Effects of Vitamin D on the Renin-Angiotensin System

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Vitamin D on the Renin-Angiotensin System Trakia Journal of Sciences, No 3, pp 277-282, 2019 Copyright © 2019 Trakia University Available online at: http://www.uni-sz.bg ISSN 1313-7050 (print) ISSN 1313-3551 (online) doi:10.15547/tjs.2019.03.017 Review EFFECTS OF VITAMIN D ON THE RENIN-ANGIOTENSIN SYSTEM L. Pashova-Stoyanova*, A. Tolekova Department of Physiology, Pathophysiology and Pharmacology, Medical Faculty, Trakia University, Stara Zagora, Bulgaria ABSTRACT The renin-angiotensin-aldosterone system (RAAS) is a complex endocrine system of enzymes, proteins and peptides that occupies a key position in the regulation of a number of important physiological processes, such as arterial pressure, water and electrolyte homeostasis. Its activity, flow and regulation are affected by a large number of mediators, substances and diseases one of which is vitamin D. Vitamin D is involved in the regulation of many physiological processes with great importance. Vitamin D deficiency is associated with an increased risk of impaired renal function, cardiovascular disease, diabetes mellitus, metabolic disorders, affecting RAAS and other pathways. Key words: vitamin D, renin-angiotensin system INTRODUCTION blood pressure and intravascular volume, the The renin-angiotensin system is a unique system is the subject of detailed and thorough regulatory system by its nature and research. Following the discovery of renin by characteristics. It has numerous effects on the Robert Tigerstedt in 1897, a new era in the regulation of a number of systems and development of physiology, biochemistry of mediators, and at the same time is influenced peptide hormones, the pathophysiology of the by the impact of a number of substances and hypertonic disease, endocrinology, factors. pharmacology and a number of scientific research inquiries and angiotensins were Vitamin D is beneficial for the regulation of launched (1-7). bone metabolism, calcium homeostasis and affects different aspects of people`s health. The renin-angiotensin-aldosterone system There is evidence that vitamin D is important (RAAS) is a complex endocrine system of for normal blood pressure, sugar levels, insulin enzymes, proteins and peptides that occupies a resistance, immune system, reproductive key position in the regulation of a number of system and many more. important physiological processes, such as arterial pressure, water and electrolyte Vitamin D affects the main effector of the homeostasis (8-11). renin-angiotensin system on different levels and leads to changes in the regulation of The activity of RAAS is determined by the different mediators. velocity of renin secretion by the juxtaglomerular apparatus of the kidney (12, Renin-angiotensin system 13). The renin-angiotensin system has a key role in salt balance and cardiovascular homeostasis. Touyz (2002) points out that Its activity, flow Validated as a major humoral regulator of and regulation are affected by a large number ___________________________ of diseases in connection with the onset of *Correspondence to: Lilia Pashova-Stoyanova, humoral, metabolic and other changes. Bulgaria, Stara Zagora, Trakia University, Medical Knowledge of the pathophysiological features, Faculty, Armeiska 11 str, Department of pathogenesis and mechanisms for the Physiology, Pathophysiology and Pharmacology development of these disabilities helps to corresponding author:, e-mail: [email protected], Tel: understand the disease thoroughly and to create 0897 427 123 Trakia Journal of Sciences, Vol. 17, № 3, 2019 277 PASHOVA-STOYANOVA L., et al. specific, targeted and effective ways to providing calcium and phosphate ion counteract (14). deposition. According to Yilmaz (2012) it also participates actively in the processes of bone Rahimi et al (2014) suggest that there is a close and dentin, and this property is the opposite of relationship between the major RAAS effector, parathyroid hormone action (parathyroid namely angiotensin II, insulin resistance, the hormone regulates the processes and activity of progression of diabetic nephropathy, osteoclasts, which in turn are responsible for retinopathy, neuropathy, and cardiovascular the degradation of bone tissue) (22, 23). lesions in patients with type 2 diabetes. There is also a close association between RAAS and Studies by Sipahi (2017) show that vitamin D the development of metabolic disorders, is