Box Psyllids-Biology, Occurrence and Predators

Total Page:16

File Type:pdf, Size:1020Kb

Box Psyllids-Biology, Occurrence and Predators Box psyllids the most important insect pests of box plants in southern England and South Wales - their biology, occurrence, and associated predators. Summary by Hasbullah 2 Damage done to box plants Psylla buxi and Spanioneura fonscolumbii are the major pests of Muhammad1, Both the psyllid species damage box plants by P. box plants in southern England and South Wales. Peter McEwen1 and sucking the sap of the terminal shoots and at the buxi is a widespread species found in all box William Symondson2 same time produce unsightly white waxy secretions plantations surveyed, whereas S. fonscolumbii on the plant. It is the feeding by P. buxi nymphs P. appears to be more patchily distributed. buxi 1Insect Investigations Ltd which causes the characteristic cupping of the nymphs are usually confined inside the cupped School of Biosciences terminal leaves. P. buxi nymphs stay within the leaves of the plant whereas in S. fonscolumbii cupped leaves and undergo moulting to subsequent Cardiff University nymphs are exposed on the shoots. Both species nymphal stages. Usually the 5th nymphal stage will produce unsightly white secretions on plants. PO Box 915 leave this shelter and develop into an adult outside Cardiff CFIO 3TL Adults of both species usually appear from April to the cup. In the case of S. foncolumbil, although no 2School of Biosciences July. Only a few leaf cupping is produced, the shoot becomes species of predators are associated with box psyllids Cardiff University dehydrated. The white secretions produced are and their numbers are always low. The main insect PO Box 915 principally used to protect the psyllids from predators observed are anthocorid bugs, ladybird Cardiff CF10 3TL dehydration and also appear to attract ants, which beetles, earwigs, and green lacewings. A tendency feed on the honeydew produced by feeding psyllids. for psyllids to preferentially infest variegated as The ants protect the psyllids from predators. The opposed to non-variegated plants was noted. white secretions produced by S. fonscolumbii are more obvious than those of P. buxi as most of the 1 Biology secretions are directly on the shoot. Both the Psyllids or jumping plant lice are the major insect cupping of the shoots and the white secretions pests of box plants in southern England and South cause substantial cosmetic damage to the plants. Wales. The two species of psyllids which cause Under extreme cases the whole plant is covered most damage to box plants are Psylla buxi and with the white secretion which can coat the ground Spanioneura fonscolumbii (Homoptera: Psyllidae) beneath the plants. (McEwen et al., 1997). P. buxi is a widespread species found in all four box plantations surveyed, whereas S. fonscolumbii was confined to two plantations. The adults of both species are small, about 3 mm 3 Field incidence long, and superficially resemble miniature cicadas. Both psyllid species lay their tiny orange spindle- The two species are easily distinguishable by the shaped eggs under the leaf bud scale, somewhere presence of three black dots on the top cells of the between late summer and autumn. The eggs enter wing in S. fonscolumbii when observed under the diapause to survive the winter and emerge into the dissecting light microscope. In the case of P. buxi no first nymphal stage during February or March. such marking is found and it is also relatively larger Adults usually emerge around the month of April and darker green in colour than S. fonscolumbii. to July. We also believe that a few psyllids overwinter as adults (see below). In southern Differentiation between the two species at the England and South Wales adults of both species are larval stages is extremely difficult as both species found in abundance in June and July. Monitoring of emerge at more or less the same time of the year adult field populations using sticky yellow traps and look alike. However, P. buxi larvae are initially was carried out monthly in southern England from confined to the inside of cupped leaves whereas S. 1997 to 1999 based on the methodology of Horton fonscolumbii nymphs are exposed and distributed on et al. (1995). The use of sticky yellow traps to the surface of the shoots, so differentiation is monitor the psyllid population was made following possible in this way. In addition, under the a six month trial which showed that yellow traps dissecting microscope, P. buxi larvae appear to be accounted for 46.8 % of all psyllids caught as darker with a v-shaped circumanal pore which compared to 15.2% red, 14.3% blue, 0.7% green surrounds the anus as compared to lighter colour and 10.1% white. This pattern was true for both and t-shaped circumanal pore in S. fonscolumbii. species as reported by McEwen and Baker (1997). Figure 1 shows that the peak of the adult psyllid population appeared between May and July in all 3 the summer months earwigs