Condensed Matter Researches in Cryospheric Science

Total Page:16

File Type:pdf, Size:1020Kb

Condensed Matter Researches in Cryospheric Science Condensed Matter Researches in Cryospheric Science Edited by Augusto Marcelli, Valter Maggi and Cunde Xiao Printed Edition of the Special Issue Published in Condensed Matter www.mdpi.com/journal/condensedmatter Condensed Matter Researches in Cryospheric Science Condensed Matter Researches in Cryospheric Science Special Issue Editors Augusto Marcelli Valter Maggi Cunde Xiao MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Augusto Marcelli Valter Maggi Istituto Nazionale di Fisica Nucleare University of Milano Bicocca Italy Italy Cunde Xiao Beijing Normal University China Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Condensed Matter (ISSN 2410-3896) from 2018 to 2019 (available at: https://www.mdpi.com/journal/ condensedmatter/special issues/cryospheric science). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03921-323-8 (Pbk) ISBN 978-3-03921-324-5 (PDF) Cover image: Dosegu’ glacier from Passo Gavia, Valtellina (Italy). Courtesy by Stefano Pignotti. c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ..................................... vii Preface to ”Condensed Matter Researches in Cryospheric Science” ................ ix Valter Maggi, Cunde Xiao and Augusto Marcelli Condensed Matter Researches in Cryospheric Science Reprinted from: Condensed Matter 2019, 4, 68, doi:10.3390/condmat4030068 ............ 1 Minghu Ding, Shujie Wang and Weijun Sun Decadal Climate Change in Ny-Alesund,˚ Svalbard, A Representative Area of the Arctic Reprinted from: Condensed Matter 2019, 4, 12, doi:10.3390/condmat4010012 ............ 6 Giannantonio Cibin, Augusto Marcelli, Valter Maggi, Giovanni Baccolo, Dariush Hampai, Philip E. Robbins, Andrea Liedl, Claudia Polese, Alessandro D’Elia, Salvatore Macis, Antonio Grilli and Agostino Raco Synchrotron Radiation Research and Analysis of the Particulate Matter in Deep Ice Cores: An Overview of the Technical Challenges Reprinted from: Condensed Matter 2019, 4, 61, doi:10.3390/condmat4030061 ............ 17 Wei Xu, Zhiheng Du, Shiwei Liu, Yingcai Zhu, Cunde Xiao and Augusto Marcelli Perspectives of XRF and XANES Applications in Cryospheric Sciences Using Chinese SR Facilities Reprinted from: Condensed Matter 2018, 3, 29, doi:10.3390/condmat3040029 ............ 28 Giorgio Cappuccio, Giannantonio Cibin, Sultan B. Dabagov, Alfredo Di Filippo, Gianluca Piovesan, Dariush Hampai, Valter Maggi, Augusto Marcelli Challenging X-ray Fluorescence Applications for Environmental Studies at XLab Frascati Reprinted from: Condensed Matter 2018, 3, 33, doi:10.3390/condmat3040033 ............ 43 Salvatore Macis, Giannantonio Cibin, Valter Maggi, Giovanni Baccolo, Dariush Hampai, Barbara Delmonte, Alessandro D’Elia and Augusto Marcelli Microdrop Deposition Technique: Preparation and Characterization of Diluted Suspended Particulate Samples Reprinted from: Condensed Matter 2018, 3, 21, doi:10.3390/condmat3030021 ............ 53 Shiwei Liu, Cunde Xiao, Zhiheng Du, Augusto Marcelli, Giannantonio Cibin, Giovanni Baccolo, Yingcai Zhu, Alessandro Puri, Valter Maggi and Wei Xu Iron Speciation in Insoluble Dust from High-Latitude Snow: An X-ray Absorption Spectroscopy Study Reprinted from: Condensed Matter 2018, 3, 47, doi:10.3390/condmat3040047 ............ 62 Valter Maggi, Giovanni Baccolo, Giannantonio Cibin, Barbara Delmonte, Dariush Hampai and Augusto Marcelli XANES Iron Geochemistry in the Mineral Dust of the Talos Dome Ice Core (Antarctica) and the Southern Hemisphere Potential Source Areas Reprinted from: Condensed Matter 2018, 3, 45, doi:10.3390/condmat3040045 ............ 74 Giovanni Baccolo, Giannantonio Cibin, Barbara Delmonte, Dariush Hampai, Augusto Marcelli, Elena Di Stefano, Salvatore Macis and Valter Maggi The Contribution of Synchrotron Light for the Characterization of Atmospheric Mineral Dust in Deep Ice Cores: Preliminary Results from the Talos Dome Ice Core (East Antarctica) Reprinted from: Condensed Matter 2018, 3, 25, doi:10.3390/condmat3030025 ............ 