involved in the absorption of calcium and metabolic syndrome and its components and phosphorus in the small intestine, and under its complications. action a specific protein is formed on the surface of the small intestinal mucosa, known Studies by Agarwal (2003) and Arendshorts as calcium binding protein, responsible for (1999) report that inclusion of drugs from the calcium binding and transport via active angiotensin-converting enzyme (ACE) transport through the walls of the small inhibitors and angiotensin receptor blockers intestine (24). (sartans) in the treatment of patients with metabolic syndrome, pre-diabetic conditions There is evidence from studies by Sipahi and type 2 diabetes significantly reduces the (2017) and Atalay (2017) that in the kidneys risk of new diabetes, reduces proteinuria and vitamin D affects the phosphate ion reduces the progression of nephropathy to reabsorption, increasing it and increasing its terminal renal disease, which supports the blood concentration (hyperphosphatemia) in thesis of a link between RAAS and metabolic the course of phosphorous exchange, and this parameters (15-17). effect is also opposed to the parathormone effect (24, 25). Vitamin D: role, effect, physiological importance Mostafa et al (2016) report that regardless of Vitamin D belongs to the family of the fat- the source of supply to the body with vitamin soluble vitamins and can be found under D (food, sun exposure, additives), it is different names, including anti-rheumatic necessary to double pass the process of vitamin, calciferol and others. Vitamin D hydroxylation to obtain the active form of discovery and isolation initiate in-depth studies vitamin D, namely 1,25- of its role in the body, biological functions and dihydroxycholecalciferol. reactions in the cases of deficiency (18, 19). The author states that the first hydroxylation According to Heaney (2008) and Holick process takes place in the liver, forming 25- (2007) vitamin D is available in several hydroxycholecalciferol (25-OH-D3) or 25- different forms, from D1 to D5, each hydroxyvitamin D3. The second hydroxylation exhibiting different biological activity and process takes place in the kidney to form the functions. Only two of the forms are found in final active metabolite, namely 1.25 nature, namely vitamin D2, also known as dihydroxycholecalciferol (1,25- (OH) 2-D3). ergocalciferol and vitamin D3, also called Their distinctive and characteristic feature is cholecalciferol. Ergocalciferol is essentially faster and stronger effect than even vitamin D derived from ergosterin contained in wheat, itself. In renal structures, the parathyroid irradiated with ultraviolet rays and is inactive hormone plays the role of a stimulator of vitamin D. Ergocalciferol is taken by food, and particular importance in the conversion of 25 after subcutaneous deposition under the (OH) D to 1,25- (OH) 2-D3. influence of ultraviolet rays, it is transformed into active vitamin D2 which rapidly is The reactions of conversion of the starting absorbed into the blood and can be stored for vitamin D into its active metabolite are several months in the adipose tissue. The real accomplished with the enzymes 25- anti-rheumatic vitamin is cholecalciferol or hydroxylase in the liver and 1-alpha- vitamin D3 (20, 21). hydroxylase in the kidney, both of which belong to the family of cytochrome P450- Autier (2007) points out that vitamin D exerts dependent steroidal hydroxylase. a significant influence on the cells responsible for bone tissue synthesis (osteoblasts), 278 Trakia Journal of Sciences, Vol. 17, № 3, 2019 PASHOVA-STOYANOVA L., et al. According to Zittermann (2003) there is a • It improves insulin secretion from pancreatic close interdependence and interrelation Beta cells and improves insulin sensitivity (18, between parathyroid hormone and vitamin D. 20). The synthesis of its active form requires the presence of parathormone and the action of Numerous studies and experimental studies parathyroid hormone on bone tissue requires have shown the unambiguous and extremely the active principle of vitamin D3 (26, 27). important role of vitamin D in protecting against the development of metabolic Holick (2004) explains that 1,25- (OH) 2-D3 disorders. Since metabolic damage has been performs its calcium function by binding to the associated with numerous factors and vitamin D receptor (VDR), which in turn binds metabolic disorders have developed at to DNA sequences (VDREs) and regulates a different