were sometimes References years studied. The worst outbreak occurred in 1997 found on the shoots where the psyllids were most Horton, D R; Butts, E C; where up to 500 S. fonscolumbii were caught per active. Generally speaking ladybird numbers were Lewis, T M & Coop, month from a total of 4 square feet of yellow sticky very low and less than 13 were collected from any L B (1995) Sticky trap trap. Although P buxi sometimes dominated in the specific area per year. The so-called common green catch of winterform sticky trap catches in this experiment, it is lacewing was the least common predator found in and summerform pear interesting to note that S. fonscolumbii almost southern England, and was also infrequent in South psylla (Homoptera, always outnumbered P. buxi in direct plant beating Wales. Only on a few occasions were larvae of Psyllidae) over non- studies (Fig. 2). In this method, at each sampling, 6 lacewings collected through plant beatings. orchard habitats. Pan plants were randomly selected from the box However, a relatively high population of adults was Pacific Entomologist plantation. Each plant was beaten 3 times by hand observed hibernating in the roof of a building 7(3), 176-189. over a sticky tray and the insects collected were adjacent to one of the experimental areas in McEwen, P K; Baker, taken to the laboratory for identification. southern England. Generally speaking the M; Muhammad, H & population numbers of all these predators was low Symondson, W 0 C The discrepancies between these two methods and almost insignificant compared to the psyllid (1997) Psyllids of sampling may relate to differences in flight population. Manipulations of these natural (Psylloidea: behaviour between the species, seemingly implying predators such as inundative release or construction Homoptera) attacking a greater tendency for P. buxi to disperse. From of artificial refugia, could be an important part of Box (Buxus field observation the direct plant beating method the biological control of psyllids. sempervirens) in South is a more accurate determinant of real psyllid England. Antenna 21(4) numbers and is an important tool which can be 200-201 used to monitor psyllid build up prior to any control measures. 5 Do psyllids prefer non-variegated to McEwen, P K & Baker, variegated box varieties? M (1997) Pest control Using the plant beating method we can also It is generally believed that psyllids prefer non- in boxwood. Topiaries, detect, at an early stage, the presence of psyllid variegated box to variegated box varieties (Nguyen, Autumn Vol 5 larvae based on the white secretions which fall on 1968). This belief is based on the anecdotal Nguyen, T H (1968) the beating tray, particularly from S. fonscolumbii. observation that no serious infestation is observed Role de la temperature Interestingly we also detected a few overwintering on the variegated varieties even during major dans revolution et adult psyllids. Overwintering S. fonscolumbii adults psyllid outbreaks. However, this might be due to relimination de la usually appeared with a banded abdomen especially the fact that white secretions do not show up so diapause larvaire de in the females. In the case of overwintering P. buxi well on variegated plants. We decided to see if this Psylla buxi (Horn., adults no such banding was observed, but they did observation was really true. A surveillance study Psyllidae). Ann. Soc. appear to be relatively bigger than usual and more was carried out on both variegated and non- Ent. Fr. (N.S.) 4, 69-74. brownish in colour. variegated varieties using the plant beating method between February 1998 and November 1999. Six Acknowledgement plants from each box variety were sampled every This work is sponsored 4 Insect predators associated month and the number of psyllids caught was with box psyllids by Langley Boxwood recorded. From this study it was found that 84.1% Nursery, Rake, Liss, Direct plant beating and sticky traps were used to of all psyllids caught were from variegated as Hampshire GU33 7JL, sample predators. From this it appears that only a compared to 15.9% on non-variegated variety and U.K and particular few species of insect predators are associated with this difference was statistically significant (P < thanks are extended to box plants. These predators usually appear during 0.01). Both psyllid species were preferentially the proprietors, spring having undergone diapause to overwinter. attracted to variegated plants where 84.8% and Elizabeth and Mark Most of the predators emerge from diapause just as 78.0% of S. fonscolumbii and P. buxi respectively Braimbridge psyllid nymphs become active. The major insect were recorded. These results indicate that the predators collected in order of importance based anecdotal evidence that psyllids preferably attack on their abundance are anthocorid hugs (Anthocoris non-variegated box is incorrect and the reverse Fig.3 Predators collected nemorum), ladybird beetles (Propylea 14 - punctata, seems to be true.
