Crustacea, Decapoda, Axiidae)

Total Page:16

File Type:pdf, Size:1020Kb

Crustacea, Decapoda, Axiidae) Memoirs of the Museum of Victoria 54: 79-120 (1994) A PHYLOGENY OF THE FAMILIES OF THALASSINIDEA (CRUSTACEA: DECAPODA) WITH KEYS TO FAMILIES AND GENERA BY GARY C. B. POORE Department of Crustacea, Museum of Victoria, 71 Victoria Crescent, Abbotsford, Victoria 3067, Australia Abstract Poore, G.C.B., 1994. A phytogeny of the families of Thalassinidea (Crustacea: Decapo- da) with keys to families and genera. Memoirs of the Museum of Victoria 54: 79-120. The confused taxonomy of the Thalassinidea (73 genera recognised here) is briefly reviewed. States of 93 characters are discussed with reference to five outgroup genera of reptant decapods. The linea thalassinica is concluded to be homologous with the linea anomurica of Anomura. Its loss in Axioidea is thought secondarily derived. Burrowing behav­ iour in callianassoids is coincident with loss of the interaction between the posterior margin of the carapace and anterolateral lobes on abdominal somite 1, and with loss of abdominal pleura. Characters from gills, mouthparts and pereopods are discussed. Pereopodal spiniform setae are a unifying feature of some axioids. Auxiliary surfaces on the margins of pleopods of Callianidea and Michelea are not homologous. Setal-rows, once thought to unite several genera into the CalUanideidae are shown to be more widespread and this family, as previ­ ously conceived, to be polyphyletic. A computer-aided phylogenetic analysis of the families, represented by 22 genera, has confirmed the monophyly of the infraorder, based largely on the unique possession of a setose lower margin to pereopod 2, The Thalassinidea are divided into three superfamilies: Thalassinoidea and Callianassoidea, more closely related to each other than to Axioidea. The Thalassinoidea contains a single family and single genus, Thalassina. Callianassoidea are divided into six families: Laomediidae, Upogebiidae, CalUanideidae, Thomassiniidae, Ctenochelidae (paraphyletic), and Callianassidae. Axioidea contain four families; Calocari- didae, Axiidae, Strahlaxiidae fam. nov. and Micheleidae, The new classification differs from that of Borradaile (1903) only in the inclusion of many more taxa. The affinities between families suggested by Gurney (1938), de Saint Laurent (1973), Kensley and Heard (1991) and Sakai (1992a) are not supported. Diagnoses and keys are presented for the families and all the currently accepted genera, largely based on review of the literature and reference to museum collections. Contents Introduction 80 Methods 81 Outgroups 82 Taxa chosen 82 Character discussion 82 Results 88 The cladogram (ordered characters) 88 Character changes defining the clades and higher taxa 89 An alternate cladogram (unordered characters) 91 Ambivalent characters 91 A new classification of the Thalassinidea 92 Discussion 92 Thalassinidea 95 Axioidea 96 Axiidae 96 Calocarididae 98 Micheleidae 99 Tethisea gen. nov 99 Tethisea indica sp. nov 100 Strahlaxiidae fam. nov , 100 Author's corrections July 1994 On pp. 95 (twice), 96, 98 and 99 abdominal somite "3" should read abdominal somite "1". 80 GARY C. B. POORE Callianassoidea 101 Callianassidae 101 Callianideidae 103 Ctenochelidae 103 Laomediidae 103 Thomassiniidae 104 Upogebiidae 104 Thalassinoidea 105 Acknowledgements. 106 References 106 Introduction member of the Axiidae. Ortmann's taxonomic judgement was supported by Kensley (1989) but The decapod infraorder Thalassinidea is a was not followed by Sakai and de Saint Laurent group of families of reptant or "tailed decapods (1989). Kensley (1989) included in the Calo­ which recall the hermit-crabs in some respects carididae four genera previously included in the and the lobsters and crawfishes in others" (Bor- Axiidae. Scikai and de Saint Laurent (1989) sep­ radaile, 1903). A satisfactory diagnosis of the arated Coralaxius Kensley and Gore, 1981 into group has never been given in spite of the atten­ a new subfamily, Coralaxiinae. tion of numerous workers. While preparing a The Callianassidae and the smaller Callian­ contribution describing several new tha- lassinidean taxa it became clear that the Tha­ ideidae Kossmann, 1880 were first redefined in lassinidea had never been unambiguously a modern context by de Saint Laurent (1973) who defined and the relationships between all the fam­ erected a new