Jassa Falcata (Montagu, 1808)

Total Page:16

File Type:pdf, Size:1020Kb

Jassa Falcata (Montagu, 1808) Jassa falcata (Montagu, 1808) AphiaID: 102431 MOTTLED TUBE-MAKER Senticaudata (Subordem) > Corophiida (Infraordem) > Caprellidira (Parvordem) Fredrik Pleijel - mugga.se, via beachexplorer.org Martina Wendler, via beachexplorer.org Sinónimos Cancer (Gammarus) falcatus Montagu, 1808 Cerapus falcata Montagu Jassa dentex Czerniasvki, 1868 Jassa pulchella Leach, 1814 Podocerus falcatus (Montagu, 1808) Podocerus falcatus (Montagu, 1808) Referências additional source Integrated Taxonomic Information System (ITIS). , available online at http://www.itis.gov [details] additional source Faasse, M.; Van Moorsel, G. (2000). Nieuwe en minder bekende vlokreeftjes van sublitorale harde bodems in het Deltagebied (Crustacea: Amphipoda: Gammaridea) [New and lesser- known amphipods of hard substrates in the Delta area of the Netherlands (Crustacea: Amphipoda: Gammaridea)]. Ned. Faunist. Meded. 11: 19-44 [details] 1 basis of record Bellan-Santini, D.; Costello, M.J. (2001). Amphipoda. in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels 50: pp. 295-308. [details] additional source De Broyer, Claude. Checklist of Antarctic Amphipoda. [details] additional source Bachelet, G.; Dauvin, J.-C.; Sorbe, J.C. (2003). An updated checklist of marine and brackish water Amphipoda (Crustacea: Peracarida) of the southern Bay of Biscay (NE Atlantic). Cah. Biol. Mar. 44(2): 121-151 [details] additional source Griffiths, C. L. (1974). The Amphipoda of Southern Africa. 4. The Gammaridea and Caprellidea of the Cape Province East of Cape Agulhas. Annals of the South African Museum. 65: 251-336. [details] additional source Muller, Y. (2004). Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory]. Commission Régionale de Biologie Région Nord Pas-de-Calais: France. 307 pp., available online at http://www.vliz.be/imisdocs/publications/145561.pdf [details] additional source Bousfield, E. L. (1973). Shallow-water gammaridean Amphipoda of New England. Cornell University Press, Ithaca. 312 pp.[details] context source (Schelde) Janssen, C.R.; Ghekiere, A.; Verslycke, T.; Vincx, M.; Fockedey, N.; Rappé, K.; De Brabander, H.; Noppe, H.; Roose, P.; Monteyne, E.; Vethaak, D.; Mees, J.; Deneudt, K. (2007). Endocrine disruption in the Scheldt estuary distribution, exposure and effects (ENDIS-RISKS). Final report. Belgian Science Policy: Brussels. 106 pp.[details] context source (BeRMS 2020) Bio-environmental research group; Institute of Agricultural and Fisheries research (ILVO), Belgium; (2016): Macrobenthos monitoring at long-term monitoring stations in the Belgian part of the North Sea from 2001 on. [details] additional source Conlan, K. E.; Desiderato, A.; Beermann, J. (2021). Jassa (Crustacea: Amphipoda): a new morphological and molecular assessment of the genus. Zootaxa. 4939(1): 1-191., available online at https://doi.org/10.11646/zootaxa.4939.1.1 [details] Última atualização: 07 Dez. 2017 2.