89 v Antonio Speranza, Rosa Caggiano, Giulia Pavese and Vito Summa The Study of Characteristic Environmental Sites Affected by Diverse Sources of Mineral Matter Using Compositional Data Analysis Reprinted from: Condensed Matter 2018, 3, 16, doi:10.3390/condmat3020016 ............101 Alessandro Puri, Giovanni Orazio Lepore and Francesco d’Acapito The New Beamline LISA at ESRF: Performances and Perspectives for Earth and Environmental Sciences Reprinted from: Condensed Matter 2019, 4, 12, doi:10.3390/condmat4010012 ............113 Francesca Pittino, Roberto Ambrosini, Roberto S. Azzoni, Guglielmina A. Diolaiuti, Sara Villa, Isabella Gandolfi and Andrea Franzetti Post-Depositional Biodegradation Processes of Pollutants on Glacier Surfaces Reprinted from: Condensed Matter 2018, 3, 24, doi:10.3390/condmat3030024 ............120 vi About the Special Issue Editors Valter Maggi, Prof. and Ph.D. Dr. Maggi’s main fields of research are related to the characterization of atmospheric dust, mainly in Antarctica, Greenland, and Alpine areas, for long-term paleoclimatic influences of mineral phases on the atmosphere. He has participated in the main European ice core drilling projects for the reconstruction of past climatic changes and the environmental changes in Antarctica, Greenland, and the European Alps area. In 2008, he was a winner of the EU Descartes Prize, along with other 10 European colleagues, for collaborative research. Cunde Xiao, Dr. and Prof. Dr. Xiao’s major research focus has been ice core studies relating to the paleoclimate and paleoenvironment, and present-day cold-region meteorological and glaciological processes that impact environmental and climatic changes, cryospheric services, and values that link the cryosphere with the socioeconomy. Augusto Marcelli, Dr. and Prof. Since 1984, Dr. Marcelli has been involved in synchrotron radiation research, and his main research areas include correlation phenomena in X-ray absorption spectroscopy, circular magnetic X-ray dichroism investigations, X-ray absorption in elements of geophysical interest, dust and aerosol characterization, and ultratrace detection for indoor and outdoor environmental research. Since 2001, he has collaborated with the Institute of High Energy Physics in Beijing and has been Visiting Professor at the University of Science and Technology at Hefei. In 2018, he was appointed as a scientific expert on bilateral policies and activities for the internationalization of scientific and technological research of the Italian Ministry of Foreign Affairs. vii Preface to ”Condensed Matter Researches in Cryospheric Science” The aim of this thematic Special Issue, which collects a variety of papers published during the year 2018, is to display recent results obtained on the most widespread solid material occurring on the surface of the Earth—ice. Unfortunately, this material is dramatically decreasing in quantity and extent across the globe. The Antarctic icecap, which for millions of years was the largest solid mass of ice in the world and had recently expanded by binding some marginal, loose sea-supported ice masses, is not only decreasing in thickness, but is also splitting away all around its rim, liberating pollutants of various kinds into the Circum-Antarctic stream. The Arctic ice shelf, which since at least the end of the last glaciation has floated over the North Pole while the huge and complex kilometer-thick ice cover over Greenland was being formed, is melting away and getting thinner and thinner, to the point of letting commercial ships, which are no longer icebreakers, cross from the Barents Sea to the Bering Sea, while icebergs slide down from Greenland’s frozen valleys into the upper Atlantic Ocean and gradually become submerged. The third significant ice cap, the Patagonian one, is getting considerably smaller while releasing fresh waters into the Argentinian lakes and into the Chilean rivers flowing into Pacific Ocean fjords, thus adding pollutants of undisputed terrestrial origin to the sea stream that borders the entire South America continent and discharging them in the tropical zone. The worst condition is that of the mountain glaciers scattered throughout the continents: they are not only decreasing