The Pre-Embryonic State of the AAVSO
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Benjamin Apthorp Goulds
TWO BENJAMIN APTHORP GOULDS “NARRATIVE HISTORY” AMOUNTS TO FABULATION, THE REAL STUFF BEING MERE CHRONOLOGY “Stack of the Artist of Kouroo” Project Two Benjamin Apthorp Goulds HDT WHAT? INDEX BENJAMIN APTHORP GOULD, JR. BENJAMIN APTHORP GOULD 1787 June 15, Friday: Benjamin Apthorp Gould was born. Variant texts of the plan presented by William Patterson of New Jersey to the Federal Convention, Text A: READ THE FULL TEXT Text B: READ THE FULL TEXT Text C: READ THE FULL TEXT NOBODY COULD GUESS WHAT WOULD HAPPEN NEXT “Stack of the Artist of Kouroo” Project Two Benjamin Apthorp Goulds HDT WHAT? INDEX BENJAMIN APTHORP GOULD BENJAMIN APTHORP GOULD, JR. 1814 August 24, Wednesday: Viscount Castlereagh arrived at Paris, where he would be meeting with King Louis XVIII and Talleyrand before traveling on to Vienna. As part of a conflict that was essentially a continuation of the American Revolution by way of a dispute over the seas and over the border of Canada, on this day and the following one a British army defeated hastily assembled defenders of Washington DC at Bladensburg, Maryland, just north of the capital. The British would go on to burn Washington, including the White House and most of the 3,076 books and 53 maps, charts, and plans of the Library of Congress, along with paintings of Louis XVI and Marie Antoinette by Madame Vigee Lebruin. They would also put the chambers of the House and the Senate in Washington DC to the torch — but beware, it is sheer mythology that the books were used as kindling for the fire in the legislative chambers.1 Waldo Emerson would reminisce in his journal in about April or May of 1856 about a British-invasion-of- Boston scare that had occurred in about this period of his childhood:2 I have but one military recollection in all my life. -
December 2019
The Newsletter of Westchester Amateur Astronomers December 2019 M8-The Lagoon Nebula by Gary Miller A familiar object at summer star parties, M8 in Sagittarius was first glimpsed by John Flamsteed in 1680 and called “The Lagoon Nebula” by the Irish astronomer Agnes Clerke in The System of the Stars (1890). It is an emission nebula which re-radiates the energy of several hot young stars embedded within it, including 9 Sagittari (dead center). It also surrounds the open cluster NGC 6530, a system of 113 young stars. Although it’s low in the summer sky from Westchester, it’s a wonderful visual object in nearly any telescope. SERVING THE ASTRONOMY COMMUNITY SINCE 1986 Westchester Amateur Astronomers SkyWAAtch December 2019 WAA December Meeting WAA January Meeting Friday, December 6th at 7:30 pm Friday, January 10th at 7:30 pm Lienhard Hall, 3rd floor Lienhard Hall, 3rd floor Pace University, Pleasantville, NY Pace University, Pleasantville, NY The History of Glass: The Power Behind Why Go Back to the Moon? Discovery Andy Poniros Alan Witzgall NASA Solar System Ambassador Senior Optician, ESCO Optics Andy has been a NASA volunteer since 1997 and a Alan is an active member and officer of several ama- NASA/JPL Solar System Ambassador since 2004 . He teur astronomy societies in New Jersey. In his profes- has a degree in Electrical Engineering and has worked sional life, he is a Senior Optician for ESCO Optics of as a Medical Imaging Engineer for 45 years. He is Oak Ridge, NJ. His career in optics started with build- certified by NASA to handle Lunar samples, is a sci- ing telescopes in his basement during his high school ence correspondent for radio station WPKN in Con- and college years. -
T Vulpeculae