levels, it has been shown that the fat- large number of genes. Activation of VDR in soluble vitamin significantly improves lipid intestines, bones, kidneys and parathyroid profile and blood sugar disorders, which are glands maintains a normal concentration of some of the initial and leading to the calcium and phosphorus and hence bone manifestation of the entire spectrum of a mineralization (28). component of the metabolic syndrome. Evidence from Basit (2013) indicates that all Sibuh (2018) points out that in experiments cells of acquired immunity (monocytes, with rats subjected to high fructose diet, a dendritic cells, B cells, T cells, NK cells) significant improvement in serum glucose and express VDR continuously or
Recommended publications
  • Determination of D003 by Capillary Gas Chromatography
    Rev. CENIC Cienc. Quím.; vol. 51. (no.2): 325-368. Año. 2020. e-ISSN: 2221-2442. BIBLIOGRAPHIC REWIEW THE FAMOUS FINNISH CHEMIST JOHAN GADOLIN (1760-1852) IN THE LITERATURE BETWEEN THE 19TH AND 21TH CENTURIES El famoso químico finlandés Johan Gadolin (1760-1852) en la literatura entre los siglos XIX y XXI Aleksander Sztejnberga,* a,* Professor Emeritus, University of Opole, Oleska 48, 45-052 Opole, Poland [email protected] Recibido: 19 de octubre de 2020. Aceptado: 10 de diciembre de 2020. ABSTRACT Johan Gadolin (1760-1852), considered the father of Finnish chemistry, was one of the leading chemists of the second half of the 18th century and the first half of the 19th century. His life and scientific achievements were described in the literature published between the 19th and 21st centuries. The purpose of this paper is to familiarize readers with the important events in the life of Gadolin and his research activities, in particular some of his research results, as well as his selected publications. In addition, the names of authors of biographical notes or biographies about Gadolin, published in 1839-2017 are presented. Keywords: J. Gadolin; Analytical chemistry; Yttrium; Chemical elements; Finnland & Sverige – XVIII-XIX centuries RESUMEN Johan Gadolin (1760-1852), considerado el padre de la química finlandesa, fue uno de los principales químicos de la segunda mitad del siglo XVIII y la primera mitad del XIX. Su vida y sus logros científicos fueron descritos en la literatura publicada entre los siglos XIX y XXI. El propósito de este artículo es familiarizar a los lectores con los acontecimientos importantes en la vida de Gadolin y sus actividades de investigación, en particular algunos de sus resultados de investigación, así como sus publicaciones seleccionadas.
    [Show full text]
  • The Renin-Angiotensin System and the Heart: a Historical Review Heart: First Published As 10.1136/Hrt.76.3 Suppl 3.7 on 1 November 1996
    Heart (Supplement 3) 1996;76:7-12 7 The renin-angiotensin system and the heart: a historical review Heart: first published as 10.1136/hrt.76.3_Suppl_3.7 on 1 November 1996. Downloaded from Stephen J Cleland, John L Reid Early observations on a possible link effect but was in fact an enzyme. The names between the kidney and the "hypertensin""l and "angiotonin"12 were given cardiovascular system to the pressor substance formed from the renin In 1836 an English clinician Richard Bright substrate by the enzymatic action of renin. observed that patients dying with contracted Subsequently, it was agreed that the term kidneys often had a hard, full pulse and cardiac "angiotensin" would be used to describe this hypertrophy.' In 1889 Brown-Sequard, the substance. During this period the potential for "father" of endocrinology, showed that injec- pathological effects of renin was recognised. tions of extracts from guinea pig testicles were Winternitz described necrotising arteriolar able to produce systemic effects of vigour and lesions in animals which had undergone renal the perception of rejuvenation.2 On this back- artery ligation and also in nephrectomised ani- ground, in 1896 the Finnish physiologist mals which had been given kidney extracts.'3 Robert Tigerstedt and his student Per Finally, the relevance of renal control of blood Bergman began to explore the possibility that pressure in man was described by Young who, kidney extracts from rabbits may have some in 1936, cured a case of malignant hyperten- systemic effects on the cardiovascular system. sion by removing an ischaemic kidney.'4 In 1898 their classic paper was published showing that intravenous injection of these renal extracts exerted a pressor effect.
