass spectrom- etry, and in silico techniques. The data based on the electrophoresis and mass spectrometry showed that IgA in the sera of patients was dimeric, linked via the J chain. Only dimeric IgA can bind to albumin molecules leading to IgA-albumin complexes, although both monomeric and dimeric forms of IgA were present in the sera. -
Syllabus: Page 23
The University of Texas at El Paso College of Health Sciences Clinical Laboratory Science Program CLSC 3364 Hematology II Course Outline Spring What do you see? What is in your Head? Video or audio recordings will not be permitted. Instructor M. Lorraine Torres, Ed. D, MT (ASCP) College of Health Sciences Room 423 Phone: 747-7282 E-Mail: [email protected] Office Hours TR 3:00 – 4:00 p.m., Friday 2 – 3 p.m. or by appointment Class Schedule Monday and Wednesday 11:00 – 12:30 A.M. HSCI 135 Course Description This course is a sequel to Hematology I. It will include but is not limited to the study of the white blood cells with emphasis on white cell formation and function and the etiology and treatment of white blood cell disorders. This course will also encompass an introduction to hemostasis and laboratory determination of hemostatic disorders. Prerequisite; CLSC 3356 & CLSC 3257. Topical Outline 1. Maturation series and biology of white blood cells 2. Disorders of neutrophils 3. Reactive lymphocytes and Infectious Mononucleosis 4. Acute and chronic leukemias 5. Myelodysplastic syndromes 6. Myeloproliferative disorders 7. Multiple Myeloma and related plasma cell disorders 8. Lymphomas 9. Lipid (lysosomal) storage diseased and histiosytosis 10. Hemostatic mechanisms, platelet biology 11. Coagulation pathways 12. Quantitative and qualitative vascular and platelet disorders (congenital and acquired) 13. Disorders of plasma clotting factors 14. Interaction of the fibrinolytic, coagulation and kinin systems 15. Laboratory methods REQUIRED TEXTBOOKS: same books used for Hematology I Keohane, E.M., Smith, L.J. and Walenga, J.M. 2016. Rodak’s Hematology: Clinical Principles and applications. -
Decision Summary
510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: k081249 B. Purpose for Submission: New analyte, controls, and calibrator C. Measurand: Alpha 2 macroglobulin D. Type of Test: Quantitative, Nephelometric E. Applicant: Dade Behring, Inc. F. Proprietary and Established Names: Dimension Vista System A2mac Flex Reagent Cartridge, Dimension Vista System Protein 1 Calibrator, Dimension Vista System. G. Regulatory Information: Regulation Section Classification Product Code Panel 21 CFR 866.5620, Alpha- Class II Alpha-2-Macroglobulin, 82 Immunology 2-macroglobulin Antigen, Antiserum, (IM) immunological test Control (DEB) system. 21 CFR 862.1660, Quality Class I Multi-Analyte Controls, 75 Clinical control material (assayed All Kinds (Assayed) Chemistry and unassayed). (JJY) (CH) 21 CFR 862.1150, Class II Calibrator, Multi- 75 Clinical Calibrator. Analyte Mixture (JIX) Chemistry (CH) H. Intended Use: 1. Intended use(s): Dimension Vista® System A2MAC Flex® Reagent Cartridge The A2MAC assay is an in vitro diagnostic test for the quantitative measurement of alpha2-macroglobulin in human serum and heparinized and EDTA plasma on the Dimension Vista® Systems. Measurements of a2-macroglobulin aid in the diagnosis of blood clotting or blood lysis disorders. Dimension Vista® Protein 1 Calibrator Dimension Vista® Protein 1 Calibrator is an in vitro diagnostic product for the calibration of the Dimension Vista® System for: α1-Acid Glycoprotein (A1AG), α1-Antitrypsin(A1AT), α2-Macroglobulin (A2MAC), β2-Microglobulin (B2MIC), C3 Complement (C3), C4 Complement (C4), Ceruloplasmin(CER), Haptoglobin (HAPT), Hemopexin (HPX), Homocysteine (HCYS), Immunoglobulin A (IGA), Immunoglobulin E (IGE), Immunoglobulin G (IGG, IGG-C*), Immunoglobulin G Subclass 1, (IGG1), Immunoglobulin G Subclass 2 (IGG2), Immunoglobulin G 1 Subclass 3 (IGG3), Immunoglobulin Subclass 4 (IGG4), Immunoglobulin M (IGM), Prealbumin (PREALB), Retinol Binding Protein (RBP), soluble Transferrin Receptor (sTFR) and Transferring (TRF). -