in size so dramatically as to disappear altogether, but with their water discharge, they change the landscape and local environment of densely inhabited areas such as the Alps, the Caucasus, the Himalaya, the Andes, and even the Kilimanjaro, thus forcing people into mass migration. Even when local people’s reactions to such environmental change are disregarded as a local problem, there is a hidden, major risk to be taken into consideration: intense ice melting on the major mountain barriers all over the word changes the orientation of the trade winds, and this modifies the regular sequence of rains, as has already happened
Recommended publications
  • The Ross Sea Dipole - Temperature, Snow Accumulation and Sea Ice Variability in the Ross Sea Region, Antarctica, Over the Past 2,700 Years
    Clim. Past Discuss., https://doi.org/10.5194/cp-2017-95 Manuscript under review for journal Clim. Past Discussion started: 1 August 2017 c Author(s) 2017. CC BY 4.0 License. The Ross Sea Dipole - Temperature, Snow Accumulation and Sea Ice Variability in the Ross Sea Region, Antarctica, over the Past 2,700 Years 5 RICE Community (Nancy A.N. Bertler1,2, Howard Conway3, Dorthe Dahl-Jensen4, Daniel B. Emanuelsson1,2, Mai Winstrup4, Paul T. Vallelonga4, James E. Lee5, Ed J. Brook5, Jeffrey P. Severinghaus6, Taylor J. Fudge3, Elizabeth D. Keller2, W. Troy Baisden2, Richard C.A. Hindmarsh7, Peter D. Neff8, Thomas Blunier4, Ross Edwards9, Paul A. Mayewski10, Sepp Kipfstuhl11, Christo Buizert5, Silvia Canessa2, Ruzica Dadic1, Helle 10 A. Kjær4, Andrei Kurbatov10, Dongqi Zhang12,13, Ed D. Waddington3, Giovanni Baccolo14, Thomas Beers10, Hannah J. Brightley1,2, Lionel Carter1, David Clemens-Sewall15, Viorela G. Ciobanu4, Barbara Delmonte14, Lukas Eling1,2, Aja A. Ellis16, Shruthi Ganesh17, Nicholas R. Golledge1,2, Skylar Haines10, Michael Handley10, Robert L. Hawley15, Chad M. Hogan18, Katelyn M. Johnson1,2, Elena Korotkikh10, Daniel P. Lowry1, Darcy Mandeno1, Robert M. McKay1, James A. Menking5, Timothy R. Naish1, 15 Caroline Noerling11, Agathe Ollive19, Anaïs Orsi20, Bernadette C. Proemse18, Alexander R. Pyne1, Rebecca L. Pyne2, James Renwick1, Reed P. Scherer21, Stefanie Semper22, M. Simonsen4, Sharon B. Sneed10, Eric J., Steig3, Andrea Tuohy23, Abhijith Ulayottil Venugopal1,2, Fernando Valero-Delgado11, Janani Venkatesh17, Feitang Wang24, Shimeng
    [Show full text]
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • Glacial Lake Inventory and Lake Outburst Potential in Uzbekistan
    Science of the Total Environment 592 (2017) 228–242 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Glacial lake inventory and lake outburst potential in Uzbekistan Maxim A. Petrov a, Timur Y. Sabitov a,b,⁎, Irina G. Tomashevskaya a, Gleb E. Glazirin a, Sergey S. Chernomorets c, Elena A. Savernyuk c, Olga V. Tutubalina c, Dmitriy A. Petrakov c, Leonid S. Sokolov c, Mikhail D. Dokukin d, Giorgos Mountrakis b, Virginia Ruiz-Villanueva e,f, Markus Stoffel e,f,g,⁎⁎ a Institute of Geology and Geophysics, Glacial-geology lab, Olimlar St. 49, 100041 Tashkent, Uzbekistan b State University of New York College of Environmental Science and Forestry, Baker 402, 13210 Syracuse, NY, USA c Lomonosov Moscow State University, Faculty of Geography, 1 Leninskie Gory, 119991 Moscow, Russia d High-Mountain Geophysical Institute, pr. Lenina, 2, 360030 Nalchik, Russia e Dendrolab.ch, Institute for Geological Sciences, Baltzerstrasse 1+3, CH-3012 Berne, Switzerland f Institute for Environmental Sciences, University of Geneva, 66 Bvd Carl Vogt, CH-1205 Geneva, Switzerland g Department of Earth Sciences, 13 rue des Maraîchers, CH-1205 Geneva, Switzerland HIGHLIGHTS GRAPHICAL ABSTRACT • A new inventory of mountain and gla- cial lakes in Uzbekistan is presented based on hi-res satellite imagery. • We classify lakes according to their po- tential outburst hazard. • 15% of all lakes are classified as poten- tially highly dangerous. • Ongoing climate change may increase outburst flood hazard from mountain and glacial lakes in Uzbekistan. article info abstract Article history: Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the Received 16 January 2017 World.
