NCC) Causes Severe Salt Wasting, Volume Depletion, and Renal Failure

Total Page:16

File Type:pdf, Size:1020Kb

NCC) Causes Severe Salt Wasting, Volume Depletion, and Renal Failure Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure Manoocher Soleimania,b,c,1, Sharon Baronea,b,c, Jie Xua,b,c, Gary E. Shulld, Faraz Siddiquib, Kamyar Zahedia,b,c, and Hassane Amlalb,c aResearch Services, Veterans Affairs Medical Center, Cincinnati, OH 45202; and Departments of bMedicine and dMolecular Genetics, Biochemistry, and Microbiology, and cCenter on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, OH 45267 Edited by Richard P. Lifton, Yale University School of Medicine, New Haven, CT, and approved July 2, 2012 (received for review February 15, 2012) The Na-Cl cotransporter (NCC), which is the target of inhibition by with thiazide, can be an effective regimen for patients with fluid thiazides, is located in close proximity to the chloride-absorbing overload, such as congestive heart failure, nephrotic syndrome, transporter pendrin in the kidney distal nephron. Single deletion diuretic resistance, or advanced chronic kidney disease. of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these trans- Results porters are predominantly active during salt depletion or in re- Generation of Pendrin/NCC Double KO Mice. The double NCC/ sponse to excess aldosterone. We hypothesized that pendrin and pendrin KO mice were generated by crossing mice with single NCC compensate for loss of function of the other under basal con- deletion of pendrin or NCC with each other. Fig. 1 A and B ditions, thereby masking the role that each plays in salt absorption. demonstrates the generation of double NCC/pendrin KO mice, fi To test our hypothesis, we generated pendrin/NCC double knock- as veri ed by tail genotyping and Northern hybridization. Fig. out (KO) mice by crossing pendrin KO mice with NCC KO mice. 1C shows that 8-wk-old double KO mice are smaller than either single KOs or WT animals (Fig. 1C), with the average body Pendrin/NCC double KO mice displayed severe salt wasting and ∼ sharp increase in urine output under basal conditions. As a result, weight being 40% lower in age-matched double KO mice vs. WT or single KO mice (Fig. 1D)(P < 0.01; n = 5 in each group). animals developed profound volume depletion, renal failure, and Table 1 depicts body weights of WT and double KO mice at the metabolic alkalosis without hypokalemia, which were all corrected time of weaning (end of 3 wk) and at 8 wk of age. The double KO with salt replacement. We propose that the combined inhibition of mice were smaller at 3 wk and remained small at 8 wk of age. pendrin and NCC can provide a strong diuretic regimen without fl The failure to thrive was evident in both sexes. The double KO causing hypokalemia for patients with uid overload, including mice were born in the expected Mendelian distribution. Double patients with congestive heart failure, nephrotic syndrome, di- KO mice survive and live for at least 6 mo, with comparable uretic resistance, or generalized edema. survival rates to those in WT or single KO mice. (Longer-term survival analysis has not been performed.) diuretics | kidney tubules | nephrogenic diabetes insipidus Pendrin/NCC Double KO Mice Have Profound Renal Water and Salt he thiazide-sensitive Na-Cl cotransporter (NCC) (SLC12A3) Wasting. Animals were placed in metabolic cages, and, after ac- − − Tand the Cl /HCO3 exchanger pendrin (SLC26A4) are ex- clamation for 2 d, balanced studies (daily food intake, water in- pressed on apical membranes of distal cortical nephron segments take, urine volume, and body weight) were performed for 4 and mediate salt absorption, with pendrin working in tandem consecutive days. Results in Fig. 2 depict the collections on day 3, with the epithelial Na channel and NCC working by itself (1–6). which is representative of daily experiments, and demonstrate the Pendrin is expressed on the apical membrane of intercalated presence of profound polyuria (increased urine output), along cells in late distal convoluted tubule (DCT), connecting tubule with polydipsia (increased water intake), in double pendrin/NCC (CNT), and the cortical collecting duct (CCD) (7–9). The thia- KO mice but not in single KO mice (Fig. 2 A and B). Fig. 2C zide-sensitive NCC is primarily expressed on the apical mem- demonstrates that urine osmolality is reduced by ∼70% in double brane of DCT cells (10, 11). KO mice vs. the other genotypes. Fig. 2D shows sharp increases in Single deletion of pendrin or NCC does not cause salt wasting sodium and chloride excretion in double pendrin/NCC KO mice. or excessive diuresis under basal conditions (5, 12–15). Indeed, Double KO mice were eating normally; however, when adjusted even a mild degree of salt wasting has not been demonstrated in for body weights, they