    [Show full text]
  • Finnish Neuroscience from Past to Present
    Received: 2 January 2020 | Revised: 24 January 2020 | Accepted: 28 January 2020 DOI: 10.1111/ejn.14693 EDITORIAL Finnish neuroscience from past to present 1 | INTRODUCTION University of Technology (the present Aalto University) was established in 1849. Further multidisciplinary universities Finland is a small Nordic country (population 5.5 million) with faculties of medicine or natural sciences were founded that enjoys a richness and diversity of research activities in- in Turku 1918 and 1920, Tampere 1925, Jyväskylä 1934, cluding those in the neurosciences. In this article, we will Oulu 1958, and Kuopio 1966 (now the University of Eastern briefly review the history of neuroscience in Finland from Finland). its origins such as the studies into the anatomy, pathology During its first century of activity, most of the profes- and physiology of the nervous system—which were recog- sors of medicine in the Royal Academy of Turku had earned nized with the award of the Nobel Prize in Physiology or their doctorates at the leading Dutch universities. Although Medicine—to later discoveries in clinical, molecular and their teachers included such men as Sylvius and Boerhaave, translational neurosciences and pharmacology. The innova- they did not show any particular interest in neuroscience. tive original research of Finnish investigators on weak mag- Even the extensive thesis “De apoplexia” (1771) written by netic fields in the human brain has led to the development of Johan Haartman (1725–1787), a pupil of Linnaeus, was a advanced imaging techniques. Another area associated with mere compilation of current knowledge. The papers of Evert many recent breakthroughs has been human genetics and the J.
    [Show full text]
  • (Pro)Renin Receptor Ameliorates the Kidney Damage in the Non-Clipped Kidney of Goldblatt Hypertension
    Hypertension Research (2011) 34, 289–291 & 2011 The Japanese Society of Hypertension All rights reserved 0916-9636/11 $32.00 www.nature.com/hr COMMENTARY Chronic blockade of the (pro)renin receptor ameliorates the kidney damage in the non-clipped kidney of Goldblatt hypertension Hideyasu Kiyomoto and Kumiko Moriwaki Hypertension Research (2011) 34, 289–291; doi:10.1038/hr.2010.253; published online 23 December 2010 enin was discovered by Robert Tigerstedt tor blockers have been utilized for not only through extracellular signal-regulated kinase R in 1898; since then, the serial enzymes hypertension, but also diabetes nephropathy, (ERK)1/2 stimulation, (pro)renin receptors and peptides involved in the renin-angioten- metabolic syndrome and heart failure in the upregulate inflammatory mediators, such as sin system (RAS) have been discovered and last decade.2 The initial enzymatic action of cyclooxygenase-2, interleukin-1b and tumor investigated in numerous studies. Accumu- the RAS is the conversion of angiotensinogen necrosis factor-a.5–7 Non-proteolytic activa- lated evidence indicates that the RAS has a (ATG) to angiotensin I (AngI) by renin. The tion of prorenin involves a conformational crucial role in regulating the homeostasis of plasma concentration of AngI is only change that results in the unfolding of the circulation and in maintaining blood pressure approximately twice that of AngII, even prosegment without any cleavage. Although through vasoconstriction of the vasculature when the RAS is activated. Surprisingly, the this reversible open conformation has only and the reabsorption of salt and water in the concentration of ATG is approximately 5000- been achieved in vitro under low pH or kidneys.