    [Show full text]
  • Historical Behaviour of Dome C and Talos Dome (East Antarctica) As
    Available online at www.sciencedirect.com Global and Planetary Change 60 (2008) 576–588 www.elsevier.com/locate/gloplacha Historical behaviour of Dome C and Talos Dome (East Antarctica) as investigated by snow accumulation and ice velocity measurements ⁎ Stefano Urbini a, Massimo Frezzotti b, , Stefano Gandolfi c, Christian Vincent d, Claudio Scarchilli b, Luca Vittuari c, Michel Fily d a Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Roma, Italy b Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Via Anguillarese, 301, 00123 Roma, Italy c Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, V.le Risorgimento 2, 40086 Bologna, Italy d Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS-UJF, 54 rue Molière, Grenoble, France Received 9 March 2007; accepted 14 August 2007 Available online 29 August 2007 Abstract Ice divide–dome behaviour is used for ice sheet mass balance studies and interpretation of ice core records. In order to characterize the historical behaviour (last 400 yr) of Dome C and Talos Dome (East Antarctica), ice velocities have been measured since 1996 using a GPS system, and the palaeo-spatial variability of snow accumulation has been surveyed using snow radar and firn cores. The snow accumulation distribution of both domes indicates distributions of accumulation that are non-symmetrical in relation to dome morphology. Changes in spatial distributions have been observed over the last few centuries, with a decrease in snow accumulation gradient along the wind direction at Talos Dome and a counter-clockwise rotation of accumulation distribution in the northern part of Dome C.
    [Show full text]
  • Pleistocene Glaciations of the Se Altai, Russia, Based on Geomorphological Data and Absolute Dating of Glacial Deposits in Chagan Reference Section
    GEOCHRONOMETRIA 44 (2017): 49–65 DOI 10.1515/geochr-2015-0059 Available online at http://www.degruyter.com/view/j/geochr Conference Proceedings of the 12th International Conference “Methods of Absolute Chronology” May 11-13th, 2016, Gliwice-Paniówki, Poland PLEISTOCENE GLACIATIONS OF THE SE ALTAI, RUSSIA, BASED ON GEOMORPHOLOGICAL DATA AND ABSOLUTE DATING OF GLACIAL DEPOSITS IN CHAGAN REFERENCE SECTION ANNA R AGATOVA1, 2 and ROMAN K NEPOP1, 2 1Sobolev Institute of Geology and Mineralogy, Russia, 630090 Novosibirsk, Ak. Koptyuga av., 3 2Ural Federal University, Russia, 620002 Yekaterinburg, Mira str., 19 Received 25 June 2016 Accepted 9 February 2017 Abstract: Geomorphological evidence of at least two Pleistocene glacial epochsis noted within the Chagan-Uzun river basin, SE Altai. A review and analysis of all available absolute dates for reference Chagan section is presented. The highest correlation amongst all TL dates is observed for the lens of glacio-lacustrine sediments – the most suitable among glacial deposits for luminescence dating, and indicates its possible Middle Pleistocene age. IRSL dates obtained from feldspar indicate a Middle Pleistocene age of moraines already in the upper part of the section. The small number of obtained IRSL dates does not allow making geochronological reconstructions of the Pleistocene glaciations, but gives the possibility for further experiments with different variation of OSL (IRSL) techniques. Strong low temperature peak in TL signal and strong response to IR stimulation are specific regional quartz features, which could be explained by combination of short transportation distance and low number of depositional cycles for mineral grains. Available radiocarbon dates of carbonate concre- tions from this section are not related to the age of moraine sedimentation and most likely indicate the period of the Chagan river incision into the ancient glacial deposits.
