Digenic Inheritance in Medical Genetics Alejandro a Schäffer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron. -
Benefits of Exome Sequencing in Children with Suspected Isolated
G C A T T A C G G C A T genes Article Benefits of Exome Sequencing in Children with Suspected Isolated Hearing Loss Roxane Van Heurck 1, Maria Teresa Carminho-Rodrigues 1, Emmanuelle Ranza 1, Caterina Stafuzza 2, Lina Quteineh 1, Corinne Gehrig 1, Eva Hammar 1, Michel Guipponi 1, Marc Abramowicz 1, Pascal Senn 2 , Nils Guinand 2, Helene Cao-Van 2 and Ariane Paoloni-Giacobino 1,* 1 Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; [email protected] (R.V.H.); [email protected] (M.T.C.-R.); [email protected] (E.R.); [email protected] (L.Q.); [email protected] (C.G.); [email protected] (E.H.); [email protected] (M.G.); [email protected] (M.A.) 2 Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; [email protected] (C.S.); [email protected] (P.S.); [email protected] (N.G.); [email protected] (H.C.-V.) * Correspondence: [email protected] Abstract: Purpose: Hearing loss is characterized by an extensive genetic heterogeneity and remains a common disorder in children. Molecular diagnosis is of particular benefit in children, and permits the early identification of clinically-unrecognized hearing loss syndromes, which permits effective clinical management and follow-up, including genetic counselling. Methods: We performed whole-exome Citation: Van Heurck, R.; sequencing with the analysis of a panel of 189 genes associated with hearing loss in a prospective Carminho-Rodrigues, M.T.; Ranza, E.; cohort of 61 children and 9 adults presenting mainly with isolated hearing loss. -
Dissertationes Medicinae Universitatis Tartuensis 178
DISSERTATIONES MEDICINAE UNIVERSITATIS TARTUENSIS 178 DISSERTATIONES MEDICINAE UNIVERSITATIS TARTUENSIS 178 RITA TEEK The genetic causes of early onset hearing loss in Estonian children Department of Paediatrics, University of Tartu, Tartu, Estonia Dissertation is accepted for commencement of the degree of Doctor of Medical Sciences on September 22, 2010 by the Council of the Faculty of Medicine, University of Tartu, Estonia. Supervisors: Professor Katrin Õunap, MD, PhD, Department of Paediatrics, University of Tartu, Tartu, Estonia The Late Professor Mart Kull, MD, PhD, Department of Oto-Rhino-Laryngology, University of Tartu, Tartu, Estonia (2005–2008) Reviewers: Assistant Professor Gunnar Tasa, MD, PhD, Department of General and Molecular Pathology, University of Tartu, Tartu, Estonia Assistant Professor Oivi Uibo, MD, PhD, Department of Paediatrics, University of Tartu, Tartu, Estonia Opponent: Professor Lisbeth Tranebjærg, MD, PhD, Department of Audiology, H:S Bispebjerg Hospital, and Wilhelm Johannsen Centre of Functional Genomics Institute of Cellular and Molecular Medicine, ICMM, University of Copenhagen, The Panum Institute, Denmark Commencement: November 24, 2010 ISSN 1024–395x ISBN 978–9949–19–478–0 (trükis) ISBN 978–9949–19–479–7 (PDF) Autoriõigus: Rita Teek, 2010 Tartu Ülikooli Kirjastus www.tyk.ee Tellimuse nr. 570 To my patients and their families CONTENTS LIST OF ORIGINAL PUBLICATIONS ...................................................... 9 ABBREVIATIONS OF HEARING LOSS STUDY GROUPS AND PATIENTS .................................................................................................... -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Development of the Stria Vascularis and Potassium Regulation in the Human Fetal Cochlea: Insights Into Hereditary Sensorineural Hearing Loss
Development of the Stria Vascularis and Potassium Regulation in the Human Fetal Cochlea: Insights into Hereditary Sensorineural Hearing Loss Heiko Locher,1,2 John C.M.J. de Groot,2 Liesbeth van Iperen,1 Margriet A. Huisman,2 Johan H.M. Frijns,2 Susana M. Chuva de Sousa Lopes1,3 1 Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands 2 Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands 3 Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium Received 25 August 2014; revised 2 February 2015; accepted 2 February 2015 ABSTRACT: Sensorineural hearing loss (SNHL) is dynamics of key potassium-regulating proteins. At W12, one of the most common congenital disorders in humans, MITF1/SOX101/KIT1 neural-crest-derived melano- afflicting one in every thousand newborns. The majority cytes migrated into the cochlea and penetrated the base- is of heritable origin and can be divided in syndromic ment membrane of the lateral wall epithelium, and nonsyndromic forms. Knowledge of the expression developing into the intermediate cells of the stria vascula- profile of affected genes in the human fetal cochlea is lim- ris. These melanocytes tightly integrated with Na1/K1- ited, and as many of the gene mutations causing SNHL ATPase-positive marginal cells, which started to express likely affect the stria vascularis or cochlear potassium KCNQ1 in their apical membrane at W16. At W18, homeostasis (both essential to hearing), a better insight KCNJ10 and gap junction proteins GJB2/CX26 and into the embryological development of this organ is GJB6/CX30 were expressed in the cells in the outer sul- needed to understand SNHL etiologies. -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