showed increased food intake vs. WT mice these two genetically engineered mouse models at steady state. (0.163 and 0.207 g food intake/g of body weight in WT and double Kidney functions, including sodium and chloride excretion, urine KO, respectively; P < 0.05, n = 5). Food consumption in single output, and blood urea nitrogen (BUN) levels in mutant mice KO mice (pendrin or NCC) was comparable to WT mice. are comparable to wild-type (WT) animals (12–15). Both pen- drin KO and NCC KO mice, however, show signs of volume Pendrin/NCC Double KO Mice Have Severe Volume Depletion, Renal depletion or develop hypotension during salt restriction (12, 14). Failure, and Metabolic Alkalosis. To determine whether excessive These findings have led investigators to conclude that pendrin salt wasting causes volume depletion in double KO mice, we and NCC are predominantly active during salt depletion (and or in response to increased aldosterone levels), and their contri- bution to salt reabsorption at baseline conditions is small. Author contributions: M.S. and H.A. designed research; M.S., S.B., J.X., F.S., K.Z., and H.A. We hypothesized that NCC and pendrin may compensate for performed research; G.E.S. contributed new reagents/analytic tools; M.S. and H.A. ana- loss of the other under basal conditions, thereby masking the role lyzed data; and M.S. wrote the paper. that each plays in salt reabsorption. To test this hypothesis, we The authors declare no conflict of interest. generated double knockout of pendrin and NCC mice by crossing This article is a PNAS Direct Submission. animals with single deletion for NCC and pendrin. The double KO Freely available online through the PNAS open access option. mice show significant salt and fluid wasting, along with volume 1To whom correspondence should be addressed. E-mail: [email protected]. depletion and renal failure under baseline conditions. We propose This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. that pendrin could be a target for a diuretic that, in conjunction 1073/pnas.1202671109/-/DCSupplemental. 13368–13373 | PNAS | August 14, 2012 | vol. 109 | no. 33 www.pnas.org/cgi/doi/10.1073/pnas.1202671109 Downloaded by guest on September 30, 2021 examined the kidney expression of renin in WT and mutant mice. As shown in Fig. 3A (Upper gels), mRNA expression and protein abundance of renin robustly increased in kidneys of double KO mice relative to single KO or WT mice, with en- hanced mRNA expression and protein abundance by ∼7-fold (P < 0.0001 vs. WT; n = 4) and >10-fold (P < 0.001 vs. WT; n = 5), respectively. These results indicate that the double KO mice are in a state of severe volume depletion. To determine whether salt wasting (Fig. 2) and the subsequent volume depletion (Fig. 3A) impair the kidney function, BUN levels were measured in WT and mutant mice. Results demon- strated a sharp increase in BUN levels in double KO mice rel- ative to other genotypes, consistent with significant prerenal failure (Fig. 3B), which signifies impaired kidney function sub- sequent to decreased perfusion as a result of volume depletion. Double KO animals have normal serum sodium and potassium concentrations (Table 2). To ascertain the impact of severe volume depletion and the subsequent renal failure on acid base balance, systemic acid base parameters in various genotypes were examined (Experi- mental Procedures). As indicated, double pendrin/NCC KO mice have profound metabolic alkalosis vs. WT mice, as determined by elevated serum bicarbonate and arterial pH (Fig. 3C; P < 0.01 vs. WT mice). Mice with NCC deletion have normal serum bicarbonate levels, and mice with pendrin deletion demon- strate mild elevation in serum bicarbonate (12, 15). Blood pressure measurement by the computerized tail cuff method indicated that double KO mice are hypotensive (Fig. 3D; P < 0.01 vs. WT). MEDICAL SCIENCES Effect of Salt Replacement on Volume Depletion, Renal Failure, and Metabolic Alkalosis in Pendrin/NCC Double KO Mice. To ascertain the role of volume depletion in the pathogenesis of renal failure and metabolic alkalosis, double pendrin/NCC KO and WT mice were placed on high-salt (7%) diet for 7 d. Fig. 4A (Left and Right) demonstrates that the mRNA expression levels of renin de- creased by ∼90% in kidneys of double KO mice on high-salt intake relative to normal diet. The above results demonstrate that salt replacement significantly improves the vascular volume depletion in double KO mice. Fig. 4B shows that BUN levels, although mildly higher in double KO vs. WT mice, are signifi- cantly decreased in double KO mice on high-salt diet relative to normal diet (comparison vs. Fig. 3B). Fig. 4C indicates significant improvement in the severity of metabolic alkalosis, as verified by a sharp reduction in serum bicarbonate levels in double KO mice on high-salt vs.
