Giant Planets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1804.09082V3 [Astro-Ph.SR] 31 May 2019 Upr O H Oeaceinmcaimo Lntformation
Draft version June 4, 2019 Typeset using LATEX manuscript style in AASTeX61 RETIRED A STARS REVISITED: AN UPDATED GIANT PLANET OCCURRENCE RATE AS A FUNCTION OF STELLAR METALLICITY AND MASS Luan Ghezzi,1 Benjamin T. Montet,2, ∗ and John Asher Johnson3 1Observat´orio Nacional, Rua General Jos´eCristino, 77, 20921-400, S˜ao Crist´ov˜ao, Rio de Janeiro, RJ, Brazil; [email protected] 2Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637, USA 3Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 USA ABSTRACT Exoplanet surveys of evolved stars have provided increasing evidence that the formation of giant planets depends not only on stellar metallicity ([Fe/H]), but also the mass (M⋆). However, measuring accurate masses for subgiants and giants is far more challenging than it is for their main-sequence counterparts, which has led to recent concerns regarding the veracity of the correlation between stellar mass and planet occurrence. In order to address these concerns we use HIRES spectra to perform a spectroscopic analysis on an sample of 245 subgiants and derive new atmospheric and physical parameters. We also calculate the space velocities of this sample in a homogeneous manner for the first time. When reddening corrections are considered in the calculations of stellar masses and a -0.12 M⊙ offset is applied to the results, the masses of the subgiants are consistent with their space velocity distributions, contrary to claims in the literature. Similarly, our measurement of their arXiv:1804.09082v3 [astro-ph.SR] 31 May 2019 rotational velocities provide additional confirmation that the masses of subgiants with M⋆ ≥ 1.6 M⊙ (the “Retired A Stars”) have not been overestimated in previous analyses. -
EPSC2018-126, 2018 European Planetary Science Congress 2018 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2018
EPSC Abstracts Vol. 12, EPSC2018-126, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Stellar wind interaction with the expanding atmosphere of Gliese 436b A.G. Berezutskiy (1), I.F. Shaikhislamov (1), M.L. Khodachenko (2,3) and I.B. Miroshnichenko (1,4) (1) Institute of Laser Physics, Siberian Brunch Russian Academy of Science, Novosibirsk, Russia; (2) Space Research Institute, Austrian Academy of Science, Graz, Austria; (3) Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia (4) Novosibirsk State Technical University, Novosibirsk, Russia ([email protected]) Abstract the escaping planetary upper atmospheric material are also taken into account. We study an exosphere of a Neptune-size exoplanet Gliese 436b, orbiting the red dwarf at an extremely 3. Results close distance (0.028 au), taking into account its interaction with the stellar wind plasma flow. It was At the initial state of the simulations, the atmosphere shown that Gliese 436 b has a bowshock region of Gliese 436b is assumed to consist of the molecular between planetary and stellar wind which localized hydrogen and helium atoms at a ratio NHe / NH2 = 1/5 on the distance of ~33 Rp, where density of planetary with the temperature 750 K. We consider the case of -3 atoms slightly dominates over the protons. a weak stellar wind (SW) with nsw=100 cm , Tsw=1 МК, Vsw=70 km/s, which is much less intense than 1. Introduction the solar wind. Because of this fact, , we did not consider generation of Energetic Neutral Atoms The modelled planet Gliese 436b has a mass (ENAs). -
Planetary Companions Around the K Giant Stars 11 Ursae Minoris and HD 32518