    [Show full text]
  • Radio Echo Sounding (RES) Investigations at Talos Dome (East Antarctica): Bedrock Topography and Ice Thickness
    ANNALS OF GEOPHYSICS, VOL. 46, N. 6, December 2003 Radio Echo Sounding (RES) investigations at Talos Dome (East Antarctica): bedrock topography and ice thickness Cesidio Bianchi (1), Lili Cafarella (1),Paola De Michelis (1), Alessandro Forieri (3) (4), Massimo Frezzotti (2),Ignazio E. Tabacco (3) and Achille Zirizzotti (1) (1) Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy (2) ENEA Progetto Speciale Clima, Roma, Italy (3) Dipartimento di Scienze della Terra, Università di Milano, Italy (4) Dipartimento di Scienze della Terra, Università di Siena, Italy Abstract Radio echo sounding measurements were collected during two Antarctic expeditions to determine the ice thick- ness and the sub-glacial morphology of Talos Dome in the region around 72°48′S; 159°06′E (about 6400 km2) on the edge of the East Antarctic plateau adjacent to Victoria Land in the western Ross Sea sector. The increas- ing interest in this region is due to the fact that in this area the ice accumulation is higher than in other sites in East Antarctica. Because of this, Talos Dome could be a new site for a project of a deep ice core drilling to ob- tain information on climate changes near the coast of Antarctica. In this frame, the knowledge of the bedrock to- pography is of great importance to choose the best location for the drilling site. In this paper, airborne radio echo sounding results from two Antarctic expeditions (1997 and 1999) are presented. Bedrock topography in bi- and three-dimensions for the Talos Dome region are discussed. Key words radio echo sounding – radio glaciology – method are similar to those used in marine ice thickness measurements acoustic sounding.
    [Show full text]
  • Talks on Antarctica: United Nations of the World (English)
    Talks on Antarctica: United Nations of the World (English) Talks on Antarctica, the United Nations of the World Topic: the great continent of ice, wind and snow located at the southernmost end of our planet, surrounded by the Southern Ocean, where the Roaring Forties and Furious Fifties rage. It is an extraordinary nature reserve, one and a half times as big as the United States, devoted to peace and science, and a continent that does not belong to a country. You do not need a passport to land on Antarctica. The great American explorer Richard E. Byrd wrote: “ I am hopeful that Antarctica in its symbolic robe of white will shine forth as a continent of peace as nations working together there in the cause of science set an example of international cooperation”. Therefore: the true United Nations of Earth are down there, on the white continent where the South Pole is found. On 28 October 2016, the creation of the Ross Sea Marine Reserve in Antarctica was announced. It is the largest in the world (one and a half times the size of Europe): the international community has finally become aware of the need to protect the valuable Antarctic marine ecosystems. The Agreement will enter into force on December 1st 2017. WHY ANTARCTICA? 1) The continent is entirely devoted “to peace and science” (Madrid Protocol). It is a nature reserve which does not belong to any country, and is a world heritage site. Researchers and logistics technicians from several different countries work together in peace in Antarctica: 5,000 during the austral summer, and 1,000 in the winter.
