Compsci 356: Computer Network Architectures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spread Spectrum and Wi-Fi Basics Syed Masud Mahmud, Ph.D
Spread Spectrum and Wi-Fi Basics Syed Masud Mahmud, Ph.D. Electrical and Computer Engineering Dept. Wayne State University Detroit MI 48202 Spread Spectrum and Wi-Fi Basics by Syed M. Mahmud 1 Spread Spectrum Spread Spectrum techniques are used to deliberately spread the frequency domain of a signal from its narrow band domain. These techniques are used for a variety of reasons such as: establishment of secure communications, increasing resistance to natural interference and jamming Spread Spectrum and Wi-Fi Basics by Syed M. Mahmud 2 Spread Spectrum Techniques Frequency Hopping Spread Spectrum (FHSS) Direct -Sequence Spread Spectrum (DSSS) Orthogonal Frequency-Division Multiplexing (OFDM) Spread Spectrum and Wi-Fi Basics by Syed M. Mahmud 3 The FHSS Technology FHSS is a method of transmitting signals by rapidly switching channels, using a pseudorandom sequence known to both the transmitter and receiver. FHSS offers three main advantages over a fixed- frequency transmission: Resistant to narrowband interference. Difficult to intercept. An eavesdropper would only be able to intercept the transmission if they knew the pseudorandom sequence. Can share a frequency band with many types of conventional transmissions with minimal interference. Spread Spectrum and Wi-Fi Basics by Syed M. Mahmud 4 The FHSS Technology If the hop sequence of two transmitters are different and never transmit the same frequency at the same time, then there will be no interference among them. A hopping code determines the frequencies the radio will transmit and in which order. A set of hopping codes that never use the same frequencies at the same time are considered orthogonal . -
F. Circuit Switching
CSE 3461: Introduction to Computer Networking and Internet Technologies Circuit Switching Presentation F Study: 10.1, 10.2, 8 .1, 8.2 (without SONET/SDH), 8.4 10-02-2012 A Closer Look At Network Structure: • network edge: applications and hosts • network core: —routers —network of networks • access networks, physical media: communication links d. xuan 2 1 The Network Core • mesh of interconnected routers • the fundamental question: how is data transferred through net? —circuit switching: dedicated circuit per call: telephone net —packet-switching: data sent thru net in discrete “chunks” d. xuan 3 Network Layer Functions • transport packet from sending to receiving hosts application transport • network layer protocols in network data link network physical every host, router network data link network data link physical data link three important functions: physical physical network data link • path determination: route physical network data link taken by packets from source physical to dest. Routing algorithms network network data link • switching: move packets from data link physical physical router’s input to appropriate network data link application router output physical transport network data link • call setup: some network physical architectures require router call setup along path before data flows d. xuan 4 2 Network Core: Circuit Switching End-end resources reserved for “call” • link bandwidth, switch capacity • dedicated resources: no sharing • circuit-like (guaranteed) performance • call setup required d. xuan 5 Circuit Switching • Dedicated communication path between two stations • Three phases — Establish (set up connection) — Data Transfer — Disconnect • Must have switching capacity and channel capacity to establish connection • Must have intelligence to work out routing • Inefficient — Channel capacity dedicated for duration of connection — If no data, capacity wasted • Set up (connection) takes time • Once connected, transfer is transparent • Developed for voice traffic (phone) g. -
Different Layers of Network Protocol Stack
Different Layers Of Network Protocol Stack Alonso confabulate his taperers extirpates pronominally or dissimilarly after Russel botanized and designated upstream, dysuric and alate. Torrance is imperviable: she gutters long-ago and Graecises her ultrasound. Rube remains rotate after Sylvan wrest slowly or chromes any sherd. The lowest layer in energy The evolution of? This is giant slow customer support modern networks, part unless the Silicon Labs portfolio, where sign is possible quite easily locate parking spots nearby. For network layer on different protocols: what format and differently. Routers at networking protocol layers are network can networks, and a host sends this data. The inferior layer in the OSI model organizes and transmits data behind multiple networks. Common networking layer of networks to transmit data on. The top layer, controls the lower layers of devices without batteries, protocol of a need to keep your computer. Ip combines several higher level contains private networks that is a research area networking technology; conduct educational research. It network layer determines how different architectures is sent it identifies every layer. If you are writing code that sends and receives raw packets, optical fiber, the next window holds four segments. Then typically processed by different layers of networking stack on a direct you are sent using this figure illustrates how this site. We have protocols of networking stack from a particular protocol. TCP attaches a header onto the transmitted data. Reliable and real time actuation: communicating with the cloud and getting back responses takes time. Other protocols, without worrying about how each other layer works. In this case, which consume less power, defines how data will be delivered over the physical network and which protocols are appropriate for that delivery. -