Recommended publications
  • 1 Genetic Diversity in Two Introduced Biofouling Amphipods
    1 Genetic diversity in two introduced biofouling amphipods (Ampithoe valida & Jassa 2 marmorata) along the Pacific North American coast: investigation into molecular 3 identification and cryptic diversity 4 5 Erik M. Pilgrim and John A. Darling 6 US Environmental Protection Agency 7 Ecological Exposure Research Division 8 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA. 9 10 Running Title: Genetic diversity of introduced Ampithoe and Jassa 11 12 Article Type: Biodiversity Research 13 14 ABSTRACT 15 Aim We investigated patterns of genetic diversity among invasive populations of A. valida and J. 16 marmorata from the Pacific North American coast to assess the accuracy of morphological 17 identification and determine whether or not cryptic diversity and multiple introductions 18 contribute to the contemporary distribution of these species in the region. 19 Location Native range: Atlantic North American coast; Invaded range: Pacific North American 20 coast. 21 Methods We assessed indices of genetic diversity based on DNA sequence data from the 22 mitochondrial cytochrome c oxidase subunit I (COI) gene, determined the distribution of COI 23 haplotypes among populations in both the invasive and putative native ranges of A. valida and J. 24 marmorata, and reconstructed phylogenetic relationships among COI haplotypes using both 25 maximum parsimony and Bayesian approaches. 26 Results Phylogenetic inference indicates that inaccurate species level identifications by 27 morphological criteria are common among Jassa specimens. In addition, our data reveal the 28 presence of three well supported but previously unrecognized clades of A. valida among 29 specimens in the northeastern Pacific. Different species of Jassa and different genetic lineages of 1 30 Ampithoe exhibit striking disparity in geographic distribution across the region as well as 31 substantial differences in genetic diversity indices.
    [Show full text]
  • 1 Amphipoda of the Northeast Pacific (Equator to Aleutians, Intertidal to Abyss): IX. Photoidea
    Amphipoda of the Northeast Pacific (Equator to Aleutians, intertidal to abyss): IX. Photoidea - a review Donald B. Cadien, LACSD 22 July 2004 (revised 21 May 2015) Preface The purpose of this review is to bring together information on all of the species reported to occur in the NEP fauna. It is not a straight path to the identification of your unknown animal. It is a resource guide to assist you in making the required identification in full knowledge of what the possibilities are. Never forget that there are other, as yet unreported species from the coverage area; some described, some new to science. The natural world is wonderfully diverse, and we have just scratched its surface. Introduction to the Photoidea Over more than a century the position of the photids has been in dispute. Their separation was recommended by Boeck (1871), a position maintained by Stebbing (1906). Others have relegated the photids to the synonymy of the isaeids, and taxa considered here as photids have been listed as members of the Family Isaeidae in most west coast literature (i.e. J. L. Barnard 1969a, Conlan 1983). J. L. Barnard further combined both families, along with the Aoridae, into an expanded Corophiidae. The cladistic examination of the corophioid amphipods by Myers and Lowry (2003) offered support to the separation of the photids from the isaeids, although the composition of the photids was not the same as viewed by Stebbing or other earlier authors. The cladistic analysis indicated the Isaeidae were a very small clade separated at superfamily level from the photids, the neomegamphopids, and the caprellids within the infraorder Caprellida.
    [Show full text]
  • Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science
    Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science Scientific Name: Jassa marmorata Phylum Arthropoda Common Name a tube-building amphipod Class Malacostraca Order Amphipoda Family Ischyroceridae Z:\GAP\NPRB Marine Invasives\NPRB_DB\SppMaps\JASMAR.pn g 24 Final Rank 57.18 Data Deficiency: 11.25 Category Scores and Data Deficiencies Total Data Deficient Category Score Possible Points Distribution and Habitat: 25 26 3.75 Anthropogenic Influence: 6.75 10 0 Biological Characteristics: 16 25 5.00 Impacts: 3 28 2.50 Figure 1. Occurrence records for non-native species, and their geographic proximity to the Bering Sea. Ecoregions are based on the classification system by Spalding et al. (2007). Totals: 50.75 88.75 11.25 Occurrence record data source(s): NEMESIS and NAS databases. General Biological Information Tolerances and Thresholds Minimum Temperature (°C) -2 Minimum Salinity (ppt) 12 Maximum Temperature (°C) 27 Maximum Salinity (ppt) 38 Minimum Reproductive Temperature (°C) NA Minimum Reproductive Salinity (ppt) 31* Maximum Reproductive Temperature (°C) NA Maximum Reproductive Salinity (ppt) 35* Additional Notes J. marmot is a tube-building amphipod, greyish in color with red-brown markings. Its maximum length is 10 mm and there are two distinct morphs of males with two different mating strategies. The 'major' morphs are fighter males, while the 'minor' morphs are sneaker males. This species is difficult to identify in the field, and easily confused with other Jassa species. There is some uncertainty around its native distribution due to the difficulty of distinguishing between J. marmorata and similar species, but it is likely native to the northwest Atlantic.