Recommended publications
  • Development of the Stria Vascularis and Potassium Regulation in the Human Fetal Cochlea: Insights Into Hereditary Sensorineural Hearing Loss
    Development of the Stria Vascularis and Potassium Regulation in the Human Fetal Cochlea: Insights into Hereditary Sensorineural Hearing Loss Heiko Locher,1,2 John C.M.J. de Groot,2 Liesbeth van Iperen,1 Margriet A. Huisman,2 Johan H.M. Frijns,2 Susana M. Chuva de Sousa Lopes1,3 1 Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands 2 Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands 3 Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium Received 25 August 2014; revised 2 February 2015; accepted 2 February 2015 ABSTRACT: Sensorineural hearing loss (SNHL) is dynamics of key potassium-regulating proteins. At W12, one of the most common congenital disorders in humans, MITF1/SOX101/KIT1 neural-crest-derived melano- afflicting one in every thousand newborns. The majority cytes migrated into the cochlea and penetrated the base- is of heritable origin and can be divided in syndromic ment membrane of the lateral wall epithelium, and nonsyndromic forms. Knowledge of the expression developing into the intermediate cells of the stria vascula- profile of affected genes in the human fetal cochlea is lim- ris. These melanocytes tightly integrated with Na1/K1- ited, and as many of the gene mutations causing SNHL ATPase-positive marginal cells, which started to express likely affect the stria vascularis or cochlear potassium KCNQ1 in their apical membrane at W16. At W18, homeostasis (both essential to hearing), a better insight KCNJ10 and gap junction proteins GJB2/CX26 and into the embryological development of this organ is GJB6/CX30 were expressed in the cells in the outer sul- needed to understand SNHL etiologies.
    [Show full text]
  • Essential Trace Elements in Human Health: a Physician's View
    Margarita G. Skalnaya, Anatoly V. Skalny ESSENTIAL TRACE ELEMENTS IN HUMAN HEALTH: A PHYSICIAN'S VIEW Reviewers: Philippe Collery, M.D., Ph.D. Ivan V. Radysh, M.D., Ph.D., D.Sc. Tomsk Publishing House of Tomsk State University 2018 2 Essential trace elements in human health UDK 612:577.1 LBC 52.57 S66 Skalnaya Margarita G., Skalny Anatoly V. S66 Essential trace elements in human health: a physician's view. – Tomsk : Publishing House of Tomsk State University, 2018. – 224 p. ISBN 978-5-94621-683-8 Disturbances in trace element homeostasis may result in the development of pathologic states and diseases. The most characteristic patterns of a modern human being are deficiency of essential and excess of toxic trace elements. Such a deficiency frequently occurs due to insufficient trace element content in diets or increased requirements of an organism. All these changes of trace element homeostasis form an individual trace element portrait of a person. Consequently, impaired balance of every trace element should be analyzed in the view of other patterns of trace element portrait. Only personalized approach to diagnosis can meet these requirements and result in successful treatment. Effective management and timely diagnosis of trace element deficiency and toxicity may occur only in the case of adequate assessment of trace element status of every individual based on recent data on trace element metabolism. Therefore, the most recent basic data on participation of essential trace elements in physiological processes, metabolism, routes and volumes of entering to the body, relation to various diseases, medical applications with a special focus on iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), selenium (Se), iodine (I), cobalt (Co), chromium, and molybdenum (Mo) are reviewed.