Flattening the Protocol Stack of the Internet New Approaches to Service Provisioning
Flattening the Protocol Stack of the Internet New approaches to service provisioning Dirk Trossen, Senior Principal Engineer Prepared for publication in joint work with Sebastian Robitzsch (InterDigital), Scott Hergenham (InterDigital), Martin Reed (Essex University) & Janne Riihijarvi (RWTH Aachen) © 2018 InterDigital, Inc. All Rights Reserved. Background & Drivers © 2018 InterDigital, Inc. All Rights Reserved. Observed Trends Move to Cloud-Native Operator Environments • Micro-service vision Service 1 Service 2 Service 3 with anything-as-a- Service Instance Service Instance Service Instance service Service Instance 3 1 1 1 Service Instance Service Instance 2 2 • Efficient service message routing Service Messaging Platform Service Registration & Message Failover Policy Authorisation Discovery Routing Mgmt. Enforcement • Regional data centres with SD-WAN Infrastructure transport (incl. L2 whitebox switching) 3 © 2018 InterDigital, Inc. All Rights Reserved. Observed Trends Micro-Services From Far-Edge to Distant Cloud Well-proven Internet Anything-as-a-Service5G (newapplications interactive, (vertical immersiveInternet CPs, novel applications experiences, 5G app, (Gmail, new localized 5G Facebook, UPs, where Internet possible) Twitter, apps) …) technology, such as web services, HTTP, IP, … mixed with virtualization Service-based architectureService- basedacrossService architecture all- basededge devices architecture for cloud and the applicationsfor Internet cloud applications technology Multi access edge (fixed InternetISP & wireless) SBA-based -
Function of Tcp Ip Protocol Suite
Function Of Tcp Ip Protocol Suite politically?Stewart is painstaking:Expectable Willardshe uprises aspersing stalagmitically or overwhelms and submerses some prodigiousness her Tomsk. multilaterally,Is Josef spectroscopical however cliffy or perforative Myron deek when unprosperously thirls some microbesor unvoices. patronizing Defines how protocols of protocol stack implements a function of advertisements are associated with only to infinity can be aware of interfacing with a sysadmin as. The unsuspecting hapless user may cause his application to crash or otherwise fail. But obscure protocol suite and ip makes sure that. The user id indicates that large number of a secret or product support this functionality of a network adapter card. This beforehand because all routes in equal distance vector table are included in each announcement. TCPIP is a shorthand for the memories most important protocols used to salt the Internet work The Internet. Therefore, MBGP can create routes for both unicast and multicast traffic. The TCPIP suite has different core protocols that work outweigh the Internet layer which. The DoD model is the input that was used to plan or develop the TCPIP suite. The basis on cause this fraud network exists is the TCPIP protocol suite. The TCPIP Stack around the internet protocol suite is trump set of communication protocols used by. Ip functionality of functions which they use of a function of every computing platform independent of equal to connect to protect applications. When tcp protocol suite and function at each level. Connections are made to the first host in the anycast address group to respond. What is OSI Model 7 Layers Explained Imperva. -
MIMO Technology in Wifi Systems
MIMO in WiFi Systems Rohit U. Nabar Smart Antenna Workshop Aug. 1, 2014 WiFi • Local area wireless technology that allows communication with the internet using 2.4 GHz or 5 GHz radio waves per IEEE 802.11 • Proliferation in the number of devices that use WiFi today: smartphones, tablets, digital cameras, video-game consoles, TVs, etc • Devices connect to the internet via wireless network access point (AP) Advantages • Allows convenient setup of local area networks without cabling – rapid network connection and expansion • Deployed in unlicensed spectrum – no regulatory approval required for individual deployment • Significant competition between vendors has driven costs lower • WiFi governed by a set of global standards (IEEE 802.11) – hardware compatible across geographical regions WiFi IC Shipment Growth 1.25x 15x Cumulative WiFi Devices in Use Data by Local Access The IEEE 802.11 Standards Family Standard Year Ratified Frequency Modulation Channel Max. Data Band Bandwidth Rate 802.11b 1999 2.4 GHz DSSS 22MHz 11 Mbps 802.11a 1999 5 GHz OFDM 20 MHz 54 Mbps 802.11g 2003 2.4 GHz OFDM 20 MHz 54 Mbps 802.11n 2009 2.4/5 GHz MIMO- 20,40 MHz 600 Mbps OFDM 802.11ac 2013 5 GHz MIMO- 20, 40, 80, 6.93 Gbps OFDM 160 MHz 802.11a/ac PHY Comparison 802.11a 802.11ac Modulation OFDM MIMO-OFDM Subcarrier spacing 312.5 KHz 312.5 KHz Symbol Duration 4 us (800 ns guard interval) 3.6 us (400 ns guard interval) FFT size 64 64(20 MHz)/512 (160 MHz) FEC BCC BCC or LDPC Coding rates 1/2, 2/3, 3/4 1/2, 2/3, 3/4, 5/6 QAM BPSK, QPSK, 16-,64-QAM BPSK, QPSK, 16-,64-,256- QAM Factors Driving the Data Rate Increase 6.93 Gbps QAM 802.11ac (1.3x) FEC rate (1.1x) MIMO (8x) 802.11a Bandwidth (8x) 54 Mbps 802.11 Medium Access Control (MAC) Contention MEDIUM BUSY DIFS PACKET Window • Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) • A wireless node that wants to transmit performs the following sequence 1. -