Hearing Loss Carrie Crain, B.S
R.C.P.U. NEWSLETTER Editor: Heather J. Stalker, M.Sc. Director: Roberto T. Zori, M.D. R.C. Philips Research and Education Unit Vol. XIX No. 2 A statewide commitment to the problems of mental retardation January 2008 R.C. Philips Unit ♦ Division of Pediatric Genetics, Box 100296 ♦ Gainesville, FL 32610 ♦ (352)392-4104 E Mail: [email protected]; [email protected] Website: http://www.peds.ufl.edu/divisions/genetics/newsletters.htm Hearing Loss Carrie Crain, B.S. Regional Follow-Up Coordinator, Newborn Hearing Screening Introduction Phase 1: Screening It is estimated that 70 million people world-wide, or 1% of the All newborns are screened for hearing loss shortly after birth world’s population have some form of hearing loss that affects using either evoked otoacoustic emissions (EOAE) or auditory language communication. Profound congenital hearing loss is brainstem response testing (ABR) to look for permanent estimated to affect 1 in 1000 births (Tekin et al. 2001). If bilateral, unilateral, sensory or conductive hearing loss significant hearing loss is not detected early in life, it can have averaging 30-40 dB or more. negative impacts on speech, language and cognitive ABR testing uses a series of clicks to evoke responses, development. originating in the eighth cranial nerve and auditory brainstem and recorded by electrodes placed on the head. EOAE testing Newborn Screening uses a probe inserted into the ear to measure sounds The history of newborn screening dates back to the 1960’s originating within the cochlea. EOAEs reflect the activity of the when newborns were first screened for phenylketonuria (PKU). -
Type of PKD1 Mutation Influences Renal Outcome in ADPKD
CLINICAL RESEARCH www.jasn.org Type of PKD1 Mutation Influences Renal Outcome in ADPKD † †‡ †‡ Emilie Cornec-Le Gall,* Marie-Pierre Audrézet, Jian-Min Chen, Maryvonne Hourmant,§ | †† Marie-Pascale Morin, Régine Perrichot,¶ Christophe Charasse,** Bassem Whebe, ‡‡ || † Eric Renaudineau, Philippe Jousset,§§ Marie-Paule Guillodo, Anne Grall-Jezequel,* †‡ †‡ † Philippe Saliou, Claude Férec, and Yannick Le Meur* *Nephrology Department, University Hospital, Brest, France; †Université de Bretagne Occidentale and European University of Brittany, Brest, France; ‡Molecular Genetic Department, INSERM U1078, University Hospital, EFS- Bretagne, Brest, France; §Nephrology Department, University Hospital, Nantes, France; |Nephrology Department, University Hospital, Rennes, France; ¶Nephrology Department, Vannes Hospital, Vannes, France; **Nephrology Department, Saint Brieuc Hospital, Saint Brieuc, France; ††Nephrology Department, Quimper Hospital, Quimper, France; ‡‡Nephrology Department, Broussais Hospital, Saint Malo, France; §§Nephrology Department, Pontivy Hospital, Pontivy, France; and ||Association des Urémiques de Bretagne, Brest, France ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) is heterogeneous with regard to genic and allelic heterogeneity, as well as phenotypic variability. The genotype-phenotype relationship in ADPKD is not completely understood. Here, we studied 741 patients with ADPKD from 519 pedigrees in the Genkyst cohort and confirmed that renal survival associated with PKD2 mutations was approximately 20 years longer than that associated with PKD1 mutations. The median age at onset of ESRD was 58 years for PKD1 carriers and 79 years for PKD2 carriers. Regarding the allelic effect on phenotype, in contrast to previous studies, we found that the type of PKD1 mutation, but not its position, correlated strongly with renal survival. The median age at onset of ESRD was 55 years for carriers of a truncating mutation and 67 years for carriers of a nontruncating mutation. -
(12) United States Patent (10) Patent No.: US 9,506,116 B2 Ahlquist Et Al