T Vulpeculae: Maximum Times covering 120 years show a slight, continuous Period Decrease US astronomer Benjamin Apthorp Gould (1824...1896) studied in Germany, namely mathematics in Göttingen from Prof. Gauss and astronomy in Bonn from Prof. Argelander. Back home Gould started a visual sky survey to complete Argelander's Bonner Durchmusterung. After Gould had departed to observe in Argentina his assistant Seth Carlo Chandler jr. (1846...1913) in 1876 recruited the Boston bank clerk Edwin F. Sawyer to contribute with own visual observations. It seems, that Sawyer observed at least until about 1900. During these 25 years with the visual comparison methods of his time Sawyer discovered a remarkable number of variable stars, among them (Sawyer, 1885) the bright, classical cepheid T Vulpeculae. T Vul is about the 10th in apparent magnitude of all classical cepheids. A modern database (DDODB, ca. 1996) reports a mean magnitude of 5,75mag and an amplitude of 0,64mag. The period is 4,4 days. The lightcurve (figure 1) produces the typical smooth, asymmetric pattern of classical cepheids with periods between 3 and 6 days. Around 1900 the term "cepheid" had not yet been introduced. Researchers designated variables with asymmetric lightcurves and periods shorter than 50 days as short period variables. Karl Schwarzschild (1900) discovered, that brightness and brightness variation of a star on photographic plates can be much different from visual ones. In the following years scientists recognized, that short period variables show this phenomenon to an especially marked amount. Authors of the 1920ies and 1930ies continued to study this by comparing visual magnitudes or magnitudes on panchromatic, sensitised ("photovisual") plates on one with magnitudes on unsensitised, blue sensitive ("photographic") plates on the other side. -
107 V Ariations on the Unexpected
107 Variations on the Unexpected SURPRISE 107 Variations on the Unexpected Dedication and Prelude To Raine Daston In his essay “Of Travel,” Francis Bacon recommends that diaries be used to register the things “to be seen and observed.” Upon returning home, the traveler should not entirely leave the visited countries, but maintain a correspondence with those she met, and let her experi- ence appear in discourse rather than in “apparel or gesture.” Your itineraries through a vast expanse of the globe of knowledge seem to illustrate Bacon’s recommendations, and have inspired many to em- bark on the exploration of other regions—some adjacent, some dis- tant from the ones you began to clear. Yet not all have journeyed as well equipped as you with notebooks, nor assembled them into a trove apt to become, as Bacon put it, “a good key” to inquiry. As you begin new travels, you may add the present collection to yours, and adopt the individual booklets as amicable companions on the plane or the U-Bahn. Upon wishing you, on behalf of all its contributors, Gute Reise! and Bon voyage!, let us tell you something about its gen- esis and intention. Science depends on the unexpected. Yet surprise and its role in the process of scientific knowledge-making has hitherto received lit- tle attention, let alone systematic investigation. If such a study ex- isted, it would no doubt have been produced in your Department at the Max Planck Institute for the History of Science. The topic is a seamless match with your interest in examining ideals and practices of scientific and cultural rationality—ideals and practices often so fundamental that they appear to transcend history or are overlooked altogether. -
On the Epistemic and Social Foundations of Mathematics As Tool and Instrument in Observatories, 1793–1846 David Aubin
On the Epistemic and Social Foundations of Mathematics as Tool and Instrument in Observatories, 1793–1846 David Aubin To cite this version: David Aubin. On the Epistemic and Social Foundations of Mathematics as Tool and Instrument in Observatories, 1793–1846. Johannes Lenhard & Martin Carrier,. Mathematics as a Tool: Tracing New Roles of Mathematics in the Sciences, 327, Springer, p. 177-196, 2017, Boston Studies in the Philosophy and History of Science. hal-01269674 HAL Id: hal-01269674 https://hal.sorbonne-universite.fr/hal-01269674 Submitted on 5 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the Epistemic and Social Foundations of Mathematics as Tool and Instrument in Observatories, 1793–1846 David Aubin* May 2015, revised February 2016 The astronomer is dependent on his tools; the observatory is but the receptacle of his tools, his tool-chest so to speak (Harrington 1883–1884, 249). One night, in June 1782, the Astronomer Royal Nevil Maskelyne suddenly felt “much out of love with his instrument.”1 William Herschel had come to Greenwich to stargaze in his company and Maskelyne had welcomed him. But to realize that all telescopes in the Royal Observatory were so much inferior to Herschel’s new reflector was disheartening to the Astronomer Royal. -