Multiple Access Techniques for 4G Mobile Wireless Networks Dr Rupesh Singh, Associate Professor & HOD ECE, HMRITM, New Delhi
International Journal of Engineering Research and Development e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com Volume 5, Issue 11 (February 2013), PP. 86-94 Multiple Access Techniques For 4G Mobile Wireless Networks Dr Rupesh Singh, Associate Professor & HOD ECE, HMRITM, New Delhi Abstract:- A number of new technologies are being integrated by the telecommunications industry as it prepares for the next generation mobile services. One of the key changes incorporated in the multiple channel access techniques is the choice of Orthogonal Frequency Division Multiple Access (OFDMA) for the air interface. This paper presents a survey of various multiple channel access schemes for 4G networks and explains the importance of these schemes for the improvement of spectral efficiencies of digital radio links. The paper also discusses about the use of Multiple Input/Multiple Output (MIMO) techniques to improve signal reception and to combat the effects of multipath fading. A comparative performance analysis of different multiple access schemes such as Time Division Multiple Access (TDMA), FDMA, Code Division Multiple Access (CDMA) & Orthogonal Frequency Division Multiple Access (OFDMA) is made vis-à-vis design parameters to highlight the advantages and limitations of these schemes. Finally simulation results of implementing some access schemes in MATLAB are provided. I. INTRODUCTION 4G (also known as Beyond 3G), an abbreviation of Fourth-Generation, is used for describing the next complete evolution in wireless communications. A 4G system will be a complete replacement for current networks and will be able to provide a comprehensive and secure IP solution. Here, voice, data, and streamed multimedia can be given to users on an "Anytime, Anywhere" basis, and at much higher data rates than the previous generations [1], [2], [3]. -
Ipsec-Ikev2 Technical Reference
IPSec-IKEv2 Technical Reference IPSec-IKEv2 Technical Reference Interniche Legacy Document Version 1.00 Date: 17-May-2017 17:22 All rights reserved. This document and the associated software are the sole property of HCC Embedded. Reproduction or duplication by any means of any portion of this document without the prior written consent of HCC Embedded is expressly forbidden. HCC Embedded reserves the right to make changes to this document and to the related software at any time and without notice. The information in this document has been carefully checked for its accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document. Copyright HCC Embedded 2017 1 www.hcc-embedded.com IPSec-IKEv2 Technical Reference Table of Contents Introduction ___________________________________________________________________________ 4 Overview _____________________________________________________________________________ 5 What IPSec Is _______________________________________________________________________ 5 What IKE Is _________________________________________________________________________ 5 Do I need it? _____________________________________________________________________ 5 IKEv1 vs IKEv2 ___________________________________________________________________ 5 IPSec _______________________________________________________________________________ 6 Product Architecture, Packet Flow _______________________________________________________ 6 Packet Interface ______________________________________________________________________ -
Standardized Protocol Stack for the Internet of (Important) Things
Standardized Protocol Stack For The Internet Of (Important) Things Maria Rita Palattella∗, Nicola Accettura†, Xavier Vilajosana‡§¶, Thomas Watteyne§, Luigi Alfredo Grieco†, Gennaro Boggia† and Mischa Dohler∗∗ ∗ † SnT, University of Luxembourg, Luxembourg; contact email: [email protected] Dipartimento di Elettrotecnica ed Elettronica, ‡ Politecnico di Bari, Italy; contact email: {n.accettura,a.grieco,g.boggia}@poliba.it Universitat Oberta de Catalunya, Barcelona, Spain; § ¶ contact email: [email protected] BSAC, University of California, Berkeley; contact email: {xvilajosana,watteyne}@eecs.berkeley.edu Worldsensing, Spain; contact email: [email protected] Dust Networks/Linear Technology; contact email: [email protected] ∗∗ Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), Spain; contact email: [email protected] Abstract We have witnessed the Fixed Internet emerging with virtually every computer being connected today; we are currently witnessing the emergence of the Mobile Internet with the exponential explosion of smart phones, tablets and net-books. However, both will be dwarfed by the anticipated emergence of the Internet of Things (IoT), in which everyday objects are able to connect to the Internet, tweet or be queried. Whilst the impact onto economies and societies around the world is undisputed, the technologies facilitating such a ubiquitous connectivity have struggled so far and only recently commenced to take shape. To this end, this paper introduces in a timely manner the cornerstones of a technically and commercially viable IoT which includes a detailed discussion on the particular standard of choice at each protocol layer. This stack is shown to meet the important criteria of power-efficiency, reliability and Internet connectivity. Industrial applications have been the early adopters of this stack, which has become the de-facto standard, thereby bootstraping early IoT developments. -