    [Show full text]
  • Amphipoda Key to Amphipoda Gammaridea
    GRBQ188-2777G-CH27[411-693].qxd 5/3/07 05:38 PM Page 545 Techbooks (PPG Quark) Dojiri, M., and J. Sieg, 1997. The Tanaidacea, pp. 181–278. In: J. A. Blake stranded medusae or salps. The Gammaridea (scuds, land- and P. H. Scott, Taxonomic atlas of the benthic fauna of the Santa hoppers, and beachhoppers) (plate 254E) are the most abun- Maria Basin and western Santa Barbara Channel. 11. The Crustacea. dant and familiar amphipods. They occur in pelagic and Part 2 The Isopoda, Cumacea and Tanaidacea. Santa Barbara Museum of Natural History, Santa Barbara, California. benthic habitats of fresh, brackish, and marine waters, the Hatch, M. H. 1947. The Chelifera and Isopoda of Washington and supralittoral fringe of the seashore, and in a few damp terres- adjacent regions. Univ. Wash. Publ. Biol. 10: 155–274. trial habitats and are difficult to overlook. The wormlike, 2- Holdich, D. M., and J. A. Jones. 1983. Tanaids: keys and notes for the mm-long interstitial Ingofiellidea (plate 254D) has not been identification of the species. New York: Cambridge University Press. reported from the eastern Pacific, but they may slip through Howard, A. D. 1952. Molluscan shells occupied by tanaids. Nautilus 65: 74–75. standard sieves and their interstitial habitats are poorly sam- Lang, K. 1950. The genus Pancolus Richardson and some remarks on pled. Paratanais euelpis Barnard (Tanaidacea). Arkiv. for Zool. 1: 357–360. Lang, K. 1956. Neotanaidae nov. fam., with some remarks on the phy- logeny of the Tanaidacea. Arkiv. for Zool. 9: 469–475. Key to Amphipoda Lang, K.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • (Amphipoda) Allows the Identification of a New Species, Jassa Cadetta Sp
    ARTICLE IN PRESS Organisms, Diversity & Evolution 8 (2008) 337–345 www.elsevier.de/ode A cytogenetical study of Ischyroceridae (Amphipoda) allows the identification of a new species, Jassa cadetta sp. n., in the Lagoon of Venice Traudl Krappa, Massimiliano Rampinb, Angelo Libertinib,Ã aForschungsinstitut Museum A. Koenig, Adenauerallee 160, 53113 Bonn, Germany bCNR-Institute of Marine Science, Riva 7 Martiri 1364/A, 30122 Venezia, Italy Received 20 November 2007; accepted 16 June 2008 Abstract Jassa cadetta sp. n. (Amphipoda: Ischyroceridae) is described from the Venice Lagoon, northern Adriatic Sea, and a key to Mediterranean members of the genus Jassa Leach is provided. The new species is separated from J. marmorata Holmes primarily by cytogenetics, differing in chromosome number (2n ¼ 10 in J. cadetta vs. 2n ¼ 12 in J. marmorata), karyotype morphology (FN ¼ 20 vs. FN ¼ 22), and chromosome location of 18S-5.8S-28S ribosomal cistrons. Cytogenetic analysis of Ischyrocerus anguipes Krøyer (2n ¼ 10, FN ¼ 18) gives a first insight into karyological diversity among Ischyroceridae. Analysis of random amplified polymorphic DNA markers confirms the distinction between J. cadetta sp. n. and J. marmorata. r 2008 Gesellschaft fu¨ r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Amphipoda; Northern Adriatic Sea; Cytogenetics; PCR-RAPD; New species Introduction examines early embryos as material for karyotyping (Libertini et al. 2000); the body of the corresponding Libertini et al. (2000) published a monograph on the ovigerous female is usually preserved for species cytogenetics of Jassa marmorata Holmes, 1903 from the identification. One female from the Lido mouth, Venice Lagoon. The population was characterized by a identified as J.