    [Show full text]
  • Geophysical Survey at Talos Dome, East Antarctica: the Search for a New Deep-Drilling Site
    Annals of Glaciology 39 2004 423 Geophysical survey at Talos Dome, East Antarctica: the search for a new deep-drilling site Massimo FREZZOTTI,1 Gabriele BITELLI,2 Paola DE MICHELIS,3 Alberto DEPONTI,4 Alessandro FORIERI,5, 6 Stefano GANDOLFI,2 Valter MAGGI,4 Francesco MANCINI,2 Fre´de´rique REMY,7 Ignazio E. TABACCO,5 Stefano URBINI,3 Luca VITTUARI,2 Achille ZIRIZZOTTL3 1ENEA, Centro Ricerche Casaccia, P.O. Box 2400, I-00100 Rome, Italy E-mail: [email protected] 2DISTART, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy 3National Institute of Geophysics and Vulcanology (INGV), Via de Vigna Murata, I-00143 Rome, Italy 4Department of Environmental Sciences, University of Milano–Bicocca, Piazza della Scienza 1, I-20126 Milan, Italy 5Department of Earth Sciences, University of Milan, Via Cicognara 7, I-20129 Milan, Italy 6Department of Earth Sciences, University of Siena, Via del Laterino 8, I-53100 Siena, Italy 7Legos, CNRS-CNES-UPS, 18 av. Edouard Belin, 31055 Toulouse Cedex, France ABSTRACT. Talos Dome is an ice dome on the edge of the East Antarctic plateau; because accumulation is higher here than in other domes of East Antarctica, the ice preserves a good geochemical and palaeoclimatic record. A new map of the Talos Dome area locates the dome summit using the global positioning system (GPS) (72˚47’ 14’’S, 159˚04’ 2’’ E; 2318.5 m elevation (WGS84)). A surface strain network of nine stakes was measured using GPS. Data indicate that the stake closest to the summit moves south-southeast at a few cm a–1.
    [Show full text]
  • ITALY in ANTARCTICA Definiti
    ITALY in ANTARCTICA Coring through sea-ice: a preliminary survey. ITALY IN ANTARCTICA 6 WHY ANTARCTICA? 8 ITALY AND ANTARCTICA BEFORE PNRA 10 THE ITALIAN NATIONAL PROGRAMME 12 THE INTERNATIONAL FRAMEWORK 14 ANTARCTICA AND THE WORLD 16 THIRTY YEARS OF COMMITMENT 28 MARIO ZUCCHELLI SCIENTIFIC STATION 30 CONCORDIA SCIENTIFIC STATION 34 VESSELS AND AIRCRAFTS 38 THE YEARS TO COME A small iceberg is visiting Mario Zucchelli Station. Foreword Italy has been present in Antarctica with a governmental scientific programme since 1985. Until 1985 Italian scientists, alpine guides and other adventurous spirits went to the continent mostly as members of other national expeditions. After 1985 however, and during the following thirty years, the Italian national programme PNRA (Programma Nazionale di Ricerche in Antartide) has promoted a large scientific commitment, by organizing yearly expeditions and built two stations, the first on the coast of the Ross Sea, the second – jointly with France – on the East Antarctic ice plateau. The purpose of the present publication is to stress, firstly, the global values of Antarctica, and secondly to document the activities of the Italian expeditions. Focussing on the close relationship established between Italy and Antarctica in these exciting years, whilst not forgetting our past and glimpsing into the future. It is our hope that these pages may stimulate the readers to acquire more knowledge on the continent and may help them to perceive the spirit of collaboration that enlivens the parties of all Countries working in Antarctica or on Antarctic matters. This spirit makes this continent a unique land not only from the geographical but also human point of view.
    [Show full text]
  • Review of Regional Antarctic Snow Accumulation Over the Past 1000 Years
    Clim. Past Discuss., doi:10.5194/cp-2017-18, 2017 Manuscript under review for journal Clim. Past Discussion started: 28 March 2017 c Author(s) 2017. CC-BY 3.0 License. Review of regional Antarctic snow accumulation over the past 1000 years Elizabeth R. Thomas1, J. Melchior van Wessem2, Jason Roberts3,4, Elisabeth Isaksson5, Elisabeth Schlosser6,7, TJ Fudge8, 5 Paul Vallelonga9, Brooke Medley10, Jan Lenaerts2, Nancy Bertler11, 12, Michiel R. van den Broeke2, Daniel A. Dixon13 Massimo Frezzotti14 Barbara Stenni15, 16, Mark Curran3 Alexey A. Ekaykin17,18 1 British Antarctic Survey, Cambridge, UK CB3 0ET 10 2 Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, Utrecht, The Netherlands 3 Australian Antarctic Division, Tasmania 7050, Australia 4 Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, 7001, Australia 5 Norwegian Polar Institute, 9296 Tromsø, Norway 6 Austrian Polar Research Institute, Vienna, Austria 15 7 Inst. of Atmospheric and Cryospheric Sciences, Univ. of Innsbruck, Innsbruck, Austria 7 University of Washington, Seattle, USA 8 Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark. 9 Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA 10 Antarctic Research Centre, Victoria University, Wellington 6012, New Zealand 20 11 National Ice Core Research Laboratory, GNS Science, Lower Hutt 5040, New Zealand 12 Climate Change Institute, University of Maine, Orono, Maine 04469, USA 14 ENEA, Agenzia Nazionale per le nuove tecnologie, l’energia e lo sviluppo sostenibile, Rome, Italy 15 Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Italy 16 Institute for the Dynamics of Environmental Processes, CNR, Venice, Italy 25 17Climate and Environmental Research Laboratory, Arctic and Antarctic Research Institute, St.