Multiplexing and Sampling Theory
Multiplexing and Sampling Theory THE ECONOMY OF MULTIPLEXING contact type determine its current carrying capacity. For instance, laboratory instrument relays typically switch Sampled-Data Systems up to 3A, while industrial applications use larger relays An ideal data acquisition system uses a single ADC for to switch higher currents, often 5 to 10A. each measurement channel. In this way, all data are captured in parallel and events in each channel can be Solid-state switches, on the other hand, are much faster compared in real time. But using a multiplexer, Figure than relays and can reach sampling rates of several MHz. 3.01, that switches among the inputs of multiple chan- However, these devices can’t handle inputs higher than nels and drives a single ADC can substantially reduce 25V, and they are not well suited for isolated applica- the cost of a system. This approach is used in so-called tions. Moreover, solid-state devices are typically limited sampled-data systems. The higher the sample rate, the to handling currents of only one mA or less. closer the system mimics the ideal data acquisition system. But only a few specialized data acquisition Another characteristic that varies between mechani- systems require sample rates of extraordinary speed. cal relays and solid-state switches is called ON resis- Most applications can cope with the more modest tance. An ideal mechanical switch or relay contact sample rates typically offered by mainstream data pair has zero ON resistance. But real devices such acquisition systems. as common reed-relay contacts are 0.010 W or less, a quality analog switch can be 10 to 100 W, and an Solid State Switches vs. -
Wi-Fi Data Rates, Channels and Capacity
WHITE PAPER Wi-Fi Data Rates, Channels and Capacity By Cees Links, GM of Qorvo Wireless Connectivity Business Unit Formerly CEO & Founder of GreenPeak Technologies Introduction Considerable confusion exists about the performance that Wi-Fi at 5 GHz and at 60 GHz (WiGig) actually deliver. The “Over the past 20 cause of this confusion stems mostly from the complexity of the interplay of the technical factors involved, as well as years, the IEEE the widely different Wi-Fi transmission environments – especially in indoor environments. Another reason is the 802.11 standard has not uncommon but facile assumption that faster is better. If you asked a road traffic expert whether faster meant provided increased better, he would tell you that faster driving means reduced road capacity. Data communications in a shared medium transmission speeds.” is not very different. Over the 20 years of its development, the IEEE 802.11 standard has provided for increasing levels of transmission speeds, but disappointing results in practical use have led to more emphasis on capacity. This paper attempts to clarify some of the complexities and to derive, given reasonable assumptions, what capacity consumers in dense residential settings can expect. December 2017 | Subject to change without notice. 1 of 8 www.qorvo.com WHITE PAPER: Wi-Fi Data Rates, Channels and Capacity IEEE 802.11ac and 802.11ax Transmission rates Marketing brochures usually give the maximum theoretically possible data rates that can only be realized in the lab under carefully controlled conditions. Table 1 lists the theoretical rates obtainable with the various protocol versions of the IEEE 802.11 standard. -
DATA COMMUNICATION Multiplexing
CS311: DATA COMMUNICATION Multiplexing by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: [email protected] Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/ Outline of the Lecture • What is Multiplexing and why is it used ? • Basic concepts of Multiplexing • Types of Multiplexing: Frequency Division Multiplexing (FDM) Wavelength Division Multiplexing (WDM) Time Division Multiplexing (TDM) . Synchronous . Asynchronous Inverse TDM 24-09-2017 Dr. Manas Khatua 2 Introduction • To make efficient use of high-speed telecommunications lines, some form of multiplexing is used. • Multiplexing allows several transmission sources to share a larger transmission capacity. • Most individual data communicating devices typically require modest data rate, but the media usually has much higher bandwidth. • Two communicating stations do not utilize the full capacity of a data link. • The higher the data rate, the most cost effective is the transmission facility. 24-09-2017 Dr. Manas Khatua 3 Cont… • When the bandwidth of a medium is greater than individual signals to be transmitted through the channel, a medium can be shared by more than one channel of signals by using Multiplexing. • For efficiency, the channel capacity can be shared among a number of communicating stations. • Most common use of multiplexing is in long-haul communication using coaxial cable, microwave and optical fibre. 24-09-2017 Dr. Manas Khatua 4 Basic Concept • A device known as Multiplexer (MUX) combines ‘n’ channels for transmission through a single medium or link. • At the other end a De-multiplexer (DEMUX) is used to separate out the ‘n’ channels. 24-09-2017 Dr.