    [Show full text]
  • Sjögren Catalogue
    Post 1 av 3649 Författare Berzelius, Jacob, 1779-1848. TITEL Jac. Berzelius : själfbiografiska anteckningar. PUBLICERAD Stockholm : Kgl vetensk.akad., 1979. PLATSKOD D5:11. Post 2 av 3649 Författare Ericsson, John, 1803-1889. TITEL Contributions to the centennial exhibition / by John Ericsson. PUBLICERAD Stockholm : The Royal Swedish academy of engineering sciences ?[?Ingenjörsvetenskapsakad.?]?, [1976] (Stockholm : Brolin) PLATSKOD Y5:26. PLATSKOD Y5:26. Post 3 av 3649 TITEL Arkiv för botanik / utgivet av Kungl. Svenska vetenskapsakademien. PUBLICERAD Sammanfattad utgivningstid: Stockholm : Norstedt, 1903- 1974 (Stockholm : Kungl. boktr.) PUBLICERAD Uppsala ; Stockholm : Almqvist & Wiksell, 1905-1914. PUBLICERAD Stockholm : Almqvist & Wiksell, 1915-1959, 1967-1974. PUBLICERAD Stockholm : Norstedt, 1903-1904. Post 4 av 3649 TITEL Årbok. PUBLICERAD Oslo : Universitetsforlaget, 1891-1970. PLATSKOD N5:41-54 & U1:34-105. Post 5 av 3649 Författare Green, George. TITEL An essay on the application of mathematical analysis to the theories of electricity and magnetism. PUBLICERAD Göteborg : S. Ekelöf : Wezäta, 1958 ; ?(?Göteborg : Wezäta.Melin?)? PLATSKOD C3:23. Post 6 av 3649 TITEL Tables annuelles de constantes et données numériques de chimie, de de physique, de biologie et de technologie : Jahrestabellen chemischer, physikalischer, biologischer und technologischer Konstanten und Zahlenwerte. PUBLICERAD Paris : Gauthiers-Villars, 1912-1935. PLATSKOD C5:44. Post 7 av 3649 TITEL Sverige : geografisk, topografisk, statistisk beskrifning / under medverkan av flera författare ; utgifven af Karl Ahlenius ... PUBLICERAD Stockholm : Wahlström & Widstrand, 1908-1924. PLATSKOD X6:29. Post 8 av 3649 Författare Swedenborg, Emanuel, 1688-1772. TITEL Mineralriket : om järnet och de i Europa vanligast vedertagna järnframställningssätten. PUBLICERAD Stockholm, 1923. PLATSKOD Öppen hylla mellan fönstren. Post 9 av 3649 Författare Küster, Friedrich Wilhelm Albert, 1861-1917.
    [Show full text]
  • The Winner Takes It All: Willem Einthoven, Thomas Lewis, and the Nobel Prize 1924 for the Discovery of the Electrocardiogram
    Journal of Electrocardiology 57 (2019) 122–127 Contents lists available at ScienceDirect Journal of Electrocardiology journal homepage: www.jecgonline.com Review The winner takes it all: Willem Einthoven, Thomas Lewis, and the Nobel prize 1924 for the discovery of the electrocardiogram Olle Pahlm a,b,⁎, Bengt Uvelius a,c a Department of Clinical Sciences Lund, Lund University, Sweden b Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund-Malmö, Sweden c Department of Urology, Skåne University Hospital, Lund-Malmö, Sweden article info The Nobel prize in Physiology or Medicine 1924 was awarded to Willem Einthoven, “the father of electrocardiography”. Einthoven had been nominated for that year's prize along with Sir Thomas Lewis, the Keywords: “father of clinical electrocardiography”, but in the final evaluation the W Einthoven prize was awarded to Einthoven alone. T Lewis The names of nominees and the protocols in the Nobel Prize Ar- GR Mines J-E Johansson chives were initially confidential, but today documents older than fifty Electrocardiography years are available for research on topics of science history. The Nobel prize nobelprize.org website publishes the names of nominees, as well as the names of those who nominated them, but in 2019 only those from 1969 or earlier. But documents such as the nominating letters and the Abstract evaluations are difficult to study. One has to visit the archives in Stockholm, order the specific documents one wants to read, and read Professor Willem Einthoven of Leiden, the Netherlands, was the first them there. And most of the documents are written in Swedish, which to record the human ECG with high technical quality.