Seth Chandler
NATIONAL ACADEMY OF SCIENCES S ET H C A R L O Ch ANDLER, JR. 1846—1913 A Biographical Memoir by W.E . CA R T E R AN D M . S . C ARTER Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1995 NATIONAL ACADEMIES PRESS WASHINGTON D.C. SETH CARLO CHANDLER, JR. September 16, 1846–December 31, 1913 BY W. E. CARTER AND M. S. CARTER ETH CARLO CHANDLER, JR., IS best remembered for his re- Ssearch on the variation of latitude (i.e., the complex wobble of the Earth on its axis of rotation, now referred to as polar motion). His studies of the subject spanned nearly three decades. He published more than twenty-five techni- cal papers characterizing the many facets of the phenom- enon, including the two component 14-month (now referred to as the Chandler motion) and annual model most gener- ally accepted today, multiple frequency models, variation of the frequency of the 14-month component, ellipticity of the annual component, and secular motion of the pole. His interests were much wider than this single subject, however, and he made substantial contributions to such diverse areas of astronomy as cataloging and monitoring variable stars, the independent discovery of the nova T Coronae, improv- ing the estimate of the constant of aberration, and comput- ing the orbital parameters of minor planets and comets. His publications totaled more than 200. Chandler’s achievements were well recognized by his con- temporaries, as documented by the many prestigious awards he received: honorary doctor of law degree, DePauw Uni- versity; recipient of the Gold Medal and foreign associate of the Royal Astronomical Society of London; life member 45 46 BIOGRAPHICAL MEMOIRS of the Astronomische Gesellschaft; recipient of the Watson Medal and fellow, American Association for the Advance- ment of Science; and fellow, American Academy of Arts and Sciences. -
HAD in San Diego New HAD Web Pages
HAD in San Diego New HAD Web pages he Historical Astronomy Division began the new centuryand e are happy to announce the recent updating of the HAD T millennium with an assortment of scientific and logistic wweb pages. They haven't been updated with slick, busy activities in San Diego. An undoubted highlight was a Sunday visit graphics, but just with more information. Visit our web site at to the Ernst Zinner Collection of historic astronomical books and http:l/www.aas.org/%7Ehad/had.html documents at San Diego State University, hosted by Freddie Talbert and you will find the updated list of HAD officers and links to lists of the astronomy faculty and Lyn Olsson of the SDSU Library's of former officers and the sites and dates of past HAD meetings. Special Collections department. Dr. Ernst Zinner (1886-1970) was There is also a link to a page giving all the information about HAD'S professor of astronomy at the University of Munich and this LeRoy E. Doggett Prize for I-Iistorical Astronomy. And perhaps the collection constitutes his personal library. Emphasizing most exciting addition is Ruth Freitag's bibliography of recent astronomy, but including horology and the history of science, the publications in the history of astronomy. Right now her collection consists of more than thirty-five hundred books and is bibliography for the Feb. 2001 HAD News is up in both HTML and rich in rare books dating from 1485. Our hosts peppered the SDSU PDF formats. We hope to add earlier bibliographies as we get a campus with many signs pointing the way to the new library annex chance. -
El Origen De Lo S Co N Tin En