Recommended publications
  • Morphology and Adaptation of Immature Stages of Hemipteran Insects
    © 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) Morphology and Adaptation of Immature Stages of Hemipteran Insects Devina Seram and Yendrembam K Devi Assistant Professor, School of Agriculture, Lovely Professional University, Phagwara, Punjab Introduction Insect Adaptations An adaptation is an environmental change so an insect can better fit in and have a better chance of living. Insects are modified in many ways according to their environment. Insects can have adapted legs, mouthparts, body shapes, etc. which makes them easier to survive in the environment that they live in and these adaptations also help them get away from predators and other natural enemies. Here are some adaptations in the immature stages of important families of Hemiptera. Hemiptera are hemimetabolous exopterygotes with only egg and nymphal immature stages and are divided into two sub-orders, homoptera and heteroptera. The immature stages of homopteran families include Delphacidae, Fulgoridae, Cercopidae, Cicadidae, Membracidae, Cicadellidae, Psyllidae, Aleyrodidae, Aphididae, Phylloxeridae, Coccidae, Pseudococcidae, Diaspididae and heteropteran families Notonectidae, Corixidae, Belastomatidae, Nepidae, Hydrometridae, Gerridae, Veliidae, Cimicidae, Reduviidae, Pentatomidae, Lygaeidae, Coreidae, Tingitidae, Miridae will be discussed. Homopteran families 1. Delphacidae – Eg. plant hoppers They comprise the largest family of plant hoppers and are characterized by the presence of large, flattened spurs at the apex of their hind tibiae. Eggs are deposited inside plant tissues, elliptical in shape, colourless to whitish. Nymphs are similar in appearance to adults except for size, colour, under- developed wing pads and genitalia. 2. Fulgoridae – Eg. lantern bugs They can be recognized with their antennae inserted on the sides & beneath the eyes.
    [Show full text]
  • Asian Citrus Psyllid, Diaphorina Citri Kuwayama (Insecta: Hemiptera: Psyllidae)1 F
    EENY-033 Asian Citrus Psyllid, Diaphorina citri Kuwayama (Insecta: Hemiptera: Psyllidae)1 F. W. Mead and T. R. Fasulo2 Introduction In June 1998, the insect was detected on the east coast of Florida, from Broward to St. Lucie counties, and was The Asian citrus psyllid, Diaphorina citri Kuwayama, is apparently limited to dooryard host plantings at the time of widely distributed in southern Asia. It is an important pest its discovery. By September 2000, this pest had spread to 31 of citrus in several countries as it is a vector of a serious Florida counties (Halbert 2001). citrus disease called greening disease or Huanglongbing. This disease is responsible for the destruction of several Diaphorina citri is often referred to as citrus psylla, but this citrus industries in Asia and Africa (Manjunath 2008). is the same common name sometimes applied to Trioza Until recently, the Asian citrus psyllid did not occur in erytreae (Del Guercio), the psyllid pest of citrus in Africa. North America or Hawaii, but was reported in Brazil, by To avoid confusion, T. erytreae should be referred to as the Costa Lima (1942) and Catling (1970). African citrus psyllid or the two-spotted citrus psyllid (the latter name is in reference to a pair of spots on the base of the abdomen in late stage nymphs). These two psyllids are the only known vectors of the etiologic agent of citrus greening disease (Huanglongbing), and are the only eco- nomically important psyllid species on citrus in the world. Six other species of Diaphorina are reported on citrus, but these are non-vector species of relatively little importance (Halbert and Manjunath 2004).