Pathological Conditions Involving Extracellular Hemoglobin
Pathological Conditions Involving Extracellular Hemoglobin: Molecular Mechanisms, Clinical Significance, and Novel Therapeutic Opportunities for alpha(1)-Microglobulin Gram, Magnus; Allhorn, Maria; Bülow, Leif; Hansson, Stefan; Ley, David; Olsson, Martin L; Schmidtchen, Artur; Åkerström, Bo Published in: Antioxidants & Redox Signaling DOI: 10.1089/ars.2011.4282 2012 Link to publication Citation for published version (APA): Gram, M., Allhorn, M., Bülow, L., Hansson, S., Ley, D., Olsson, M. L., Schmidtchen, A., & Åkerström, B. (2012). Pathological Conditions Involving Extracellular Hemoglobin: Molecular Mechanisms, Clinical Significance, and Novel Therapeutic Opportunities for alpha(1)-Microglobulin. Antioxidants & Redox Signaling, 17(5), 813-846. https://doi.org/10.1089/ars.2011.4282 Total number of authors: 8 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Proceedings of the Fifty-Eighth Annual Meeting of the American Society for Clinical Investigation, Inc., Held in Atlantic City, N.J., May 2, 1966: Abstracts
Proceedings of the Fifty-Eighth Annual Meeting of the American Society for Clinical Investigation, Inc., Held in Atlantic City, N.J., May 2, 1966: Abstracts J Clin Invest. 1966;45(6):980-1037. https://doi.org/10.1172/JCI105414. Research Article Find the latest version: https://jci.me/105414/pdf ABSTRACTS Comparison of Effects of Alpha Adrenergic Blockade luminescence. Inhibition of ATPase activities by ouabain, on Resistance and Capacitance Vessels. FRANCOIS parachloromercuribenzoate (PCMB), and parachloro- M. ABBOUD * AND JOHN W. ECKSTEIN,* Iowa City, mercuribenzenesulfonate (PCMBS) was studied. ¶1 Mem- Iowa. brane ATPase of osmotically prepared platelet "ghosts" A foreleg of each of 20 dogs was perfused with blood is composed of Na+-K+-Mg++-dependent ATPase (15 to at a constant rate through the brachial artery. The 30%) and Mg++-activated ATPase (60 to 85%o). Ouabain nerves of the brachial plexus were transected, and an (10' M), which inhibits the Na+-K--dependent ATPase electrode was applied to their distal ends. Pressures were activity and produces a resultant loss of cellular K+, gain recorded simultaneously from the brachial artery and of Na+, and cell swelling, does not inhibit either ADP cephalic vein and from a small artery and small vein in aggregation or clot retraction. ¶f PCMB, an organic the paw. Pressor responses to injections of nor- mercurial compound that diffuses into cells, totally inacti- epinephrine (1, 2, and 4 /.tg) into the brachial artery and vates both ATPase activities in the ghost preparations to nerve stimulation (3, 6, and 12 cps) were measured and in the intact platelet. -
Study of Plasma Glycoglobulin Hemochromogens
Proceedings of the National Academy of Sciences Vol. 68, No. 3, pp. 609-613, March 1971 Heme Binding and Transport-A Spectrophotometric Study of Plasma Glycoglobulin Hemochromogens DAVID L. DRABKIN Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa. 19104 Communicated by Britton Chance, December 16, 1970 ABSTRACT A hitherto unreported phenomenon is the content was only 0.004-0.007 mmol/liter (or 0.04-0.07% of immediate production of the spectrum of ferrohemo- the hemoglobin content of whole blood). At this concentration chromogens (in the presence of sodium dithionite) upon the addition in vitro of hydroxyhemin (pH 7.6-7.8) to the all of the hemoglobin present was probably in the form of plasmas or sera, as well as to certain Cohn plasma protein hemoglobin-haptoglobin (11). In most cases the serum was fractions, of all mammalian species thus far examined. used directly; in some it was found desirable to dilute the This distinctive reaction is characteristic of a coordination