    [Show full text]
  • Genetic Disorder
    Genetic disorder Single gene disorder Prevalence of some single gene disorders[citation needed] A single gene disorder is the result of a single mutated gene. Disorder Prevalence (approximate) There are estimated to be over 4000 human diseases caused Autosomal dominant by single gene defects. Single gene disorders can be passed Familial hypercholesterolemia 1 in 500 on to subsequent generations in several ways. Genomic Polycystic kidney disease 1 in 1250 imprinting and uniparental disomy, however, may affect Hereditary spherocytosis 1 in 5,000 inheritance patterns. The divisions between recessive [2] Marfan syndrome 1 in 4,000 and dominant types are not "hard and fast" although the [3] Huntington disease 1 in 15,000 divisions between autosomal and X-linked types are (since Autosomal recessive the latter types are distinguished purely based on 1 in 625 the chromosomal location of Sickle cell anemia the gene). For example, (African Americans) achondroplasia is typically 1 in 2,000 considered a dominant Cystic fibrosis disorder, but children with two (Caucasians) genes for achondroplasia have a severe skeletal disorder that 1 in 3,000 Tay-Sachs disease achondroplasics could be (American Jews) viewed as carriers of. Sickle- cell anemia is also considered a Phenylketonuria 1 in 12,000 recessive condition, but heterozygous carriers have Mucopolysaccharidoses 1 in 25,000 increased immunity to malaria in early childhood, which could Glycogen storage diseases 1 in 50,000 be described as a related [citation needed] dominant condition. Galactosemia
    [Show full text]
  • Clinical Genetics of Defects in Thyroid Hormone Synthesis
    Review article https://doi.org/10.6065/apem.2018.23.4.169 Ann Pediatr Endocrinol Metab 2018;23:169-175 Clinical genetics of defects in thyroid hormone synthesis Min Jung Kwak, MD, PhD Thyroid dyshormonogenesis is characterized by impairment in one of the several stages of thyroid hormone synthesis and accounts for 10%–15% of Department of Pediatrics, Pusan congenital hypothyroidism (CH). Seven genes are known to be associated with National University Hospital, Pusan thyroid dyshormonogenesis: SLC5A5 (NIS), SCL26A4 (PDS), TG, TPO, DUOX2, National University School of Medicine, Busan, Korea DUOXA2, and IYD (DHEAL1). Depending on the underlying mechanism, CH can be permanent or transient. Inheritance is usually autosomal recessive, but there are also cases of autosomal dominant inheritance. In this review, we describe the molecular basis, clinical presentation, and genetic diagnosis of CH due to thyroid dyshormonogenesis, with an emphasis on the benefits of targeted exome sequencing as an updated diagnostic approach. Keywords: Congenital hypothyroidism, Dyshormonogenesis, Genetics, Whole exome sequencing Introduction Congenital hypothyroidism (CH) is the most common pediatric endocrinological disorder and an important cause of preventable mental retardation.1) After the introduction of neonatal screening for CH, the incidence was 1 case per 3,684 live births,2) but the incidence has increased to 1 case per 1,000–2,000 live births of late.3) Primary CH is usually caused by abnormal thyroid gland development, but 10%–15% of cases are caused
    [Show full text]
  • Clinical, Radiologic, and Molecular Studies
    0031-3998/02/5104-0479 PEDIATRIC RESEARCH Vol. 51, No. 4, 2002 Copyright © 2002 International Pediatric Research Foundation, Inc. Printed in U.S.A. Differential Diagnosis between Pendred and Pseudo-Pendred Syndromes: Clinical, Radiologic, and Molecular Studies LAURA FUGAZZOLA, NADIA CERUTTI, DEBORAH MANNAVOLA, ANTONINO CRINÒ, ALESSANDRA CASSIO, PIETRO GASPARONI, GUIA VANNUCCHI, AND PAOLO BECK-PECCOZ Institute of Endocrine Sciences, University of Milan [L.F., D.M., G.V., P.B.-P.], Ospedale Maggiore IRCCS [L.F., P.B.-P.], and Istituto Clinico Humanitas [L.F.], Milan, Italy; Department of Internal Medicine, University of Pavia, Italy [N.C.]; Autoimmune Diseases Endocrine Unit, Bambin Gesù Hospital, Rome, Italy [A. Crinò]; Department of Pediatrics, University of Bologna, Italy [A. Cassio]; and Endocrinology Unit, General Medicine, Castelfranco Veneto Hospital, Castelfranco Veneto (TV) Italy [P.G.]