A&A 505, 1311–1317 (2009) Astronomy DOI: 10.1051/0004-6361/200911702 & c ESO 2009 Astrophysics Planetary companions around the K giant stars 11 Ursae Minoris and HD 32518 M. P. Döllinger1, A. P. Hatzes2, L. Pasquini1, E. W. Guenther2, and M. Hartmann2 1 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany e-mail: [email protected] 2 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany Received 22 January 2009 / Accepted 10 August 2009 ABSTRACT Context. 11 UMi and HD 32518 belong to a sample of 62 K giant stars that has been observed since February 2004 using the 2m Alfred Jensch telescope of the Thüringer Landessternwarte (TLS) to measure precise radial velocities (RVs). Aims. The aim of this survey is to investigate the dependence of planet formation on the mass of the host star by searching for plane- tary companions around intermediate-mass giants. Methods. An iodine absorption cell was used to obtain accurate RVs for this study. Results. Our measurements reveal that the RVs of 11 UMi show a periodic variation of 516.22 days with a semiamplitude of −1 −7 K = 189.70 m s . An orbital solution yields a mass function of f (m) = (3.608 ± 0.441) × 10 solar masses (M) and an eccentricity of e = 0.083 ± 0.03. The RV curve of HD 32518 shows sinusoidal variations with a period of 157.54 days and a semiamplitude of −1 −8 K = 115.83 m s . An orbital solution yields an eccentricity, e = 0.008 ± 0.03 and a mass function, f (m) = (2.199 ± 0.235) × 10 M. -
Pdfs) for Each Orbital Parameter Used in and (3) in Cumming Et Al
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors The Astrophysical Journal, 709:396–410, 2010 January 20 doi:10.1088/0004-637X/709/1/396 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. RETIRED A STARS AND THEIR COMPANIONS. III. COMPARING THE MASS–PERIOD DISTRIBUTIONS OF PLANETS AROUND A-TYPE STARS AND SUN-LIKE STARS∗ Brendan P. Bowler1, John Asher Johnson1,7, Geoffrey W. Marcy2, Gregory W. Henry3, Kathryn M. G. Peek2, Debra A. Fischer4, Kelsey I. Clubb4, Michael C. Liu1, Sabine Reffert5, Christian Schwab5, and Thomas B. Lowe6 1 Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA; [email protected] 2 Department of Astronomy, University of California, MS 3411, Berkeley, CA 94720-3411, USA 3 Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209, USA 4 Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132, USA 5 ZAH-Landessternwarte, Konigstuhl¨ 12, 69117 Heidelberg, Germany 6 UCO/Lick Observatory, Santa Cruz, CA 95064, USA Received 2009 June 10; accepted 2009 December 3; published 2009 December 31 ABSTRACT We present an analysis of ∼5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass (IM) subgiants (1.5 M∗/M 2.0) with the goal of measuring the occurrence rate of Jovian planets around (evolved) A-type stars and comparing the distributions of their orbital and physical characteristics to those of planets around Sun-like stars. -
Estudio Numérico De La Dinámica De Planetas
UNIVERSIDAD PEDAGOGICA´ NACIONAL FACULTAD DE CIENCIA Y TECNOLOG´IA ESTUDIO NUMERICO´ DE LA DINAMICA´ DE PLANETAS EXTRASOLARES Tesis presentada por Eduardo Antonio Mafla Mejia dirigida por: Camilo Delgado Correal Nestor Mendez Hincapie para obtener el grado de Licenciado en F´ısica 2015 Departamento de F´ısica I Dedico este trabajo a mi mam´a, quien me apoyo en mi deseo de seguir el camino de la educaci´on. Sin su apoyo este deseo no lograr´ıa ser hoy una realidad. RESUMEN ANALÍTICO EN EDUCACIÓN - RAE 1. Información General Tipo de documento Trabajo de Grado Acceso al documento Universidad Pedagógica Nacional. Biblioteca Central ESTUDIO NUMÉRICO DE LA DINÁMICA DE PLANETAS Título del documento EXTRASOLARES Autor(es) Mafla Mejia, Eduardo Antonio Director Méndez Hincapié, Néstor; Delgado Correal, Camilo Publicación Bogotá. Universidad Pedagógica Nacional, 2015. 