serum 1:1 with 0.2 M phosphate buffer, pH 7.6, prior to the complex with heme iron, and is ascribed to a remarkable affinity for heme of certain plasma glycoglobulins, which addition of heme and reductant. Plasma protein fractions IV-1, include hemopexin. Spectrophotometry has permitted IV4, IV-7, and VI of most of the above species [prepared by estimations of the specific heme-binding capacity (as the alcohol-low temperature technique (12-15) and obtained ferrohemochromogen) of the plasmas, the rate of removal mainly from the Nutritional Biochemical Corp. ] were also ex- from plasma of injected heme, and the production of bile amined. -
Methemalbumin. Ii. Effect of Pamaquine and Quinine on Pathways of Hemoglobin Metabolism
METHEMALBUMIN. II. EFFECT OF PAMAQUINE AND QUININE ON PATHWAYS OF HEMOGLOBIN METABOLISM William D. Blake J Clin Invest. 1948;27(3):144-150. https://doi.org/10.1172/JCI101954. Research Article Find the latest version: https://jci.me/101954/pdf METHEMALBUMIN. II. EFFECT OF PAMAQUINE AND QUININE ON PATHWAYS OF HEMOGLOBIN METABOLISM 1, 2 By WILLIAM D. BLAKE 8 (From the Department of Medicine, New York University College of Medicine, and the Research Service, Third [New York University] Medical Division, Goldwater Memorial Hospital, New York City) (Received for publication March 12, 1947) INTRODUCTION laria during the study but the period immediately fol- lowing malaria was avoided because of the questionable Methemalbuminemia has been described in as- status of certain functions of the liver (10, 11, 12). sociation with massive intravascular hemolysis Serunm bilirubin and bromsulfalein retention tests were (1, 2, 3, 4) or with limited hemolysis in the pres- normal, unless specifically mentioned. ence of liver disease (1, 5). Similarly, the in- Pamaquine naphthoate and quinine sulfate were admin- istered orally, the dosage in each case being expressed jection of large amounts of hemoglobin may result in terms of the free base. Plasma pamaquine (13) and in methemalbuminemia (1), whereas smaller quinine concentrations (14) were estimated at intervals amounts do so only in the presence of a damaged to ascertain reliability of drug intake. Pamaquine dosage liver (6). Hematin injected intravenously rapidly regimens were either 15 mg. every four hours or 10 mg. combines with serum albumin to form methemal- every eight hours. Quinine was given as the sulfate in 0.6 gram doses every eight hours. -
Plasma Proteins & Immunoglobulins Peter J
CHAPTER 52 Plasma Proteins & Immunoglobulins Peter J. Kennelly, PhD, Robert K. Murray, MD, PhD, Molly Jacob, MBBS, MD, PhD & Joe Varghese, MBBS, MD 1529 BIOMEDICAL IMPORTANCE The proteins that circulate in blood plasma play important roles in human physiology. Albumins facilitate the transit of fatty acids, steroid hormones, and other ligands between tissues, while transferrin aids the uptake and distribution of iron. Circulating fibrinogen serves as a readily mobilized building block of the fibrin mesh that provides the foundation of the clots used to seal injured vessels. Formation of these clots is triggered by a cascade of latent proteases, or zymogens, called blood coagulation factors. Plasma also contains several proteins that function as inhibitors of proteolytic enzymes. Antithrombin helps confine the formation of clots to the vicinity of a wound, while α1-antiproteinase and α2-macroglobulin shield healthy tissues from the proteases that destroy invading pathogens and remove dead or defective cells. Circulating immunoglobulins called antibodies form the front line of the body’s immune system. Perturbances in the production of plasma proteins can have serious health consequences. Deficiencies in key components of the blood clotting cascade can result in excessive bruising and bleeding (hemophilia). Persons lacking plasma ceruloplasmin, the body’s primary carrier of copper, are subject to hepatolenticular degeneration (Wilson disease), while emphysema is associated with a genetic deficiency in the production of circulating α1-antiproteinase. More than one in every 30 residents of North America suffer from an autoimmune disorder, such as type 1 diabetes, asthma, and rheumatoid arthritis, resulting from the production of aberrant immunoglobulins (Table 52–1). -