    [Show full text]
  • Decapod Crustacean Chelipeds: an Overview
    Journal of Biophysical Chemistry, 2009, 1, 1-13 Decapod crustacean chelipeds: an overview PITCHAIMUTHU MARIAPPAN, CHELLAM BALASUNDARAM and BARBARA SCHMITZ The structure, growth, differentiation and function of crustacean chelipeds are reviewed. In many decapod crusta- ceans growth of chelae is isometric with allometry level reaching unity till the puberty moult. Afterwards the same trend continues in females, while in males there is a marked spurt in the level of allometry accompanied by a sud- den increase in the relative size of chelae. Subsequently they are differentiated morphologically into crusher and cutter making them heterochelous and sexually dimorphic. Of the two, the major chela is used during agonistic encounters while the minor is used for prey capture and grooming. Various biotic and abiotic factors exert a negative effect on cheliped growth. The dimorphic growth pattern of chelae can be adversely affected by factors such as parasitic infection and substrate conditions. Display patterns of chelipeds have an important role in agonistic and aggressive interactions. Of the five pairs of pereiopods, the chelae are versatile organs of offence and defence which also make them the most vulnerable for autotomy. Regeneration of the autotomized chelipeds imposes an additional energy demand called “regeneration load” on the incumbent, altering energy allocation for somatic and/or reproductive processes. Partial withdrawal of chelae leading to incomplete exuvia- tion is reported for the first time in the laboratory and field in Macrobrachium species. 1. General morphology (exites) or medial (endites) protrusions (Manton 1977; McLaughlin 1982). From the protopod arise the exopod Chelipeds of decapod crustaceans have attracted human and endopod.
    [Show full text]
  • Costa. 1853) New Amphipods (Crustacea: Amphipoda
    Rev. Acad. Canar. Cienc., Vol. XXVI, 27-3 (diciembre de 2014) 1 Jassa marmorata (HOLMES, 1905) AND Monocorophium acherusicum (COSTA, 1853) NEW AMPH1PODS (CRUSTACEA: AMPHIPODA) TO THE CANARY ISLANDS '*Riera, R., 'Ramos, E., 2 Herrera, R. & 3 Moro, L. 1 Centro de Investigaciones Medioambientales del Atlantico (CIMA SL) Avda. Los Majuelos, 1 15, 38107 Santa Cruz de Tenerife, Tenerife, Canary Islands, Spain. 2 Servicio de Biodiversidad. Viceconsejeria de Medio Ambiente del Gobierno de Canarias a Edificio de Servicios Multiples II (5 planta). Agustin Millares Carlo, 18 35071 - Las Palmas, Gran Canaria, Canary Islands, Spain 3 Servicio de Biodiversidad, Viceconsejeria de Medio Ambiente del Gobierno de Canarias Edif. Usos Multiples I, Av. Anaga n° 35, 38071, S/C de Tenerife, Canary Islands, Spain * Corresponding author: [email protected] RESUMEN Se citan por primera vez las especies de anfipodos Jassa marmorata (Holmes, 1905) y Monocorophium acherusicum (Costa, 1853) para el archipielago canario. Se aportan datos de la fauna acompanante y de las caracteristicas de los puntos de muestreo donde fueron re- colectados. Palabras clave: Amphipoda, Gammaridea, Jassa , Monocorophium , islas Canarias, oceano Atlantico. ABSTRACT The amphipod species Jassa marmorata (Holmes, 1905) and Monocorophium acheru- sicum (Costa, 1853) are first recorded for the Canarian archipelago. Accompanying fauna data and information about the sampling sites where they were collected are provided. Islands, Key words: Amphipoda, Gammaridea, Jassa , Monocorophium , Canary At- lantic Ocean. 1. INTRODUCTION Two crustacean species new to the Canary Islands, Jassa marmorata (Holmes, 1905) and Monocorophium acherusicum (Costa, 1853) are recorded. Both species are considered na- tive to the Atlantic Ocean and have been spread recently to other geographic areas, such as, the Chilean and Australian coasts (PEREZ-SCHULTHEISS, 2009) where they are consid- 27 ered invasive species.