. ABSTRACT The disease gene for Pendred syndrome has been recently is located in the first base pair of intron 14, probably affecting the characterized and named PDS. It codes for a transmembrane splicing of the PDS gene. Clinically, all patients had goiter with protein called pendrin, which is highly expressed at the apical positive perchlorate test, hypothyroidism, and severe or profound surface of the thyroid cell and functions as a transporter of sensorineural hearing loss. In all the individuals harboring PDS chloride and iodide. Pendrin is also expressed at the inner ear mutations, but not in the family without PDS mutations, inner ear level, where it appears to be involved in the maintenance of the malformations, such as enlargement of the vestibular aqueduct endolymph homeostasis in the membranous labyrinth, and in the and of the endolymphatic duct and sac, were documented.
    [Show full text]
  • Prestin Is the Motor Protein of Cochlear Outer Hair Cells
    articles Prestin is the motor protein of cochlear outer hair cells Jing Zheng*, Weixing Shen*, David Z. Z. He*, Kevin B. Long², Laird D. Madison² & Peter Dallos* * Auditory Physiology Laboratory (The Hugh Knowles Center), Departments of Neurobiology and Physiology and Communciation Sciences and Disorders, Northwestern University, Evanston, Illinois 60208, USA ² Center for Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA ............................................................................................................................................................................................................................................................................ The outer and inner hair cells of the mammalian cochlea perform different functions. In response to changes in membrane potential, the cylindrical outer hair cell rapidly alters its length and stiffness. These mechanical changes, driven by putative molecular motors, are assumed to produce ampli®cation of vibrations in the cochlea that are transduced by inner hair cells. Here we have identi®ed an abundant complementary DNA from a gene, designated Prestin, which is speci®cally expressed in outer hair cells. Regions of the encoded protein show moderate sequence similarity to pendrin and related sulphate/anion transport proteins. Voltage-induced shape changes can be elicited in cultured human kidney cells that express prestin. The mechanical response of outer hair cells
    [Show full text]
  • Sudden Sensorineural Hearing Loss and Polymorphisms in Iron Homeostasis Genes: New Insights from a Case-Control Study
    Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 834736, 10 pages http://dx.doi.org/10.1155/2015/834736 Research Article Sudden Sensorineural Hearing Loss and Polymorphisms in Iron Homeostasis Genes: New Insights from a Case-Control Study Alessandro Castiglione,1 Andrea Ciorba,2 Claudia Aimoni,2 Elisa Orioli,3 Giulia Zeri,3 Marco Vigliano,3 and Donato Gemmati3 1 Department of Neurosciences-Complex Operative Unit of Otorhinolaryngology and Otosurgery, University Hospital of Padua, Via Giustiniani 2, 35128 Padua, Italy 2ENT & Audiology Department, University Hospital of Ferrara, Via Aldo Moro 8, 44124 Cona, Ferrara, Italy 3Centre for Haemostasis & Thrombosis, Haematology Section, Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy Correspondence should be addressed to Alessandro Castiglione; [email protected] Received 15 September 2014; Revised 15 December 2014; Accepted 6 January 2015 Academic Editor: Song Liu Copyright © 2015 Alessandro Castiglione et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Even if various pathophysiological events have been proposed as explanations, the putative cause of sudden hearing loss remains unclear. Objectives. To investigate and to reveal associations (if any) between the main iron-related gene variants and idiopathic sudden sensorineural hearing loss.