61 p. Unidad Patrocinante Universidad Pedagógica Nacional DINÁMICA DE EXOPLANETAS, LEY GRAVITACIONAL DE NEWTON, Palabras Claves ESTUDIO NUMÉRICO. 2. Descripción Trabajo de grado que se propone evidenciar si el modelo matemático clásico newtoniano, y en consecuencia las tres leyes de Kepler, se puede generalizar a cualquier sistema planetario, o solo es válido para determinados casos particulares. Para lograr esto de comparar numéricamente los efectos de las diferentes correcciones que puede adoptar la ley de gravitación de Newton para modelar la dinámica de planetas extrasolares aplicándolos en los sistemas extrasolares Gliese 876 d, Gliese 436 b y el sistema Mercurio – Sol. En los exoplanetas examinados se encontró, que en un buen grado de aproximación, la dinámica de los exoplanetas se logran describir con el modelo newtoniano, y en consecuencia, modelar su movimiento usando las leyes de Kepler. -
Stellar Diameters and Temperatures – V. 11 Newly Characterized Exoplanet Host Stars
MNRAS 438, 2413–2425 (2014) doi:10.1093/mnras/stt2360 Advance Access publication 2014 January 16 Stellar diameters and temperatures – V. 11 newly characterized exoplanet host stars Kaspar von Braun,1,2‹ Tabetha S. Boyajian,3 Gerard T. van Belle,4 Stephen R. Kane,5 Jeremy Jones,6 Chris Farrington,7 Gail Schaefer,7 Norm Vargas,7 Nic Scott,7 Theo A. ten Brummelaar,7 Miranda Kephart,3 Douglas R. Gies,6 David R. Ciardi,8 Mercedes Lopez-Morales,´ 9 Cassidy Mazingue,2 Harold A. McAlister,7 Stephen Ridgway,10 P. J. Goldfinger,7 Nils H. Turner7 and Laszlo Sturmann7 1Max-Planck-Institute for Astronomy (MPIA), Konigstuhl¨ 17, D-69117 Heidelberg, Germany 2Mirasol Institute, D-81679 Munich, Germany Downloaded from 3Yale University, New Haven, CT 06520-8101, USA 4Lowell Observatory, Flagstaff, AZ 86001 USA 5Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132, USA 6Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, PO Box 5060, Atlanta, GA 30302-4106, USA 7The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023, USA http://mnras.oxfordjournals.org/ 8NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125, USA 9CfA, Cambridge, MA 02138, USA 10NOAO, Tucson, AZ 85719, USA Accepted 2013 December 3. Received 2013 November 21; in original form 2013 September 13 ABSTRACT at California Institute of Technology on April 1, 2014 We use near-infrared interferometric data coupled with trigonometric parallax values and spectral energy distribution fitting to directly determine stellar radii, effective temperatures and luminosities for the exoplanet host stars 61 Vir, ρ CrB, GJ 176, GJ 614, GJ 649, GJ 876, HD 1461, HD 7924, HD 33564, HD 107383 and HD 210702. -
How to Detect Exoplanets Exoplanets: an Exoplanet Or Extrasolar Planet Is a Planet Outside the Solar System
Exoplanets Matthew Sparks, Sobya Shaikh, Joseph Bayley, Nafiseh Essmaeilzadeh How to detect exoplanets Exoplanets: An exoplanet or extrasolar planet is a planet outside the Solar System. Transit Method: When a planet crosses in front of its star as viewed by an observer, the event is called a transit. Transits by terrestrial planets produce a small change in a star's brightness of about 1/10,000 (100 parts per million, ppm), lasting for 2 to 16 hours. This change must be absolutely periodic if it is caused by a planet. In addition, all transits produced by the same planet must be of the same change in brightness and last the same amount of time, thus providing a highly repeatable signal and robust detection method. Astrometry: Astrometry is the area of study that focuses on precise measurements of the positions and movements of stars and other celestial bodies, as well as explaining these movements. In this method, the gravitational pull of a planet causes a star to change its orbit over time. Careful analysis of the changes in a star's orbit can provide an indication that there exists a massive exoplanet in orbit around the star. The astrometry technique has benefits over other exoplanet search techniques because it can locate planets that orbit far out from the star Radial Velocity method: The radial velocity method to detect exoplanet is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. -