Dietary and Lifestyle Factors Modulate the Activity of the Endogenous
antioxidants Article Dietary and Lifestyle Factors Modulate the Activity of the Endogenous Antioxidant System in Patients with Age-Related Macular Degeneration: Correlations with Disease Severity Zofia Ula ´nczyk 1 , Aleksandra Grabowicz 2, El˙zbietaCecerska-Hery´c 3, Daria Sleboda-Taront´ 3, El˙zbietaKrytkowska 2, Katarzyna Mozolewska-Piotrowska 2, Krzysztof Safranow 4 , Miłosz Piotr Kawa 1, Barbara Doł˛egowska 3 and Anna Machali ´nska 2,* 1 Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; zofi[email protected] (Z.U.); [email protected] (M.P.K.) 2 First Department of Ophthalmology, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] (A.G.); [email protected] (E.K.); [email protected] (K.M.-P.) 3 Department of Laboratory Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] (E.C.-H.); [email protected] (D.S.-T.);´ [email protected] (B.D.) 4 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected] Received: 17 August 2020; Accepted: 2 October 2020; Published: 5 October 2020 Abstract: Age-related macular degeneration (AMD) is a common cause of blindness in the elderly population, but the pathogenesis of this disease remains largely unknown. Since oxidative stress is suggested to play a major role in AMD, we aimed to assess the activity levels of components of the antioxidant system in patients with AMD. We also investigated whether lifestyle and dietary factors modulate the activity of these endogenous antioxidants and clinical parameters of disease severity. -
The Surgical Significance of Methaemalbuminaemia
Gut: first published as 10.1136/gut.12.12.995 on 1 December 1971. Downloaded from Gut, 1971, 12, 995-1000 The surgical significance of methaemalbuminaemia CAMERON BATTERSBY AND MARJORIE K. GREEN From the Department ofSurgery, University of Queensland, and Royal Brisbane Hospital, Brisbane, Australia SUMMARY A quantitative estimation of plasma methaemalbumin can be useful. In pancreatitis, it usually indicates severe and haemorrhagic disease, and is thus of prognostic importance, as well as indicating the need for the full therapeutic regime for conservative management of the disease. It may be helpful diagnostically in some patients with pancreatitis in whom it remains elevated after the serum amylase has returned to normal. Raised levels may indicate laparotomy in patients in whom the diagnosis of pancreatitis is con- sidered but who are not responding to conservative measures. Such patients may occasionally be suffering from intestinal infarction or other surgically remediable condition. However, it has been found that the level of methaemalbumin in the plasma may be raised above the upper limit of the normal range of 5.5 mg % in occasional cases of gastrointestinal bleeding and soft tissue trauma and is not always raised in haemorrhagic pancreatitis. Northam, Rowe, and Winstone (1963) suggested that the presence ofa raised level ofmethaemalbumin in the plasma may be helpful in the differential * Spontancotus llaeiiolysis (binds with diagnosis between haemorrhagic and oedematous * Proteolytic enzymes ho globin) http://gut.bmj.com/ pancreatitis. About the same time, a spectrometric method yielding quantitative results was described for HB-HAPTOGLOBIN| methaemalbumin estimation in plasma (Shinowara COMPLEX. and Walters, 1963) to supplement the older methods S | ~~~~~~HAEM-HAEMOPEXIN| of direct spectroscopic examination, the Schumm HAIEATIN | binds with haemnopexin COMPLEX reaction, and paper electrophoresis (Winstone, 1965).