    [Show full text]
  • Metabolic Alkalosis
    DOI: 10.5772/intechopen.78724 ProvisionalChapter chapter 3 Metabolic Alkalosis HollyHolly Mabillard Mabillard and John A. SayerJohn A. Sayer Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.78724 Abstract Metabolic alkalosis is a disorder where the primary defect, an increase in plasma bicar- bonate concentration, leads to an increase in systemic pH. Here we review the causes of metabolic alkalosis with an emphasis on the inherited causes, namely Gitelman syn- drome and Bartter syndrome and syndromes which mimic them. We detail the impor- tance of understanding the kidney pathophysiology and molecular genetics in order to distinguish these syndromes from acquired causes. In particular we discuss the tubular transport of salt in the thick ascending limb of the loop of Henle, the distal convoluted tubule and the collecting duct. The effects of salt wasting, namely an increase in the renin- angiotensin-aldosterone axis are discussed in order to explain the biochemical pheno- types and targeted treatment approaches to these conditions. Keywords: salt-wasting, inherited tubulopathy, renin-angiotensin-aldosterone axis 1. Introduction Metabolic alkalosis is a disorder where the primary defect, an increase in plasma bicarbon- ate concentration, leads to an increase in systemic pH. Various mechanisms underpin the pathophysiology of metabolic alkalosis, which is defined by an arterial bicarbonate concen- tration of over 28 mmol/L or a venous total carbon dioxide concentration of greater than 30 mmol/L. The body compensates for alkali retention and subsequent elevated arterial pH by inducing respiratory hypoventilation resulting in an accompanying rise in PaCO2. Normally the kidney, which has a protective mechanism against the development of significant increases in bicarbonate, will excrete excess alkali to restore the body to its homeostatic pH, but certain factors can impair this ability resulting in a sustained alkalotic state.
    [Show full text]
  • Clinical Laboratory Services
    The Commonwealth of Massachusetts Executive Office of Health and Human Services Office of Medicaid One Ashburton Place, Room 1109 Boston, Massachusetts 02108 Administrative Bulletin 15-03 DANIEL TSAI CHARLES D. BAKER Governor 101 CMR 320.00: Clinical Laboratory Assistant Secretary for MassHealth KARYN E. POLITO Services Lieutenant Governor Tel: (617) 573-1600 Effective January 1, 2015 MARYLOU SUDDERS Fax: (617) 573-1891 Secretary www.mass.gov/eohhs Procedure Code Update Under the authority of regulation 101 CMR 320.01(3), the Executive Office of Health and Human Services is adding new procedure codes and is deleting outdated codes. The rates for code additions are priced at 74.67% of the prevailing Medicare fee if available. The changes, effective January 1, 2015, are as follows. Code Change Rate Code Description (if applicable) 80100 Deletion 80101 Deletion 80103 Deletion 80104 Deletion 80163 Addition $13.49 Digoxin; free 80165 Addition $13.77 Valproic acid (dipropylacetic acid); total 80440 Deletion 81246 Addition I.C. FLT3 (fms-related tyrosine kinase 3) (e.g., acute myeloid leukemia), gene analysis; internal tandem duplication (ITD) variants (IE, exons 14,15) 81288 Addition I.C. MLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2) (e.g., hereditary non-polyposis colorectal cancer, Lynch syndrome) gene analysis; promoter methylation analysis 81313 Addition I.C. PCA3/KLK3 (prostate cancer antigen 3 [non-protein coding]/kallikrien- related peptidase 3 [prostate specific antigen]) ratio (e.g., prostate cancer) 81410 Addition I.C. Aortic dysfunction or dilation (e.g., Marfan syndrome, Loeys Dietz syndrome, Ehler Danlos syndrome type IV, arterial tortuosity syndrome); genomic sequence analysis panel, must include sequencing of at least 9 genes, including FBN1, TGFBR1, TGFBR2, COL3A1, MYH11, ACTA2, SLC2A10, SMAD3, and MYLK 81411 Addition I.C.