    [Show full text]
  • Distribution of Spiders in Coastal Grey Dunes
    kaft_def 7/8/04 11:22 AM Pagina 1 SPATIAL PATTERNS AND EVOLUTIONARY D ISTRIBUTION OF SPIDERS IN COASTAL GREY DUNES Distribution of spiders in coastal grey dunes SPATIAL PATTERNS AND EVOLUTIONARY- ECOLOGICAL IMPORTANCE OF DISPERSAL - ECOLOGICAL IMPORTANCE OF DISPERSAL Dries Bonte Dispersal is crucial in structuring species distribution, population structure and species ranges at large geographical scales or within local patchily distributed populations. The knowledge of dispersal evolution, motivation, its effect on metapopulation dynamics and species distribution at multiple scales is poorly understood and many questions remain unsolved or require empirical verification. In this thesis we contribute to the knowledge of dispersal, by studying both ecological and evolutionary aspects of spider dispersal in fragmented grey dunes. Studies were performed at the individual, population and assemblage level and indicate that behavioural traits narrowly linked to dispersal, con- siderably show [adaptive] variation in function of habitat quality and geometry. Dispersal also determines spider distribution patterns and metapopulation dynamics. Consequently, our results stress the need to integrate knowledge on behavioural ecology within the study of ecological landscapes. / Promotor: Prof. Dr. Eckhart Kuijken [Ghent University & Institute of Nature Dries Bonte Conservation] Co-promotor: Prf. Dr. Jean-Pierre Maelfait [Ghent University & Institute of Nature Conservation] and Prof. Dr. Luc lens [Ghent University] Date of public defence: 6 February 2004 [Ghent University] Universiteit Gent Faculteit Wetenschappen Academiejaar 2003-2004 Distribution of spiders in coastal grey dunes: spatial patterns and evolutionary-ecological importance of dispersal Verspreiding van spinnen in grijze kustduinen: ruimtelijke patronen en evolutionair-ecologisch belang van dispersie door Dries Bonte Thesis submitted in fulfilment of the requirements for the degree of Doctor [Ph.D.] in Sciences Proefschrift voorgedragen tot het bekomen van de graad van Doctor in de Wetenschappen Promotor: Prof.
    [Show full text]
  • Effects of Lethal Bronzing Disease, Palm Height, and Temperature On
    insects Article Effects of Lethal Bronzing Disease, Palm Height, and Temperature on Abundance and Monitoring of Haplaxius crudus De-Fen Mou 1,* , Chih-Chung Lee 2, Philip G. Hahn 3, Noemi Soto 1, Alessandra R. Humphries 1, Ericka E. Helmick 1 and Brian W. Bahder 1 1 Fort Lauderdale Research and Education Center, Department of Entomology and Nematology, University of Florida, 3205 College Ave., Ft. Lauderdale, FL 33314, USA; sn21377@ufl.edu (N.S.); ahumphries@ufl.edu (A.R.H.); ehelmick@ufl.edu (E.E.H.); bbahder@ufl.edu (B.W.B.) 2 School of Biological Sciences, University of Nebraska-Lincoln, 412 Manter Hall, Lincoln, NE 68588, USA; [email protected] 3 Department of Entomology and Nematology, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32608, USA; hahnp@ufl.edu * Correspondence: defenmou@ufl.edu; Tel.: +1-954-577-6352 Received: 5 October 2020; Accepted: 28 October 2020; Published: 30 October 2020 Simple Summary: Phytopathogen-induced changes often affect insect vector feeding behavior and potentially pathogen transmission. The impacts of pathogen-induced plant traits on vector preference are well studied in pathosystems but not in phytoplasma pathosystems. Therefore, the study of phytoplasma pathosystems may provide important insight into controlling economically important phytoplasma related diseases. In this study, we aimed to understand the impacts of a phytoplasma disease in palms on the feeding preference of its potential vector. We investigated the effects of a palm-infecting phytoplasma, lethal bronzing (LB), on the abundance of herbivorous insects. These results showed that the potential vector, Haplaxius crudus, is more abundant on LB-infected than on healthy palms.
