Complexity and Unification in Physical Theory
Total Page:16
File Type:pdf, Size:1020Kb
Complexity and Unification in Physical Theory Pavlos G.P Democritus University of Thrace 6th International Conference on New Frontiers in Physics Kolymbari, Crete, 28 August 2017 Democritus University of Thrace ICNFP2017 Physical Theory from Past to Future Mechanistic reductionism, microscopical causality (from bottom to top) Holistic multiscale distributed causality (from bottom to top and from top to bottom) Irreversibility of time, novelty and creativity It is said that … • Φύσις ουδέν μάτην ποιεί. (Αριστοτέλης) • Aristotle: mathematics are abstraction from material objects • Aristotle: discrimination between potential and energetic reality • Plato: material objects are realization of mathematical forms • Einstein: space time ,finite or infinite dimensional, participates in the physical reality while fields and particles are geometrical properties the space-time manifold • Bohr Born, Heinsenberg: probabilism, as possibility or potentiality ,is prior to the observed reality (ontological probabilism according to Popper) • K.Wilson: physicist try to explain nature by using only one scale but forget that nature is a multi scale dynamical production • Prigogine: material forms as dissipative structures as well physical laws are novelty emergence through the non equilibrium and non reversible physical self-organization process • G.Nicolis: ordering and development of long range correlations in non equilibrium systems cannot be explained by local forces. • P.Davies and C. Castro: in nature acts a global ordering principle Non – Linear Physics Dynamical Non-Equilibrium Stochastic Systems Thermodynamics Processes Renormalization Fractional Extension Tsallis Theory Group Theory Of Non-Equilibrium (RGT) Dynamics Statistics Scale Invariance Tsallis Extension of Statistics Nonextensive Statistical Mechanics Microscopic Level Macroscopic Level Quantum Complexity Non – Equilibrium Quantum Phase Equilibrium Phase Transition Phase Transition Transition (E.P.T.) (N.E.P.T.) (Q.P.T.) Gaussian Statistical Mechanics Liouville Equation – BBGKY Hierarchy Partition Function Z Langevin Equations Fokker Planck Equation (Boltzmann – Vlasov Theory) Normal Diffusion Theory Statistical Entropy Thermodynamical Theory (Equilibrium Thermodynamics Fluctuation Theory Central Limit Theorem) Langevin Equation Fokker Planck Equation Distributed Dynamics q-entropy extremization (Sq=max) Basic principle of nature • Multifractal phase space structuring ▫ Random – intermittent timeseries - signals ▫ q-CLT theory ▫ q-triplet • Power laws, multiscale self-organization • Long range spatial – temporal correlations • Fractal – multifractal spatial distribution of fields – particles ▫ (Non-equilibrium stationary states, NESS) • Fractional Dynamics – Strange dynamics on fractals ▫ Anomalous diffusion ▫ Fractional Langevin process – fractional random walk ▫ Fractional Maxwell equations ▫ FHD – FMHD ▫ Fractional accelerations – anomalous diffusions in velocity space • K-energy distributions (non-equilibrium energy spectra) • Singular functions – multifractal timeseries What is Complexity Theory ? Irreversibility of time, dissipative structures, Entropy production and dynamics of correlations (I.Prigogine) Indications from statistical physics ftˆ() BBGKY ˆ Probability density Lˆ fˆ() t Hierarchy ft() t function ˆ f { f0 , f 1 ( x 1 ),..., f ( x 1 , x 2 ,..., x ),...} fˆ V f ˆ C f ˆ Vaccum + Correlation components of pdf en ˆ dS fˆ Uˆ ( t ) f ˆ (0) eLt f ˆ (0) 0 Entropy production dt Subdynamics Mathematical Extension • Hilbert Space • Rigged Hilbert Space • Euclidean Space • Non-Euclidean , Fractal Space • Gaussian Statistics • Non-Gaussian Levy Statistics • Smooth Diff. Functions • Singular Fractal. Functions Smooth ODE-PDE Fractional Dynamics Complex Laws of Nature – Time Irreversibility Gregoire Nicolis Classical science is a marvelous algorithm explaining natural phenomena in terms of building blocks of the universe and their interactions. Physical phenomena reducible to a few fundamental interactions Complexity • A new attitude concerning the description of nature • Self-organization phenomena on a macroscopic scale • Spatial patterns in on temporal rythms • Scale orders of magnitude much larger than the range of fundamental interactions • Order, regularization, information • Dissipative Structures, Symmetry breaking sudden transition from simple to complex Indications from Quantum Theory • Commutative operators • Non Locality of quantum states • Coherence • Quantum Processes • Entaglement / Superposition • Quantum Vaccum x x dx (), x x dx p p dp () p p dp d ii i All the physical space {} x , the momentum space {} p and the energy space {} are included in the quantum state – physical objects. Physical object-system Holistic description of nature (r , r ,..., r ) ( r ) ( r )..., ( r ) Non local Quantum 1 2NNN 1 1 2 2 Entaglement Quantum Processes as Complex Processes Quantum continous creativity of Nature at every scale, creation and destruction 1/2 aˆ( ki ) n1 , n 2 ,..., n i ,... n i n 1 , n 2 ,..., n i 1,... 