    [Show full text]
  • Neonatal Dyshormonogenetic Goiter with Hypothyroidism Associated with Novel Mutations in Thyroglobulin and SLC26A4 Gene
    Case Report Neonatal Dyshormonogenetic Goiter with Hypothyroidism Associated with Novel Mutations in Thyroglobulin and SLC26A4 Gene Valeria Calcaterra 1,2,* , Rossella Lamberti 2,†, Claudia Viggiano 2,†, Sara Gatto 3, Luigina Spaccini 4, Gianluca Lista 3 and Gianvincenzo Zuccotti 2,5 1 Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy 2 Pediatric Unit, Department of Pediatrics, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; [email protected] (R.L.); [email protected] (C.V.); [email protected] (G.Z.) 3 Neonatal Pathology and Neonatal Intensive Care Unit, Department of Pediatrics, “V. Buzzi” Children’s Hospital, University of Milan, 20154 Milan, Italy; [email protected] (S.G.); [email protected] (G.L.) 4 Clinical Genetics Unit, Department of Obstetrics and Gynecology, “V. Buzzi” Children’s Hospital, University of Milan, 20154 Milan, Italy; [email protected] 5 Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy * Correspondence: [email protected] † These authors contributed equally. Abstract: Congenital goiter is an uncommon cause of neck swelling and it can be associated with hypothyroidism. We discuss a case of primary hypothyroidism with goiter presenting at birth. Ultrasound showed the enlargement of the gland and thyroid function tests detected marked hy- Citation: Calcaterra, V.; Lamberti, R.; pothyroidism. Genetic analysis via next generation sequencing (NGS) was performed finding two Viggiano, C.; Gatto, S.; Spaccini, L.; mutations associated with thyroid dyshormonogenesis: c.7813 C > T, homozygous in the exon 45 Lista, G.; Zuccotti, G. Neonatal of the thyroglobulin gene (TG) and c.1682 G > A heterozygous in exon 15 of the SLC26A4 gene Dyshormonogenetic Goiter with (pendrin).
    [Show full text]
  • The Myriad Foresight® Carrier Screen
    The Myriad Foresight® Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.myriadwomenshealth.com | [email protected] | (888) 268-6795 The Myriad Foresight® Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia ...............................................................................................................................................................................8 6-pyruvoyl-tetrahydropterin Synthase Deficiency....................................................................................................................................................................................................10 ABCC8-related Familial Hyperinsulinism..................................................................................................................................................................................................................12 Adenosine Deaminase Deficiency ............................................................................................................................................................................................................................14 Alpha Thalassemia ....................................................................................................................................................................................................................................................16 Alpha-mannosidosis ..................................................................................................................................................................................................................................................18
    [Show full text]
  • Congenital Hypothyroidism
    Congenital hypothyroidism Description Congenital hypothyroidism is a partial or complete loss of function of the thyroid gland ( hypothyroidism) that affects infants from birth (congenital). The thyroid gland is a butterfly-shaped tissue in the lower neck. It makes iodine-containing hormones that play an important role in regulating growth, brain development, and the rate of chemical reactions in the body (metabolism). People with congenital hypothyroidism have lower- than-normal levels of these important hormones. Congenital hypothyroidism occurs when the thyroid gland fails to develop or function properly. In 80 to 85 percent of cases, the thyroid gland is absent, severely reduced in size (hypoplastic), or abnormally located. These cases are classified as thyroid dysgenesis. In the remainder of cases, a normal-sized or enlarged thyroid gland (goiter) is present, but production of thyroid hormones is decreased or absent. Most of these cases occur when one of several steps in the hormone synthesis process is impaired; these cases are classified as thyroid dyshormonogenesis. Less commonly, reduction or absence of thyroid hormone production is caused by impaired stimulation of the production process (which is normally done by a structure at the base of the brain called the pituitary gland), even though the process itself is unimpaired. These cases are classified as central (or pituitary) hypothyroidism. Signs and symptoms of congenital hypothyroidism result from the shortage of thyroid hormones. Affected babies may show no features of the condition, although some babies with congenital hypothyroidism are less active and sleep more than normal. They may have difficulty feeding and experience constipation. If untreated, congenital hypothyroidism can lead to intellectual disability and slow growth.
    [Show full text]