    [Show full text]
  • Diversity and Abundance of Insect Herbivores Foraging on Seedlings in a Rainforest in Guyana
    R Ecological Entomology (1999) 24, 245±259 Diversity and abundance of insect herbivores foraging on seedlings in a rainforest in Guyana YVES BASSET CABI Bioscience: Environment, Ascot, U.K. Abstract. 1. Free-living insect herbivores foraging on 10 000 tagged seedlings representing ®ve species of common rainforest trees were surveyed monthly for more than 1 year in an unlogged forest plot of 1 km2 in Guyana. 2. Overall, 9056 insect specimens were collected. Most were sap-sucking insects, which represented at least 244 species belonging to 25 families. Leaf-chewing insects included at least 101 species belonging to 16 families. Herbivore densities were among the lowest densities reported in tropical rainforests to date: 2.4 individuals per square metre of foliage. 3. Insect host speci®city was assessed by calculating Lloyd's index of patchiness from distributional records and considering feeding records in captivity and in situ. Generalists represented 84 and 78% of sap-sucking species and individuals, and 75 and 42% of leaf-chewing species and individuals. In particular, several species of polyphagous xylem-feeding Cicadellinae were strikingly abundant on all hosts. 4. The high incidence of generalist insects suggests that the Janzen±Connell model, explaining rates of attack on seedlings as a density-dependent process resulting from contagion of specialist insects from parent trees, is unlikely to be valid in this study system. 5. Given the rarity of ¯ushing events for the seedlings during the study period, the low insect densities, and the high proportion of generalists, the data also suggest that seedlings may represent a poor resource for free-living insect herbivores in rainforests.
    [Show full text]
  • Psyllid Host-Plants (Hemiptera: Psylloidea): Resolving a Semantic Problem
    242 Florida Entomologist 97(1) March 2014 PSYLLID HOST-PLANTS (HEMIPTERA: PSYLLOIDEA): RESOLVING A SEMANTIC PROBLEM 1,* 2 3 2 DANIEL BURCKHARDT , DAVID OUVRARD , DALVA QUEIROZ AND DIANA PERCY 1Naturhistorisches Museum, Augustinergasse 2, CH-4001 Basel, Switzerland 2Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 3Embrapa Florestas, Colombo/PR, Brazil *Corresponding author; E-mail: [email protected] ABSTRACT Evolutionary and biological patterns can be obscured by inadequate or ill-defined terminol- ogy. An example is the generally very specific relationship between the sap-feeding hemip- teran group, psyllids, and their breeding plants, commonly called host-plants. The literature is clogged with references to so called ‘hosts’, which are often merely plants on which psyllids were found accidentally, and no immature development was detected. Recently the term host has also been applied by some authors to any plant on which immature or adults feed. Here we propose a terminology to clarify associated plant definitions, and we suggest restricting the use of the term host-plant to plants on which a psyllid species completes its immature to adult life cycle. For the other plant associations we suggest the terms overwintering or shel- ter plant (plants on which adult psyllids overwinter and on which they may feed), food plant (plants on which adult psyllids feed, but do not breed and do not spend an extended period of time) and casual plant (plants on which adult psyllids land but do not feed). Key Words: jumping plant-lice, psyllids, host-plant, terminology RESUMEN Patrones evolutivos y biológicos pueden ser oscurecidas por la terminología inadecuada o mal definida.