    [Show full text]
  • Angiotensin II in Septic Shock Thiago D Corrêa1, Jukka Takala2,3 and Stephan M Jakob2,3*
    Corrêa et al. Critical Care (2015) 19:98 DOI 10.1186/s13054-015-0802-3 REVIEW Angiotensin II in septic shock Thiago D Corrêa1, Jukka Takala2,3 and Stephan M Jakob2,3* The renin-angiotensin system Abstract Since the discovery of renin by Robert Tigerstedt and This article is one of ten reviews selected from the Per Gunnar Bergman in 1898, a lot of progress has been Annual Update in Intensive Care and Emergency made towards better understanding of the role of the Medicine 2015 and co-published as a series in Critical RAS in body homeostasis and in disease. The classical Care. Other articles in the series can be found online circulating RAS includes angiotensinogen (the precursor at http://ccforum.com/series/annualupdate2015. of angiotensin), the enzymes renin and angiotensin con- Further information about the Annual Update in verting enzyme (ACE), which produces the bioactive Intensive Care and Emergency Medicine is available angiotensin II, and its receptors, AT-1 and AT-2. Aldos- from http://www.springer.com/series/8901. terone is often considered together with the circulating RAS, then referred to as the RAAS (renin-angiotensin- aldosterone system). The major components of the clas- Introduction sical ‘circulating’ RAS were described at the beginning of Systemic vasodilatation and arterial hypotension are the 1970s. In the subsequent decades, knowledge about landmarks of septic shock. Whenever fluid resuscitation angiotensin receptors and the complex interaction be- fails to restore arterial blood pressure and tissue perfu- tween the RAS and other neuroendocrine pathways has sion, vasopressors agents are necessary [1]. Norepineph- increased [5].
    [Show full text]
  • The Angiotensin Affair: How Great Minds Thinking Alike Came to a Historical Agreement
    Chapter 1 The Angiotensin Affair: How Great Minds Thinking Alike Came to a Historical Agreement Matilde Otero‐Losada, Mariana H. Nobile and José Milei Additional information is available at the end of the chapter http://dx.doi.org/10.5772/67136 Abstract In 1934, J. C. Fasciolo had to submit a thesis and Dr. Houssay suggested he investigate about nephrogenic hypertension. E. Braun‐Menéndez showed interest in helping and Drs. L.F. Leloir and J.M. Muñoz from the Institute of Physiology joined them in their attempt to isolate and purify the pressor substance. In 1939, they extracted the substance “hyper‐ tension” from the venous blood from the ischemic kidneys. They proposed an enzyme‐ substrate reaction. They named hypertensinogen the substrate and hypertensinases the enzymes that break down the hypertension. Two months following the Argentine publica‐ tion, the team in the United States, formed by I.H. Page and O.M. Helmer, published their findings, which were in agreement with those reported by the Argentine team. By 1940, they isolated angiotonin, the equivalent of hypertension, and called the renin substrate hypertensinogen. In 1957, in the conference held in Ann Arbor, Braun‐Menéndez and Page agreed on a new nomenclature. As a result, the words angiotensinogen and angio‐ tensin were born from the combination of the names originally set by both teams. The discovery of the renin‐angiotensin system is an example that science should follow: Value the progress made by colleagues, collaborate side by side, and pursue the ultimate truth. Keywords: angiotensin discovery, hypertension, renal disease, renin‐angiotensin system, vasoconstriction, blood pressure, kidney ischemia, renal grafting 1.
