Maximum Entropy Formulation of the Kirkwood Superposition Approximation A. Singer,¤ Z. Schussy April 16, 2004 Abstract Using a variational formulation, we derive the Kirkwood super- position approximation for entire space systems at equilibrium. We de¯ne the entropy of particle triplets, and show that the Kirkwood closure brings the entropy to its maximal value. The principle of maximum entropy is a well known principle in statistical mechanics and beyond. Our approach leads to a di®erent interpretation for the Kirkwood closure relation, usually explained by probabilistic consid- eration of dependency and independency of particles. We ¯nd the generalization of the Kirkwood closure for ¯nite volume systems with certain boundary conditions as needed to specify any electrochemi- cal or biophysical device, e.g., a concentration cell, battery, or ionic channel. The generalized closure is slightly di®erent than the Kirk- wood closure, and enables us to calculate the pair function near the boundary walls of the domain. 1 Introduction The pair correlation function is one of the cornerstones in the theory of sim- ple liquids [1, 3, 2, 4]. Many thermodynamic properties of the fluid can be ¤Department of Applied Mathematics, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel, e-mail: amit
[email protected], partially supported by research grants from the Israel Science Foundation, US-Israel Binational Science Foundation, and DARPA yDepartment of Applied Mathematics, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel, e-mail:
[email protected], partially supported by research grants from the Israel Science Foundation, US-Israel Binational Science Foundation, and DARPA 1 derived from the pair function.