    [Show full text]
  • Managing Floral Resources in Apple Orchards for Pest Control: Ideas, Experiences and Future Directions
    insects Review Managing Floral Resources in Apple Orchards for Pest Control: Ideas, Experiences and Future Directions Annette Herz 1,*, Fabian Cahenzli 2, Servane Penvern 3, Lukas Pfiffner 2, Marco Tasin 4 and Lene Sigsgaard 5 1 Julius Kühn-Institut, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany 2 Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland 3 INRA, Centre de Recherche PACA, UR Ecodeveloppement, 84914 Avignon, France 4 Department of Plant Protection Biology—Unit of Integrated Plant Protection, Swedish University of Agricultural Science, P.O. Box 102, SE-230 53 Alnarp, Sweden 5 Department of Plant and Environmental Sciences, University of Copenhagen (UCPH), Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark * Correspondence: [email protected] Received: 31 May 2019; Accepted: 6 August 2019; Published: 11 August 2019 Abstract: Functional biodiversity is of fundamental importance for pest control. Many natural enemies rely on floral resources to complete their life cycle. Farmers need to ensure the availability of suitable and sufficient floral biodiversity. This review summarizes 66 studies on the management of floral biodiversity in apple orchards, published since 1986. Approaches followed different degrees of intervention: short-term practices (mowing regime and weed maintenance, cover crops), establishment of durable ecological infrastructures (perennial flower strips, hedgerows) and re-design of the crop system (intercropping, agroforestry). Although short-term practices did not always target the nutrition of natural enemies by flowering plants, living conditions for them (alternative prey, provision of habitat) were often improved. Perennial flower strips reliably enhanced natural enemies and techniques for their introduction continuously developed.
    [Show full text]
  • Insect Classification Standards 2020
    RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification.
    [Show full text]
  • Identification of Plant DNA in Adults of the Phytoplasma Vector Cacopsylla
    insects Article Identification of Plant DNA in Adults of the Phytoplasma Vector Cacopsylla picta Helps Understanding Its Feeding Behavior Dana Barthel 1,*, Hannes Schuler 2,3 , Jonas Galli 4, Luigimaria Borruso 2 , Jacob Geier 5, Katrin Heer 6 , Daniel Burckhardt 7 and Katrin Janik 1,* 1 Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), Italy 2 Faculty of Science and Technology, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy; [email protected] (H.S.); [email protected] (L.B.) 3 Competence Centre Plant Health, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy 4 Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria; [email protected] 5 Department of Botany, Leopold-Franzens-Universität Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; [email protected] 6 Faculty of Biology—Conservation Biology, Philipps Universität Marburg, Karl-von-Frisch-Straße 8, D-35043 Marburg, Germany; [email protected] 7 Naturhistorisches Museum, Augustinergasse 2, CH-4001 Basel, Switzerland; [email protected] * Correspondence: [email protected] (D.B.); [email protected] (K.J.) Received: 10 November 2020; Accepted: 24 November 2020; Published: 26 November 2020 Simple Summary: Cacopsylla picta is an insect vector of apple proliferation phytoplasma, the causative bacterial agent of apple proliferation disease. In this study, we provide an answer to the open question of whether adult Cacopsylla picta feed from other plants than their known host, the apple plant. We collected Cacopsylla picta specimens from apple trees and analyzed the composition of plant DNA ingested by these insects.
    [Show full text]
  • Insect Vectors of Phytoplasmas - R
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Insect Vectors of Phytoplasmas - R. I. Rojas- Martínez INSECT VECTORS OF PHYTOPLASMAS R. I. Rojas-Martínez Department of Plant Pathology, Colegio de Postgraduado- Campus Montecillo, México Keywords: Specificity of phytoplasmas, species diversity, host Contents 1. Introduction 2. Factors involved in the transmission of phytoplasmas by the insect vector 3. Acquisition and transmission of phytoplasmas 4. Families reported to contain species that act as vectors of phytoplasmas 5. Bactericera cockerelli Glossary Bibliography Biographical Sketch Summary The principal means of dissemination of phytoplasmas is by insect vectors. The interactions between phytoplasmas and their insect vectors are, in some cases, very specific, as is suggested by the complex sequence of events that has to take place and the complex form of recognition that this entails between the two species. The commonest vectors, or at least those best known, are members of the order Homoptera of the families Cicadellidae, Cixiidae, Psyllidae, Cercopidae, Delphacidae, Derbidae, Menoplidae and Flatidae. The family with the most known species is, without doubt, the Cicadellidae (15,000 species described, perhaps 25,000 altogether), in which 88 species are known to be able to transmit phytoplasmas. In the majority of cases, the transmission is of a trans-stage form, and only in a few species has transovarial transmission been demonstrated. Thus, two forms of transmission by insects generally are known for phytoplasmas: trans-stage transmission occurs for most phytoplasmas in their interactions with their insect vectors, and transovarial transmission is known for only a few phytoplasmas. UNESCO – EOLSS 1. Introduction The phytoplasmas are non culturable parasitic prokaryotes, the mechanisms of dissemination isSAMPLE mainly by the vector insects.