Substellar Companions to Seven Evolved Intermediate-Mass Stars 3
PASJ: Publ. Astron. Soc. Japan , 1–??, c 2018. Astronomical Society of Japan. Substellar Companions to Seven Evolved Intermediate-Mass Stars Bun’ei Sato,1 Masashi Omiya,1 Hiroki Harakawa,1 Hideyuki Izumiura,2,3 Eiji Kambe,2 Yoichi Takeda,3,4 Michitoshi Yoshida,5 Yoichi Itoh,6 Hiroyasu Ando,3,4 Eiichiro Kokubo3,4 and Shigeru Ida1 1Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan [email protected] 2Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Kamogata, Okayama 719-0232, Japan 3The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193, Japan 4National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 5Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan 6Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan (Received ; accepted ) Abstract We report the detections of substellar companions orbiting around seven evolved intermediate-mass stars from precise Doppler measurements at Okayama Astrophysical Observatory. o UMa (G4 II-III) is a giant with a mass of 3.1 M⊙ and hosts a planet with minimum mass of m2 sin i =4.1 MJ in an orbit with a period P = 1630 d and an eccentricity e =0.13. This is the first planet candidate (< 13 MJ) ever discovered around stars more massive than 3 M⊙. o CrB (K0 III) is a 2.1 M⊙ giant and has a planet of m2 sini =1.5 MJ in a 187.8 d orbit with e =0.19. -
Archival VLT/Naco Multiplicity Investigation of Exoplanet Host Stars
A&A 620, A102 (2018) Astronomy https://doi.org/10.1051/0004-6361/201731341 & c ESO 2018 Astrophysics Archival VLT/NaCo multiplicity investigation of exoplanet host stars J. Dietrich1,2 and C. Ginski1,3 1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 2 Harvard University, Cambridge, MA 02138, USA 3 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands Received 9 June 2017 / Accepted 27 June 2018 ABSTRACT Context. The influence of stellar multiplicity on planet formation is not yet well determined. Most planets are found using indirect detection methods via the small radial velocity or photometric variations of the primary star. These indirect detection methods are not sensitive to wide stellar companions. High-resolution imaging is thus needed to identify potential (sub)stellar companions to these stars. Aims. In this study we aim to determine the (sub)stellar multiplicity status of exoplanet host stars, that were not previously investigated for stellar multiplicity in the literature. For systems with non-detections we provide detailed detection limits to make them accessible for further statistical analysis. Methods. For this purpose we have employed previously unpublished high-resolution imaging data taken with VLT/NACO in a wide variety of different scientific programs and publicly accessible in the ESO archive. We used astrometric and theoretical population synthesis to determine whether detected companion candidates are likely to be bound or are merely chance-projected background objects. Results. We provide detailed detection limits for 39 systems and investigate 29 previously unknown companion candidates around five systems. -