    [Show full text]
  • Checklist of Species Within the CCBNEP Study Area: References, Habitats, Distribution, and Abundance
    Current Status and Historical Trends of the Estuarine Living Resources within the Corpus Christi Bay National Estuary Program Study Area Volume 4 of 4 Checklist of Species Within the CCBNEP Study Area: References, Habitats, Distribution, and Abundance Corpus Christi Bay National Estuary Program CCBNEP-06D • January 1996 This project has been funded in part by the United States Environmental Protection Agency under assistance agreement #CE-9963-01-2 to the Texas Natural Resource Conservation Commission. The contents of this document do not necessarily represent the views of the United States Environmental Protection Agency or the Texas Natural Resource Conservation Commission, nor do the contents of this document necessarily constitute the views or policy of the Corpus Christi Bay National Estuary Program Management Conference or its members. The information presented is intended to provide background information, including the professional opinion of the authors, for the Management Conference deliberations while drafting official policy in the Comprehensive Conservation and Management Plan (CCMP). The mention of trade names or commercial products does not in any way constitute an endorsement or recommendation for use. Volume 4 Checklist of Species within Corpus Christi Bay National Estuary Program Study Area: References, Habitats, Distribution, and Abundance John W. Tunnell, Jr. and Sandra A. Alvarado, Editors Center for Coastal Studies Texas A&M University - Corpus Christi 6300 Ocean Dr. Corpus Christi, Texas 78412 Current Status and Historical Trends of Estuarine Living Resources of the Corpus Christi Bay National Estuary Program Study Area January 1996 Policy Committee Commissioner John Baker Ms. Jane Saginaw Policy Committee Chair Policy Committee Vice-Chair Texas Natural Resource Regional Administrator, EPA Region 6 Conservation Commission Mr.
    [Show full text]
  • Biological Invasions in Alaska's Coastal Marine Ecosystems
    Biological Invasions in Alaska’s Coastal Marine Ecosystems: Establishing a Baseline Final Report Submitted to Prince William Sound Regional Citizens’ Advisory Council & U.S. Fish & Wildlife Service 6 January 2006 Submitted by Gregory M. Ruiz1, Tami Huber, Kristen Larson Linda McCann, Brian Steves, Paul Fofonoff & Anson H. Hines Smithsonian Environmental Research Center Edgewater, Maryland USA -------------------------- 1 Corresponding Author: G. M. Ruiz, Smithsonian Environmental Research Center (SERC), P.O. Box 28, Edgewater, MD 21037; TEL: 443-482-2227; FAX: 443-482-2380; Email: [email protected] 1 The opinions expressed in this PWSRCAC-commissioned report are not necessarily those of PWSRCAC. Executive Summary Biological invasions are a significant force of change in coastal ecosystems, altering native communities, fisheries, and ecosystem function. The number and impact of non-native species have increased dramatically in recent time, causing serious concern from resource managers, scientists, and the public. Although marine invasions are known from all latitudes and global regions, relatively little is known about the magnitude of coastal invasions for high latitude systems. We implemented a nationwide survey and analysis of marine invasions across 24 different bays and estuaries in North America. Specifically, we used standardized methods to detect non-native species in the sessile invertebrate community in high salinity (>20psu) areas of each bay region, in order to control for search effort. This was designed to test for differences in number of non-native species among bays, latitudes, and coasts on a continental scale. In addition, supplemental surveys were conducted at several of these bays to contribute to an overall understanding of species present across several additional habitats and taxonomic groups that were not included in the standardized surveys.