    [Show full text]
  • Heat Transfer Characteristics of Qinghai-Tibet Railway Embankment with Crushed-Stone Side Slope in Permafrost Regions
    SEE AUTHOR INDEX AND REVISED PROGRAM AT END OF DOCUMENT CONTENTS Keynote Speechs Guodong Cheng Applications of the roadbed-cooling techniques in building the Qinghai-Tibet Railway………………………………………………………………………….……...………..1 Jerry Brown Status of International Permafrost Projects………………………………………..…...………...1 Douglas L. Kane, Larry D. Hinzman and Robert E. Gieck Extreme High and Low Streamflow in Permafrost Catchments……………………….………...3 V.R. Alekseev, O.I. Alekseeva, S.I. Zabolotnik, G.P. Kuzmin, R.V. Zhang* and D.M. Shesternev Frozen Ground in Asia and Stability of Engineering Structures……………………..…..............4 Jef Vandenberghe Permafrost Extension in Central China During the Last Glacial Maximum……….……........... 5 Wei Ma, Guang-li Feng, Qing-bai Wu, Guo-dong Cheng Analyses of Temperature Fields under the Air Convective Embankment of the Crushed Rocks Structures along Qinghai-Xizang Railway…………………………………………...……….…6 H.-W. Hubberten, N. N. Romanovskii The evolution of permafrost during the last climatic cycle in the coastal lowlands and shelf areas of eastern Eurasia……………………………………………………………..……............6 Tingjun Zhang, Mark A. Parsons, and Roger G. Barry Statistics of Global Permafrost Distribution………………………………………….….………7 Douglas J. Goering, Jianfeng Xu Experimental Validation of Passive Permafrost Cooling Systems……………….………............8 M.C.R. Davies, F.K Günzel Stability of Rock Slopes in Warming Permafrost……………………………..………....………9 Theme 1. Permafrost engineering, properties of frozen soils, model development, and their applications A. Rist,
    [Show full text]
  • Antarctica the Last Continent
    Antarctica The Last Continent Copyright: Material on these pages is copyright Paul Ward / CoolAntarctica.com or reproduced with permission from other copyright owners. It may be downloaded and printed for personal reference or public performance in an educational establishment as long as it is not for direct or indirect commercial use. It may be altered or modified, but not made publically available or transmitted to others in original or modified form without the written permission of Paul Ward / CoolAntarctica.com. Pictures by Alan Light, Drummond Small, Mike Usher, Paul Ward, Text by Paul Ward / CoolAntarctica.com This copyright notice must appear wherever this material is used. Any queries please email Antarctica covers the South Pole Africa South America South Pole X X Australia and NZ st Midnight at the pole 21st December Midday at the pole 21 June The Living Earth, Inc. copyright 2006 A common way to get to Antarctica is still by ship. This means crossing the “Drake’s Passage”, the narrow band of sea between Cape Horn and the Antarctic Peninsula. It is the roughest sea on Earth. As your ship approaches Antarctica, you will be followed by albatrosses. This is a young Wandering Albatross – “The bird that made the wind to blow”. Wandering Albatross have the greatest wingspan of any birds at up to 3.5m. The first iceberg is like a doorway to the South. You don’t know where you will encounter it and it will probably be a distant shape made out through mist under a grey sky. Once seen, it signifies your passage into Antarctic waters and entry into a world quite different to any you have seen before.
    [Show full text]