EL ORIGEN DE LOS CONTINENTES[1],2 de por el Dr. Alfred Wegener, Marburgo TraDucción casTellana y [noTas] De CÁndido MAnuel gArCÍA Cruz origen continentes los El [185] [3] En las páginas que siguen se hará un primer intento provisional de interpretar los principales ca- racteres de la superficie terrestre, es decir, los continentes y las cuencas oceánicas, mediante un principio genético global, el principio de movilidad horizontal de los bloques continentales. Donde teníamos antiguas conexiones de tierra firme[4] que se hunden en la profundidad de los océanos, aceptaremos ahora la ruptura y separación[5] de los témpanos continentales.[6] Así, la imagen que obtenemos de la naturaleza de la corte- za terrestre es nueva y en cierto sentido paradójica, pero como se mostrará no carece de fundamento físico. Por otro lado, las numerosas simplificaciones[7] y las sorprendentes interrelaciones solo se hacen patentes después de un análisis preliminar de los principales resultados geológicos y geofísicos, y solo por esa razón considero justificado, incluso necesario, reemplazar la vieja hipótesis de los continentes hundidos por una nueva, puesto que parece ser más convincente, y porque su ineficacia se hace ya evidente mediante su antítesis, a saber, la permanencia de los océanos.8 A pesar de estar bien fundamentado, considero el nue- [1] referencia original: Wegener, A.l. (1912a). die entstehung der Kontinente. Petermanns Geographische Mitteilungen, 58(4), 185–195. [nT] 2 debido a mi participación en la expedición danesa a groenlandia, me veo obligado a posponer el trabajo planificado más desarrollado, y publicar tan solo esta comunicación preliminar por el momento. -
PART II. OTHER PUBLICATIONS of the ACADEMY MEMOIRS of the NATIONAL ACADEMY of SCIENCES -The Memoirs Are Monographs Published at Irregular Intervals
PART II. OTHER PUBLICATIONS OF THE ACADEMY MEMOIRS OF THE NATIONAL ACADEMY OF SCIENCES -The Memoirs are monographs published at irregular intervals. Some volumes are comprised of a single monograph, while others consist of several separate papers relating to different branches of science. The Memoirs listed as "out of print" qare no longer available from the Academy,' but it is possible that some of these might still be obtained from the Superintendent of Documents, Government Printing Office, Washington, D. C., who sometimes has additional copies which are sold at cost. The Academy edition of the Memoirs is distributed free. CONTENTS VoLums I. 1866. Out of print 1. Reduction of the observations of fixed stars made by Joseph LePaute D'Agelet, at Paris, in 1783-1785, with a catalogue of the corresponding mean places, referred to the Equinox of 1800.0. BENJAMIN APTHORP GOULD. Read January 8, 1864. Pp. 1-261. 2. The Saturnian system. BZNJAMIN Pumcu. Read January 8, 1864. Pp. 263-86. 3. On the distribution of certain diseases in reference to hygienic choice of location for the cure of invalid soldiers. AUGUSTrUS A. GouLD. Read August 5, 1864. Pp. 287-90. 4. On shooting stars. H. A. NEWTON.- Read August 6, 1864. Pp. 291-312. 5. Rifled guns. W. H. C. BARTL*rT. Read August 25, 1865. Pp. 313-43. VoLums II. 1884 1. Report of the eclipse expedition to Caroline Island, May, 1883. Pp. 5-146. 2. Experimental determination of wave-lengths in the invisible prismatic spectrum. S. P. LANGIXY. April, 1883. 4 plates. Pp. 147-2. -
C.H.F. Peters
NATIONAL ACADEMY OF SCIENCES Ch RISTIAN HEINRIC H F RIEDRIC H PETERS A Biographical Memoir by W I L L I A M ShEE H AN Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1999 NATIONAL ACADEMIES PRESS WASHINGTON D.C. CHRISTIAN HEINRICH FRIEDRICH PETERS September 19, 1813–July 18, 1890 BY WILLIAM SHEEHAN N THE MID-NINETEENTH century the discovery of new aster- Ioids was still far from routine. These objects had not yet grown so numerous as to earn for themselves the contemp- tuous label later applied, “vermin of the skies,” and those who excelled in claiming the starlike wanderers from the camouflage of background stars were honored with renown. Hind, de Gasparis, Goldschmidt, Chacornac, Pogson, and Peters were foremost among the early discoverers. Even on this short list C. H. F. Peters stood out. On May 29, 1861—just weeks after the American