IPPP-15-23, DCPT-15-46 Electroweak Baryogenesis from Exotic Electroweak Symmetry Breaking Nikita Blinov(a;b), Jonathan Kozaczuk(a), David E. Morrissey(a), and Carlos Tamarit(c) (a) TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada (b) Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada (c) Institute for Particle Physics Phenomenology, Department of Physics Durham University, Durham DH1 3LE, United Kingdom email:
[email protected],
[email protected],
[email protected],
[email protected] August 20, 2015 Abstract We investigate scenarios in which electroweak baryogenesis can occur during an exotic stage of electroweak symmetry breaking in the early Universe. This tran- sition is driven by the expectation value of a new electroweak scalar instead of the standard Higgs field. A later, second transition then takes the system to arXiv:1504.05195v2 [hep-ph] 19 Aug 2015 the usual electroweak minimum, dominated by the Higgs, while preserving the baryon asymmetry created in the first transition. We discuss the general require- ments for such a two-stage electroweak transition to be suitable for electroweak baryogenesis and present a toy model that illustrates the necessary ingredients. We then apply these results to construct an explicit realization of this scenario within the inert two Higgs doublet model. Despite decoupling the Higgs from the symmetry-breaking transition required for electroweak baryogenesis, we find that this picture generically predicts new light states that are accessible experi- mentally. 1 Introduction Electroweak baryogenesis (EWBG) is an elegant mechanism for the generation of the baryon asymmetry during the electroweak phase transition [1{3].