    [Show full text]
  • Marine Invasive Species and Biodiversity of South Central Alaska
    Marine Invasive Species and Biodiversity of South Central Alaska Anson H. Hines & Gregory M. Ruiz, Editors Smithsonian Environmental Research Center PO Box 28, 647 Contees Wharf Road Edgewater, Maryland 21037-0028 USA Telephone: 443. 482.2208 Fax: 443.482-2295 Email: [email protected], [email protected] Submitted to: Regional Citizens’ Advisory Council of Prince William Sound 3709 Spenard Road Anchorage, AK 99503 USA Telephone: 907.277-7222 Fax: 907.227.4523 154 Fairbanks Drive, PO Box 3089 Valdez, AK 99686 USA Telephone: 907835 Fax: 907.835.5926 U.S. Fish & Wildlife Service 43655 Kalifornski Beach Road, PO Box 167-0 Soldatna, AK 99661 Telephone: 907.262.9863 Fax: 907.262.7145 1 TABLE OF CONTENTS 1. Introduction and Background - Anson Hines & Gregory Ruiz 2. Green Crab (Carcinus maenas) Research – Gregory Ruiz, Anson Hines, Dani Lipski A. Larval Tolerance Experiments B. Green Crab Trapping Network 3. Fouling Community Studies – Gregory Ruiz, Anson Hines, Linda McCann, Kimberly Philips, George Smith 4. Taxonomic Field Surveys A. Motile Crustacea on Fouling Plates– Jeff Cordell B. Hydroids – Leanne Henry C. Pelagic Cnidaria and Ctenophora – Claudia Mills D. Anthozoa – Anson Hines & Nora Foster E. Bryozoans – Judith Winston F. Nemertineans – Jon Norenburg & Svetlana Maslakova G. Brachyura – Anson Hines H. Molluscs – Nora Foster I. Urochordates and Hemichordates – Sarah Cohen J. Echinoderms –Anson Hines & Nora Foster K. Wetland Plants - Dennis Whigham 2 Executive Summary This report summarizes research on nonindigenous species (NIS) in marine ecosystems of Alaska during the year 2000 by the Smithsonian Environmental Research Center. The project is an extension of three years of research on NIS in Prince William Sound, which is presented in a major report (Hines and Ruiz, 2000) that is on line at the website of the Regional Citizens’ Advisory Council: www.pwsrcac.org.
    [Show full text]
  • Complicated Evolution of the Caprellid (Crustacea: Malacostraca
    Complicated evolution of the Caprellid (Crustacea: Malacostraca: Peracarida: Amphipoda) bodyplan, reacquisition or multiple losses of the thoracic limbs and pleons Atsushi Ito1, Masakazu N. Aoki2, Kensuke Yahata1 and Hiroshi Wada1* 1Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan 2Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan Author for correspondense*: Hiroshi Wada Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan Tel & Fax: +81-29-853-4671 E-mail: [email protected] 1 Abstract The Caprellidea (Crustacea) have undergone an interesting morphological evolution from their ancestral gammarid-like form. Although most caprellid families have markedly reduced third and fourth pereopods (the walking thoracic limbs) and pleons (the posterior body parts), one family, Caprogammaridae, has developed pleon with swimming appendages (pleopods), whereas another family, Phtisicidae, possesses well-developed functional third and fourth pereopods. The unique character status of these families implies that there has been reacquisition or multiple losses of both pereopods and the pleon within the Caprellidea lineages. Although the Caprellidea are fascinating animals for the study of morphological evolution, the phylogenetic relationships among the Caprellidea are poorly understood. One obstacle to studying the evolution of the Caprellidea is the difficulty collecting samples of caprogammarid species. In this study, we obtained live samples of a Caprogammaridae species, and confirmed that its pleon and pleopods could perform similar locomotive functions and swimming movements as observed in gammarids. From the phylogenetic analyses on 18S ribosomal RNA gene sequences, we identified three distinct clades of Caprellidea.
    [Show full text]