Civil War began at Fort Sumter—Peters discovered his first aster- oid (72 Feronia). It was the fifth asteroid discovered in North America (others had been found by Ferguson and Searle). Feronia was the first of forty-eight such discoveries that made Peters the most prolific finder of minor planets of his generation, and even today he remains second only to Johann Palisa among visual discoverers of asteroids. Dur- ing his colorful career, he also compiled meticulous star charts of the zodiac, collated observations from manuscripts of Ptolemy, and embroiled himself in a series of often bitter controversies with other astronomers, notably over the ex- istence of an intra-Mercurial planet. -
Star Tales 2018
CHAPTER ONE Stars and storytellers VERY NIGHT a pageant of Greek mythology circles overhead. Perseus flies to the rescue of Andromeda, Orion faces the charge of the snorting Ebull, Boötes herds the bears around the pole, and the ship of the Argo - nauts sails in search of the golden fleece. These legends, along with many others, are depicted in the star patterns that astronomers term constellations. Constellations are the invention of human imagination, not of nature. They are an expression of the human desire to impress its own order upon the appar- ent chaos of the night sky. For navigators beyond sight of land or for travellers in the trackless desert who wanted signposts, for farmers who wanted a calendar and for shepherds who wanted a nightly clock, the division of the sky into recognizable star groupings had practical purposes. But perhaps the earliest motivation was to humanize the forbidding blackness of night. Newcomers to astronomy are soon disappointed to find that the great majority of constellations bear little, if any, resemblance to the figures whose names they carry; but to expect such a resemblance is to misunderstand their true meaning. The constellation figures are not intended to be taken literally. Rather, they are symbolic, a celestial allegory. The night sky was a screen on which human imaginationSAMPLE could project the deeds and personifications of deities, sacred animals, and moral tales. It was a picture book in the days before writing. Each evening the stars emerge like magic spirits as the Sun descends to its nocturnal lair. Modern science has told us that those twinkling points scattered across the sky are actually glowing balls of gas similar to our own Sun, immensely far away. -
History of Monitoring Earth Orientation Jan Vondrák, Astronomical Institute CAS, Prague
History of monitoring Earth orientation Jan Vondrák, Astronomical Institute CAS, Prague Contents: P Earth orientation parameters; P Short historical background; P Services monitoring Earth orientation; P Geophysical effects in Earth orientation; P Re-analyses of historical astrometric observations. 25th IUGG GA, Symposium JA6 Data on the Edge..., Prague, June 2015 1 Earth orientation parameters P Earth rotation in a wider sense - total oriention of the body (precession-nutation, polar motion, proper rotation), affected by: < External torques (by the Moon, Sun, planets); < Geophysical influences (internal composition of the Earth, transfer of mass at core-mantle boundary, geomagnetic core- mantle coupling, oceans, hydroshere, atmoshere...). P Earth rotation has a fundamental importance in astronomy, especially for transformation between celestial and terrestrial reference systems, but also in other applications: – Space navigation; – geophysics; – geodesy etc... 25th IUGG GA, Symposium JA6 Data on the Edge..., Prague, June 2015 2 Earth orientation parameters Precession + nutation (celestial pole offsets) Proper rotation (UT1, length-of-day) Polar motion 25th IUGG GA, Symposium JA6 Data on the Edge..., Prague, June 2015 3 Short historical background: P precession < known already to Hipparchos (2nd cy BC); P polar motion < theoretically predicted by Leonhard Euler (1765) - period=305d; < observationally first detected by Karl Friedrich Küstner in Berlin (1884/5); < shortly afterwards confirmed by Ladislaus (László) Weinek in Prague; < two