    [Show full text]
  • Effect of Tree Fertilization on Numbers and Development of Pear Psylla (Homoptera: Psyllidae) and on Fruit Damagel
    Effect of Tree Fertilization on Numbers and Development of Pear Psylla (Homoptera: Psyllidae) and on Fruit Damagel D. G. PFEIFFER2 AND E. C. BURTS Washington State University, Tree Fruit Research Center, Wenatchee, Washington 98801 Environ. Entomol. 12: 895-901 (1983) ABSTRACT Pear psylla, Psylla pyricola Foerster, egg and nymph density increased at a faster rate and reached higher levels on orchard pear, Pyrus communis L., trees receiving higher nitrogen appli- cation. This was probably due to psyllids ovipositing preferentially on foliage with higher nitrogen content. This perference was indicated in a choice chamber experiment using young and mature pear leaves. Differences in psylla densities on orchard trees due to nitrogen application rates were largely limited to the first half of the growing season. Nitrogen application rate had greater effect on psylla numbers than time of application (dormant vs. late summer). There was more russet damage to fruit from psylla on trees with a higher fertilization rate. Early-season nymphal populations were responsible for the differences in russet, highlighting the need for early-season controL Within certain ranges of foliar percent N, psylla developmental rate increased with plant nitrogen content. At very low levels of foliar N, however, psylla developmental rate also increased. Pear psylla, Psylla pyricola Foerster, feeds on the supplied to the tree on pear psylla. It is the purpose of phloem sap of pear, Pyrus spp. Most commercial pear this study to examine the effects of varying rates and cultivars grown in North America are derived from P. seasons of fertilizer application on pear psylla numbers, communis L., the favored host.
    [Show full text]
  • An Introduction to Psyllids (Of Bedfordshire) Joe Botting
    An introduction to Psyllids (of Bedfordshire) Joe Botting Cacopsylla fulguralis Basics • A group of Stenorrhyncha, most closely related to aphids • Small to very small (1-5 mm) • Worldwide ~3000 species, ~85 in UK (increasing due to introductions) • Poorly recorded in UK – no prior recording scheme, and status of many species unclear • Strongly host-specific • Some commercial pests, particularly of fruit trees (Cacopsylla mali, C. pyricola) • Often regarded as “difficult” – which may be unfair. But probably isn't. Finding psyllids Easily found by sweeping or beating selected plants: In summer, herbaceous or arborescent dicots (almost exclusively) – especially native deciduous trees. All are host-specific. In winter, evergreen shelter plants – especially conifers or yew. Some species on evergreen hosts (e.g. box – below) Most species are host-specific, so you need to know which plants to target. Once you find them, watch out for them going ‘ping’ (nearly as bad as leafhoppers…). Spanioneura fonscolombii (on box, all year) Identification • Two major families: Psyllidae & Triozidae (other families represented by introductions) • Many species superficially similar, and need microscopic examination • Dissection rarely needed, so high-resolution macrophotographs are quite often sufficient if showing the right features • Some species very difficult to confirm from single specimens; male and female often critical to a reliable ID Chamaepsylla hartigi Colouring Body Colouring Varies seasonally: usually palest (green/yellow/orange) when teneral, then darkens steadily over several months, particularly on dorsal surface: Wing Colouring Trioza alacris Usually very distinctive for species with patterned or coloured wings, although some are still difficult. Various species (especially certain Cacopsylla spp.) with very pale colouring that must be seen against a white background – this is also unreliable.
    [Show full text]