    [Show full text]
  • As of April 1St, 2012 Professor Thomas Unger Is Scientific Director of CARIM - School for Cardiovascular Diseases at the Maastricht University
    As of April 1st, 2012 Professor Thomas Unger is Scientific Director of CARIM - School for Cardiovascular Diseases at the Maastricht University. Before this Professor Thomas Unger held the Chair of Pharmacology and was Director of the Institute of Pharmacology and of the Center for Cardiovascular Research (CCR) at the Charité – Universitätsmedizin Berlin until March 2012. Professor Unger is also Chairman of the German Institute for High Blood Pressure Research in Berlin (DIB). Between 1994 and 2001, he was Director of the Institute of Pharmacology at the University of Kiel, Germany. Professor Unger studied medicine in Germany and the UK, and gained his MD from the University of Heidelberg, Germany. He then carried out postdoctoral research at the Clinical Research Institute of Montreal, Canada, and the Department of Pharmacology in Heidelberg, where he received his PhD in Pharmacology. Until 1994, Professor Unger held professorships in pharmacology and hypertension research at the University of Heidelberg. In recognition of his work, Professor Unger has received the German Hypertension Society´s Franz Gross Award for Hypertension Research, the Meilahti Lecture Award of the Medical Faculty, University of Helsinki, Finland, the Björn Folkow Award of the European Society of Hypertension, and the Robert Tigerstedt Award of the Finnish Hypertension Society. Professor Unger is vice chair of Berlin-Brandenburg Cardiovascular Society and a member of the German Societies of Pharmacology, Cardiology and Hypertension (Council Member 1995–2001), the International Society of Hypertension, the European Society of Hypertension (Council Member 1989–97), the European Council for Blood Pressure and Cardiovascular Research (President, 2000–2), the Inter-American Society of Hypertension, He is Honorary Member of the British, Finnish and Italian Hypertension Society and a Fellow of the European Society of Cardiology and the American Heart Association.
    [Show full text]
  • Universalg Enietsviktiga Fyndpasseradeobemärkt
    n kultur Redaktör: Gabor Hont 08-790 34 80 [email protected] Universal­geniets­viktiga­ fynd­passerade­obemärkt örjan av 1900-talet har betecknats som alla aspekter, så som de avhandlas i moderna läro- MINNES- en gyllene tid i Finland då konst, littera- böcker, men med informationen i vissa kapitel långt MÄRKE tur, arkitektur och musik blomstrade. mer detaljerad än vad som krävs av dagens medicin- Ett finskt jubi- Framstående personer fanns också på studerande att läsa in. Genomgången av vissa ämnen leumsfrimärke vetenskapens och medicinens områden, vittnar om hur lite man visste vid denna tid. Kapitlet hedrar minnet av Robert Tiger- Btill exempel Robert Tigerstedt, professor i fysiologi om blodets beståndsdelar, till exempel, är kort och stedt – silhuett vid universitetet i Helsingfors, som blev en interna- omnämner inte de nyligen upptäckta blodgrupper- mot silhuett tionellt känd medicinare. Ryktbarheten grundades na. Bara en halv sida ägnas åt de vita blodkropparna med den fin- huvudsakligen på hans lärobok i fysiologi, »Lehr- (»de spelar förmodligen en viktig roll vid många pro- landssvenske buch der Physiologie des Menschen«, som gavs ut i cesser i kroppen, men den rollen är inte tillräckligt Nobelpristaga- två band 1897 och därefter i tio nya upplagor genom känd«), och ännu mindre utrymme ägnas åt trombo- ren i fysiologi åren. Boken skrevs på tyska, det gängse vetenskapli- cyter. Många av hänvisningarna gäller resultat från eller medicin ga språket vid denna tid, trots att så gott som all un- djurstudier som genomförts med försöksdjuren i cu- 1967, Ragnar dervisning vid den medicinska fakulteten i Helsing- rare-paralys utan bedövning.