subfamily of the former, ilies had not been thoroughly investigated. Thomassiniinae. This work was extended by Manning and Pelder (1991, 1992), Manning Several families have been assigned to the Tha­ (1992) and Rodrigues and Manning (1992) who lassinidea but the number, and the genera con­ erected four further callianassid subfamilies and tained therein, are somewhat contentious. Sev­ several new genera. Manning and Felder (1991) enty-three genera are recognised here but the implicitly raised Thomassininae to family rank. number of available names is larger. Three fam­ They added a new family Ctenochelidae (with ilies, each well defined but themselves not appar­ ently closely related, are: three subfamilies) for four atypical genera. Thalassinidae Dana, 1852 with two to four very Seven callianideid- and thomassiniid-like gen­ similar species in one genus (fig. la; Poore and era were grouped into the Callianideidae by Griffin, 1979; Dworschak, 1992; Sakai, 1992a). Kensley and Heard (1991). Sakai (1992a) added Laomediidae Borradaile, 1903 with 15 species another genus (here treated as a junior synonym in five diverse genera (fig. lb; Kensley and of Callianidea) and divided the family into four Heard, 1990); and subfamilies. Another is added in this work. Upogebiidae Borradaile, 1903 with over 100 Numerous new species are being described in species world-wide in seven quite similar genera work in progress. The genera of interest are: Cal­ (fig. Ic; Sakai, 1982; Ngoc-Ho, 1989; Williams lianidea Milne Edwards, 1837 (fig. 2a), Cros- and Ngoc-Ho, 1990; Sakai, 1993); niera Kensley and Heard, 1991, Marcusiaxius The monophyly of each of these three families Rodrigues and Carvalho, 1972 (fig. 3c), Meti- is not disputed and each can be defined by numer­ conaxius De Man, 1905, Michelea Kensley and ous autapomorphies. Heard, 1991 (fig. 3b), Mictaxius Kensley and The remaining genera have been assigned to Heard, 1991, Tethisea gen. nov. and Thomassinia at least two and as many as 14 family-level taxa de Saint Laurent, 1979a (fig. 2b). and their classification has been more unstable. The Thalassinidea have also included from The largest of these families are Axiidae Hux­ time to time the genera Enoplometopus Milne ley, 1879 (fig. 3a) and Callianassidae Dana, 1852 Edwards, 1862 and Hoplometopus Holthuis, (fig. 2c). Both have from time to time included 1983 in the Axiidae (Balss, 1957; Holthuis, 1983) some forms which could not be clearly assigned. but these are now removed to their own family One genus, Calocaris Bell, 1853, was moved to and superfamily (de Saint Laurent, 1988). its own family, Calocarididae Ortmann, 1891, The definition of the Thalassinidea and the but for most of this century has been treated as a relationships between families, subfamilies and A PHYLOGENY OF THE FAMILIES OF THALASSINIDEA 81 genera are now uncertain. There are competing shown by the modern axiids, upogebiids, definitions of Callianideidae, Thomassiniidae laomediids or thalassinids rather than by and their subfamilies. Examination of species of callianassids. In the axiids, for example, the Axiidae, Calocarididae, Ctenochelidae and Cal- cephalothorax is compact, little shorter than the lianassidae revealed that some of the characters abdomen, soUd, with a prominent rostrum from used to define the callianideid and thomassiniid which originate dorsolateral carinae running on groups are more widespread than hitherto appre­ to the carapace. The abdomen is firmly attached ciated and that neither the schemes of Kensley to the cephalothorax, has well developed pleura and Heard (1991) nor of Sakai (1992a) seem to on all somites, and is strongly reflexed. In addi­ reflect the phylogeny of the infraorder. tion, the second abdominal pleuron overlaps the It is the objective of this paper to attempt to first anteriorly and the two abdominal somites define the Thalassinidea and to present a new articulate by means of a lateral condyle (cf. hypothesis explaining family relationships. The Burkenroad, 1981: 259-260). Thepleopods 2-5 work does not resolve generic definitions or rela­ are similar and sexually unspecialised, and the tionships in the Axiidae and Calocarididae [dealt pereopods 2-4 are typically cylindrical and lin­ with by Sakai and de SaintLaurent (1989), Kens- ear rather than flattened for digging in soft sedi­ ley (1989, work in progress)], and Callianassi- ments. dae and Ctenochelidae [dealt with by Manning As far as is known axiids live in short burrows and Felder (1991, 1992), Manning (1992) and in hard or soft sediment, in crevices between Rodrigues and Manning (1992)] although many rocks, or in cavities in sponges or corals. Kens- taxa in these families have been examined in the ley and Simmons (1988) described the straight course of this study. This need arose from the 150-mm-long burrows of their new spsci&sAxio- realisation that these families are not as homo­ rygma nethertoni. Pemberton et al. (1976) report­ geneous as current usage suggests. ed that Axius serratus builds burrows up to 3 A new classification and diagnoses of the metres deep. Calocaris macandrae (Calocaridi­ superfamilies and families reflecting these rela­ dae) has also been reported to construct burrows tionships are offered. Keys, based mostly
Recommended publications
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • The Role of Neaxius Acanthus
    Wattenmeerstation Sylt The role of Neaxius acanthus (Thalassinidea: Strahlaxiidae) and its burrows in a tropical seagrass meadow, with some remarks on Corallianassa coutierei (Thalassinidea: Callianassidae) Diplomarbeit Institut für Biologie / Zoologie Fachbereich Biologie, Chemie und Pharmazie Freie Universität Berlin vorgelegt von Dominik Kneer Angefertigt an der Wattenmeerstation Sylt des Alfred-Wegener-Instituts für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft In Zusammenarbeit mit dem Center for Coral Reef Research der Hasanuddin University Makassar, Indonesien Sylt, Mai 2006 1. Gutachter: Prof. Dr. Thomas Bartolomaeus Institut für Biologie / Zoologie Freie Universität Berlin Berlin 2. Gutachter: Prof. Dr. Walter Traunspurger Fakultät für Biologie / Tierökologie Universität Bielefeld Bielefeld Meinen Eltern (wem sonst…) Table of contents 4 Abstract ...................................................................................................................................... 6 Zusammenfassung...................................................................................................................... 8 Abstrak ..................................................................................................................................... 10 Abbreviations ........................................................................................................................... 12 1 Introduction ..........................................................................................................................
    [Show full text]
  • Revision of Jaxea Kuemeli BACHMAYER, 1954 (Decapoda
    N. Jb. Geol. Palaont. Abh. 260/2, 173-184 Article published online March 2011 Revision of Jaxea kuemeli BACHMAYER, 1954 (Decapoda: Gebiidea: Laomediidae) from the Miocene of Europe, with remarks on the palaeobiogeography of the genus Jaxea NARDO, 1847 Matus Hyzny With 7 figures and 2 tables HYZNY,M. (2011): Revision of Jaxea kuemeli BACHMAYER,1954 (Decapoda: Gebiidea: Laomediidae) from the Miocene of Europe, with remarks on the palaeobiogeography of the genus Jaxea NARDO, 1847. - N. lb. Geol. Paliiont. Abh., 260: 173-184; Stuttgart. Abstract: The present contribution reevaluates the fossil record of the genus Jaxea (Decapoda: Ge- biidea: Laomediidae) and gives an emended diagnosis and an updated description of Jaxea kuemeli based on well preserved material from the lower and middle Miocene strata of Austria, Slovakia and Hungary. The species is distinguished from the extant J. nocturna on the basis of the tooth formula of the chelipeds. The geographic distribution and the palaeobiogeography of the genus is discussed and migration from the Tethys eastward towards the present-day Indo-Pacific Ocean during the Miocene time is proposed. The fossil record of the family Laomediidae is shortly reviewed. The monotypical genus Reschia from the Tithonian of southern Germany once tentatively assigned to Laomediidae is excluded from the family. Key words: Decapoda, Laomediidae, Jaxea, Miocene, palaeobiogeography. 1. Introduction A recent study of the type material of Jaxea kuemeli oriented cervical groove. However, a re-examination BACHMAYER,1954 from the middle Miocene of the of the type material has now revealed that what was Vienna Basin, plus additional specimens from sev- described as a complete dorsal carapace is only a frag- erallocalities in Austria, Slovakia and Hungary (Fig.