USOO9506116B2 (12) United States Patent (10) Patent No.: US 9,506,116 B2 Ahlquist et al. (45) Date of Patent: *Nov. 29, 2016 (54) DETECTING NEOPLASM 2010. 0317000 A1 12/2010 Zhu 2011 O136687 A1 6, 2011 Olek et al. 2011/0318738 A1 12/2011 Jones et al. (71) Applicant: Mayo Foundation for Medical 2012/O122088 A1 5, 2012 Zou Education and Research, Rochester, 2012/O122106 A1 5, 2012 Zou MN (US) 2012/O16411.0 A1 6/2012 Feinberg et al. 2013, OO12410 A1 1/2013 Zou et al. (72) Inventors: David A. Ahlquist, Rochester, MN 2013/0022974 A1 1/2013 Chinnaiyan (US); John B. Kisiel, Rochester, MN 2013,0065228 A1 3/2013 Hinoue et al. (US); William R. Taylor, Lake City, 2013,0288247 A1 10, 2013 Mori et al. MN (US); Tracy C. Yab, Rochester, 2014/0057262 A1 2/2014 Ahlquist et al. 2014/O193813 A1 7/2014 Bruinsma et al. MN (US); Douglas W. Mahoney, 2014/O1946O7 A1 7/2014 Bruinsma et al. Elgin, MN (US) 2014/O194608 A1 7/2014 Bruinsma et al. 2015, 01263.74 A1* 5, 2015 Califano .............. C12O 1/6886 (73) Assignee: MAYO FOUNDATION FOR 506.2 MEDICAL EDUCATION AND RESEARCH, Rochester, MN (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this EP 2391729 12/2011 patent is extended or adjusted under 35 WO OO,264.01 5, 2000 WO 2007/116417 10/2007 U.S.C. 154(b) by 55 days. WO 2010/086389 8, 2010 This patent is Subject to a terminal dis WO 2011 119934 9, 2011 claimer. -
Essential Trace Elements in Human Health: a Physician's View
Margarita G. Skalnaya, Anatoly V. Skalny ESSENTIAL TRACE ELEMENTS IN HUMAN HEALTH: A PHYSICIAN'S VIEW Reviewers: Philippe Collery, M.D., Ph.D. Ivan V. Radysh, M.D., Ph.D., D.Sc. Tomsk Publishing House of Tomsk State University 2018 2 Essential trace elements in human health UDK 612:577.1 LBC 52.57 S66 Skalnaya Margarita G., Skalny Anatoly V. S66 Essential trace elements in human health: a physician's view. – Tomsk : Publishing House of Tomsk State University, 2018. – 224 p. ISBN 978-5-94621-683-8 Disturbances in trace element homeostasis may result in the development of pathologic states and diseases. The most characteristic patterns of a modern human being are deficiency of essential and excess of toxic trace elements. Such a deficiency frequently occurs due to insufficient trace element content in diets or increased requirements of an organism. All these changes of trace element homeostasis form an individual trace element portrait of a person. Consequently, impaired balance of every trace element should be analyzed in the view of other patterns of trace element portrait. Only personalized approach to diagnosis can meet these requirements and result in successful treatment. Effective management and timely diagnosis of trace element deficiency and toxicity may occur only in the case of adequate assessment of trace element status of every individual based on recent data on trace element metabolism. Therefore, the most recent basic data on participation of essential trace elements in physiological processes, metabolism, routes and volumes of entering to the body, relation to various diseases, medical applications with a special focus on iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), selenium (Se), iodine (I), cobalt (Co), chromium, and molybdenum (Mo) are reviewed. -
The Pathological Consequences of Impaired Genome Integrity in Humans; Disorders of the DNA Replication Machinery
The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery Article (Accepted Version) O'Driscoll, Mark (2017) The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery. Journal of Pathology, 241 (2). pp. 192-207. ISSN 0022-3417 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/65956/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery. -
Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: a Review
Review Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: A Review Sebastian Roesch 1 , Gerd Rasp 1, Antonio Sarikas 2 and Silvia Dossena 2,* 1 Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; [email protected] (S.R.); [email protected] (G.R.) 2 Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-(0)662-2420-80564 Abstract: Hearing loss is the most common sensorial deficit in humans and one of the most common birth defects. In developed countries, at least 60% of cases of hearing loss are of genetic origin and may arise from pathogenic sequence alterations in one of more than 300 genes known to be involved in the hearing function. Hearing loss of genetic origin is frequently associated with inner ear malformations; of these, the most commonly detected is the enlarged vestibular aqueduct (EVA). EVA may be associated to other cochleovestibular malformations, such as cochlear incomplete partitions, and can be found in syndromic as well as non-syndromic forms of hearing loss. Genes that have been linked to non-syndromic EVA are SLC26A4, GJB2, FOXI1, KCNJ10, and POU3F4. SLC26A4 and FOXI1 are also involved in determining syndromic forms of hearing loss with EVA, which are Pendred syndrome and distal renal tubular acidosis with deafness, respectively. In Caucasian cohorts, approximately 50% of cases of non-syndromic EVA are linked to SLC26A4 and a large fraction of Citation: Roesch, S.; Rasp, G.; patients remain undiagnosed, thus providing a strong imperative to further explore the etiology of Sarikas, A.; Dossena, S.