AST413 Gezegen Sistemleri Ve Oluşumu Ders 1 : Tarihçe Ve Temel Yasalar Kozmogoni
AST413 Gezegen Sistemleri ve Oluşumu Ders 1 : Tarihçe ve Temel Yasalar Kozmogoni Milton'ın Evreni Evren nedir, nasıl bir yerdir ve biz nasıl oluştuk? → DinlerveFelsefe! Dinler ve Felsefe! Stonehenge M.Ö. 3000-2000 @ Wiltshire, İngiltere Kozmoloji Evren nasıl oluştu ve nasıl çalışıyor? → DinlerveFelsefe! Nedenselleştirme ve Bilim! Yer Merkezli Evren Modeli: Merkezinde hareketsiz Yer'in bulunduğu, hepsi Yer'e aynı uzaklıktaki yıldızların üstünde bulunduğu bir küre! 1. Yer'in küresel olduğu, 2. Yer'in büyüklüğü, 3. Tutulmalar bu modelle açıklanabilmiştir. Ancak, 1. Hızı diğer cisimlerden farklı olanlar? 2. Sabit hızla hareket etmeyenler? 3. Geri yönlü (retrograd) hareket yapanlar? “The School of Athens”, Raphael, 1509-1511 Dış Çemberlerle Retrograd Hareketi Açıklama Çabası Appolonius, dış çember kullanarak geri yönlü (retrograd) hareketi, Yer'i merkezden alıp, dış çemberin merkezinin hareketini diğer odağa göre sabit yaparak sabit hızla gerçekleşmeyen hareketi de başarıyla açıklamış oldu. Ama teorisi hala gezegen gözlemlerinde ulaşılan bazı gözlemsel sonuçları açıklayamıyordu. Batlamyus (Ptolemy) (90 – 168) bu problemi iki dış çember kullanarak gidermeye çalıştı. Perge'li Appolonius (MÖ 262 - 190) Güneş Merkezli Evren Modeli Böylece Mars ve Güneş'in konumlarını daha hassas ve çok daha basit bir modelle açıklamak mümkün oldu! Nicolas Copernicus (1473 - 1543) Tycho Brahé (1546 - 1601) Melez Yer-Güneş Merkezli Evren Modeli Tycho gelmiş geçmiş en iyi gözlemcilerden biri (belki de birincisi olduğu halde) Dünya'nın Güneş çevresinde dolanması durumunda yıldızların paralaktik hareket göstermesini beklediği halde bunu gözleyemediği için melez bir modele yöneldi. Eksik olan onun gözlemleri değil, paralaktik hareketi ölçecek teknolojiye (teleskop!) henüz ulaşılamamış olmasıydı... YÖRÜNGE DÖNEMİ – KAVUŞUM DÖNEMİ Kavuşum Dönemi (S): Gök cisminin aynı konfigürasyonda arka arkaya iki dizilişi arasındaki süre. -
The Universe Contents 3 HD 149026 B
History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture . -
The Echo Design Reference Mission
ESA UNCLASSIFIED – For Official Use estec European Space Research and Technology Centre Keplerlaan 1 2201 AZ Noordwijk The Netherlands Tel. (31) 71 5656565 Fax (31) 71 5656040 www.esa.int The EChO Design Reference Mission Prepared by The EChO Study Science Team Reference ECHO-SRE-SA-PHASEA-010 Issue 2 Revision 0 Date of Issue 18th December, 2013 Status Document Type Distribution ESA UNCLASSIFIED – For Official Use ESA UNCLASSIFIED – For Official Use Title The EChO Design Reference Mission Issue 2 Revision 0 Author EChO Study Science Team Date 18th December, 2013 Approved by Date Reason for change Issue Revision Date Edits to section 6.1 to clarify language 1 1 2/10/2013 Edits for discussion 1 2 (not issued) Edits for clarity, references and section 5.3 added 1 3 3/10/2013 Additional details on exoplanet radii 1 4 15/10/2013 Explicit planet parameters given 1 5 21/10/20013 Editing and updating 1 6 4/12/2013 Update, including comments from the PRR 1 7 10/12/2013 Further update of text describing modelling tools 2 0 16/12/2013 Issue 1.0 Revision 4+5+6+7 Reason for change Date Pages Paragraph(s) General update of text 10/12/2013 All Update of figures/appendix to reflect targets known as 18/12/2013 of December 2013 (tables 2 and 3 remain as of Sept 2013) Page 2/24 ESA Standard Document Date 18th December 2013 Issue 2 Rev 0 ESA UNCLASSIFIED – For Official Use ESA UNCLASSIFIED – For Official Use Table of contents: 1 Executive Summary ...........................................................................................................................