1/2 aˆ ( ki ) n1 , n 2 ,..., n i ,... ( n i 1) n 1 , n 2 ,..., n i 1,... k1, k 2 ,..., kNN aˆ ( k )... a ˆ ( k 2 ) a ˆ ( k 1 ) 0 , [aˆˆ ( kj ), a ( k i )] ij (t ) ( t ) n , n ,... nn12, ,... 1 2 Quantum Field Theory : states operators and observables ˆ(xk ) (2 )3/2 aˆ ( k ) eikx d Destruction ˆ (xk ) (2 ) 3/2 aˆ ( k ) e ikx d Creation Quantum Vaccum {states of patricles-fields-matter} Creation 0 {x1 , x 2 ,..., xN , k 1 , k 2 ,..., k N ,n 1 , n 2 ,... n i ,... } Complex System Quantum Complexity (M-Theory) Quantum Vaccum Operators Quantum Objects, Quantum 0 States aaˆ ,, ˆx ˆ • Supersymmetry • D-dimensional Space • Super-gravity • Point Particles Complex • Super-strings • Strings System • Gauge Fields • p - branes • Symmetry Breaking • Universe • Renormalization • Multiverse • Quantum Unification • Time Reversibility Quantum Time Evolution • Space-Time Symmetries ˆˆ • Internal Symmetries LHunif unif • Super Symmetry Time Evolution ˆˆ i H ,,(,), t U t t00 t t Schroendinger-Heiseberg– t Dirac Formulation Uˆ( t , t ) 1ˆ i H ˆ U ˆ ( , t ) d 00 t0 t ' i Feynman Path Integral ',t ' , t N D exp[ L ( , ) dx ] Formulation t Reductionistic Laws of Nature • Basic Laws (time reversible) -- Classical Theory ()action (particle and fields S L dt 0 LLLLparticles fields gravity gravity) • Probablilistics (Probability Amplitudes Quantum Theory) Feynman Path Integral N-point quantum particle corrleation amplitude (expectation value) i t ' qtTqtqt,ˆ [ˆ ( ), ˆ ( ),..., qt ˆ ( )] qt , NDqqtqt [ ( ), ( ),..., qt ( )]exp[ Ldx ] 1 2NN 0 0 1 2 t N-point quantum field corrleation amplitude (expectation value) i t ' 0Tˆ [ˆ (x t ),..., ˆ ( x t )] 0 N D [ ˆ ( x t ),..., ˆ ( x t )]exp[ L ( , ) d x ] 1 1 1 1 t Produced-Phenomenological Laws Fundamental level (no entropy production) Phenomenological Level Entropy Production • Macroscopic Time irreversible Laws- Phases • Probabilistic or Deterministic Linear or Statistical • Microscopic Time non Linear Dynamics Reversible Dynamics Mechanics • Diffusion-Convection Fluids or Chemical Dynamics • Population Dynamics • Climate Dynamics , etc. The Entropy Principle as the Fundamental Law of Nature Irreversible Diffusion in physical space – Holistic processes Irreversible Diffusion in velocity space – Holistic processes The Entropy Principle as the Fundamental Law of Nature Entropy production Entropy Principle S ent dS ent relaxation equilibrium 0,Sent k f (,,)ln(,,)x v t f x v t d x d v dt : Relaxation Time Classical Science dS en • Deterministic Fundamental Laws 0 Time Reversible dt t en Complexity Theory dS Deterministic Time-Reversible Entropy Principle 0 Dynamical Laws dt Fundamental Principle Derived Laws, Local Interactions Global Holistic Entropy Dynamics Thermodynamics as Fundamental Theory of Nature d Cantor – Kelvin – Clausious – Boltzmann – Gibbs - Prigogine 0 Entropy Principle through Boltzmann Complexous dt Skent ln Fundamental Definitnion (Boltzmann 1872) Number of microscopic states of the thermodynamic system Fundamental law of Nature “ increases to the maximum value for isolated systems (microcanonical ensemble) “ Canonical Thermodynamic System Environment Entropy Principle Isolated microcanonical system ent ent ent ent dSall d all all E SSS E 00 dt dt dSent d r S ent d i S ent r ent Equillibrium State dS reversible flow of entropy r ent i ent ent i ent d S d S dSE 0 dS irreversible production of entropy Thermodynamic Potentials and Extremum Principle Fundamental Laws - Entropy Law I. dS 0 Isolated System (microcanonical) IV. dH 0 when S,., P const P pressure Uint. energy const . H U PV enthalpy V volume const. V. dG 0 when T,., P const P pressure II. dU 0 when S,., V const S entropy G U TS PV,' Gibb s free Energy III. dF 0 when T ,, V const T temperature F U TS,' Helmholtz s free Energy Equillibrium-Metaequillibrium Thermodynamic States F meta equillibrium • Local minimums of Free Energy • Local Maximums of Entropy Equillibrium-Metaequillibrium Phase Transitions equillibrium λ Three stages of Thermodynamic Processes First Stage : Thermodynamics of Equillibrium SS max 1 ET / (Bolzmann Probability Distribution Law) pe i i Z probablitiy of microstate (i), energy of the system at microstate (i) pi Ei ET/ Ze i partition function of the system (canonical statistics) i Physical Meaning of partition function Z for canonical system Z eETEi / ( E ) e , E E E E , 1/ T i ii U E p E ln Z / i ii (internal energy) P P p P 1