    [Show full text]
  • Taphonomy of Decapod-Bearing Concretions and Their Associated
    Volumen 77 (3): REVISTA DE LA DESARROLLOS RECIENTES EN ICNOLOGÍA ARGENTINA ASOCIACIÓN GEOLÓGICA ARGENTINA www.geologica.org.ar Septiembre 2020 Taphonomy of decapod-bearing concretions and their associated trace fossils from the Agrio Formation (Lower Cretaceous, Neuquén Basin), with paleobiological implications for axiid shrimps A. Mariel ANDRADA1, Graciela S. BRESSAN1,2 and Darío G. LAZO1,2 1Instituto de Estudios Andinos “Don Pablo Groeber”, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. 2CONICET E-mails: [email protected], [email protected], [email protected] Editor: Diana E. Fernández Recibido: 7 de julio de 2020 Aceptado: 14 de septiembre de 2020 ABSTRACT A total of 22 concretions containing 37 decapod crustacean specimens belonging to the family Axiidae, from the Hauterivian (Lower Cretaceous) of the Agrio Formation in the Neuquén Basin, were studied. The decapods were assigned to Protaxius sp., which likely had a fossorial life habit. In this work we attempt to determine, through taphonomic analysis, if the specimens fossilized within their burrows or outside them in order to interpret paleobiological aspects of the studied taxon. Several taphonomic criteria of the specimens and concretions, known from the literature, were applied and their utility discussed, including anatomical disposition, completeness of specimens, orientation and alignment, dispersion of exoskeletal elements in the concretion, preservation of both chelae, sedimentary fabric of the concretion, position within the concretion, and shape of the concretions. The relative importance of these criteria was discussed especially in those concretions with conflicting evidence pointing to either fossilization within or outside burrow systems.
    [Show full text]
  • Biology of Shallow Marine Ichnology: a Modern Perspective
    Vol. 2: 255–268, 2008 AQUATIC BIOLOGY Printed June 2008 doi: 10.3354/ab00055 Aquat Biol Published online June 19, 2008 Contribution to the Theme Section ‘Bioturbation in aquatic environments: linking past and present’ OPENPEN ACCESSCCESS Biology of shallow marine ichnology: a modern perspective Murray K. Gingras1,*, Shahin E. Dashtgard2, James A. MacEachern2, S. George Pemberton1 1Department of Earth and Atmospheric Sciences, 1-26 Earth Science Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 2Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada ABSTRACT: This study considers the construction and functionality of biogenic structures made by marine, vermiform nemerteans, polychaetes and hemichordates; marine crustaceans; motile bivalves; motile echinoderms; and sponges and sea anemones. We report on a range of modern biogenic struc- tures similar to several known ichnogenera. Vermiform animals dominantly occupy vertical burrows that range from simple through helical shafts to Y- and U-shapes. Horizontal traces made by worms range in form, but are dominated by branching and variably sinuous to meandering burrows. Crustaceans primarily excavate open burrow systems that possess a range of architectures that are similar to either Thalassinoides or Psilonichnus. Smaller crustaceans, such as amphipods, mix the sediment. Bivalve traces vary in form, but generally preserve evidence of vertically oriented filter or interface-deposit feed- ing from a stationary location, rapid vertical escape, or horizontal grazing. Echinoderms dominantly pre- serve body impressions and motility traces, such as Asteriacites. An important class of biogenic structure, Scolicia and Bichordites, are made by urchins. Finally, sea anemones can generate large, penetrative, conical biogenic structures.
    [Show full text]
  • Invertebrate ID Guide
    11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................
    [Show full text]
  • Distribution of Decapod Crustacea Off Northeastern United States Based on Specimens at the Northeast Fisheries Center, Woods Hole, Massachusetts
    NOAA Technical Report NMFS Circular 407 Distribution of Decapod Crustacea Off Northeastern United States Based on Specimens at the Northeast Fisheries Center, Woods Hole, Massachusetts Austin B. Williams and Roland L. Wigley December 1977 U.S. DEPARTMENT OF COMMERCE Juanita M, Kreps, Secretary National Oceanic and Atmospheric Administrati on Richard A. Frank, Administrator National Marine Fisheries Service Robert W, Schoning, Director The National Marine Fisheries Service (NMFS) does not approve, rec­ ommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales pro­ motion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication. '0. TE~TS IntroductIOn .... Annotated heckli, t A knowledgments Literature cited .. Figure l. Ranked bathymetrIc range of elected Decapoda from the nort hat ('rn l mt d 2. Ranked temperature range of elected Decapoda from the nort hea tern Table 1. A ociation of elected Decapoda with ix type, of ub. trat III Distribution of Decapod Crustacea ff orth rn United States Based on Specimens at th o t Fisheries Center, Woods HoI, a a hu AI)."II.'H.\ ILLIA~1.· AndH)[' J) r,. \\ j( LE,'1 AB,"I RA CI DiHlributional and l'n\ ironmrntal ummane are gl\rn In an .wno by ('hart , graph, and table, for 1:11 P(>('l(> of mannr d(>"apod l ru \II( INTROD TI N This report presents distrihutl!ll1al data for l:n species of manne dpcapod rrustacea (11 Pena idea, t 1 raridea.