    [Show full text]
  • June, 2018 CURRICULUM VITAE ROBERT MUNSON CAREY Birth
    Revised: June, 2018 CURRICULUM VITAE ROBERT MUNSON CAREY Birth: 13 August 1940; Lexington, KY Parents: Henry Ames Carey; BA, MA, University of California Berkley (Professor Alfred L. Kroeber, mentor); PhD, Columbia University (Professor Franz Boas, mentor) and Eleanor Day Munson Carey, BA, Wheaton College (Massachusetts); BS in LS, Columbia University. Marriage: Theodora Vann Hereford (August 24, 1963); BA, Vanderbilt University Children: Adonice Ames (Carey) D’Atre (1968); BA, University of Virginia; MSW, Virginia Commonwealth University Alicia Vann (Carey) Dagli (1970); BA, University of Richmond; MD, University of Virginia Robert Josiah Hereford Carey (1985); BA with distinction, University of Virginia; MDiv Magna cum Laude, Covenant Theological Seminary Education: Lafayette High School, Lexington, KY, 1954-1958 BS - University of Kentucky, Lexington, KY, 1962 MD - Vanderbilt University School of Medicine, Nashville, TN, 1965 Present Positions: Dean, Emeritus, and Professor of Medicine, University of Virginia School of Medicine Postal Address: Box 801414, Department of Medicine, Aurbach Medical Research Building, 1 University of Virginia School of Medicine, Charlottesville, VA 22908-1414 Package Address: Aurbach Medical Research Building, 450 Ray C. Hunt Drive, Charlottesville, VA 22903 Phone: 434-924-5510 Fax: 434-982-3626 E-mail: [email protected] Website: http://www.healthsystem.virginia.edu/internet/carey/ Church and Community Activities: Member, Trinity Presbyterian Church, Charlottesville, Virginia Board of Directors, Young Life (1984-87) Honorary Chair, The Covenant School Capital Campaign (1998-2001) Board of Directors, The Covenant School (2002-8) Co-chair, Development Committee (2003) Chair, Development Committee (2004-8) Chair, Development Advisory Board (2006-8) Honorary Council, Charlottesville Symphony Society (2006-2010) Professional Career: 1965-1966: Intern in Medicine, University of Virginia Hospital (Dr.
    [Show full text]
  • Robert Tigerstedt – Wikipedia
    Robert Tigerstedt – Wikipedia https://de.wikipedia.org/wiki/Robert_Tigerstedt Robert Adolph Armand Tigerstedt (* 28. Februar 1853 in Helsinki; † 12. Februar 1923 ebenda) war ein finnischer Physiologe. Bekannt wurde er für die Entdeckung des Enzyms Renin, die ihm zusammen mit seinem Studenten Per Bergman 1898 am Karolinska-Institut gelang. Allgemeines Biografie Auszeichnungen Schriften Einzelnachweise Tigerstedt war zu seiner Zeit ein international angesehener Physiologe, dessen Lehrbücher Standardwerke waren. Insbesondere befasste er sich mit der Physiologie des Blutkreislaufs, aber auch mit Ernährung und Stoffwechsel. So erfand er einen Respirationsapparat zur Messung der Atemgase, den Tigerstedt-Sonden Respiratonsapparat. Zudem wirkte er als Sozialreformer und war Mitglied der Abstinenzbewegung. Sein Vater Karl Konstantin Tigerstedt war Geschichtsprofessor an der Universität Helsinki. Robert Adolph Armand Tigerstedt ging in Turku auf das Gymnasium und studierte anschließend Naturwissenschaften an der Universität Helsinki, unter anderem bei dem Chemiker Carl Axel Arrhenius. Nach dem Abschluss im Jahr 1876 studierte er Medizin in Helsinki und promovierte 1881 mit einer Dissertation über mechanische Nervenreizung. 1881 ging er nach Stockholm ans Karolinska-Institut in die Abteilung Physiologie, wo er zunächst Assistent von Christian Lóven (1835–1904) war und 1886 dessen Nachfolge als Professor übernahm. 1901 kehrte Tigerstedt nach Helsinki zurück, wo er Nachfolger von Konrad Hällstén (1835–1913) wurde. 1916 bis 1919 war er Dekan der medizinischen Fakultät. 1918 arbeitete er als Arzt in einem finnischen Kriegsgefangenenlager und schrieb darüber einen kritischen Bericht. 1919 ging er in den Ruhestand, blieb aber weiter wissenschaftlich aktiv, bis er 1923 an einem Herzanfall starb. Tigerstedt war seit 1878 verheiratet und hatte drei Kinder. 1 von 3 13.02.2020, 14:06 Robert Tigerstedt – Wikipedia https://de.wikipedia.org/wiki/Robert_Tigerstedt 1912 erhielt Tigerstedt die Cothenius-Medaille.
    [Show full text]