    [Show full text]
  • Two Sympatric Species of Axius from the North-West
    TWOSYMP ATRICSPECIES OF AXIUS FROMTHE NORTH-WEST ATLANTIC(DECAPODA, THALASSINIDEA, AXIIDAE) BY BRIAN KENSLEY 1/ Departmentof SystematicBiology, National Museum of NaturalHistory, Smithsonian Institution, Washington,D.C. 20560,U.S.A. ABSTRACT Axiusserratus Stimpson,1852, is redescribed and illustrated, and its distribution based on 54 recordsof 68 specimensis recorded. The sympatric, and rarely recorded Axiusarmatus Smith,1881, isredescribed and illustrated for the rsttime, based on six female specimens from veseparate records.These two species are compared with the eastern Atlantic Axiusstirhynchus Leach,1815. Thethree species can be separated on the basis of the uropodal transverse suture, telsonic and pereopodalspination, and pereopod 4 sternitestructure. RÉSUMÉ Axiusserratus Stimpson,1852 est redé crit et illustréet saré partition gé ographique est donné e, àpartirde 54 signalements de 68 spé cimens. L ’espèce sympatrique Axiusarmatus Smith,1881, rarementrencontré e, est redé crite et illustrée pourla premiè re fois, à partirde sixindividus femelles provenantde cinq stations sé paré es. Ces deux espè ces sont comparé es avec Axiusstirhynchus Leach, 1815,de l’ Atlantiqueoriental. Les trois espè ces peuvent ê trediffé rencié es par la suture transversale del’uropode, les é pinesdu telsonet des pé ré iopodes et en n lastructuredu sternitedu pé ré iopode 4. INTRODUCTION Thegeminate species Axius serratus Stimpson,1852, in the north-western Atlantic, and Axius stirhynchus Leach,1815, in the north-easternAtlantic, are bothlong-established,
    [Show full text]
  • Decapoda: Axiidea: Axiidae) Obtained in the Laboratory
    Zootaxa 3527: 83–87 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:FB53427E-2668-4863-BBB5-BAAAC906EA0E First stage larva of the lobster shrimp Allaxius princeps (Boas, 1880) (Decapoda: Axiidea: Axiidae) obtained in the laboratory ELENA S. KORNIENKO* & OLGA M. KORN A.V. Zhirmunsky Institute of Marine Biology, Far East Branch, Russian Academy of Sciences, 17 Pal’chevskogo Street, 690059, Vlad- ivostok, Russia. E-mail: [email protected]; [email protected] *corresponding author Abstract First stage larva of the lobster shrimp Allaxius princeps (Boas, 1880) (Decapoda: Axiidea: Axiidae) obtained from the ovigerous female is described and illustrated for the first time. It is the first description of the larva of lobster shrimp from West Pacific. Zoea I of A. princeps is characterized by the presence of four dorsal spines on the pleonal somites 2–5 and by the shape of the telson with a deep cleft but without a median process. Under these characters, zoea I of A. princeps is similar to the first larva of Axiopsis serratifrons. Key words: Axiidea, Axiidae, Allaxius, larva, zoea, Peter the Great Bay, Sea of Japan Introduction Axiidean shrimps are seldom caught with the traditional fishing gears. Therefore, their reproduction biology, especially the larval life, has been given little attention so far. Axiidae represent the family with the fewest known larvae; the larvae of the family Callianassidae are the best known (Pohle et al. 2011). At present, the family Axiidae comprises 108 species (De Grave et al.
    [Show full text]
  • Axioidea of the World and a Reconsideration of The
    Axioidea of the World and a Reconsideration of the Callianassoidea (Decapoda, Thalassinidea, Callianassida) CRUSTACEANA MONOGRAPHS constitutes a series of books on carcinology in its widest sense. Contri- butions are handled by the Series Editor(s) and may be submitted through the office of KONINKLIJKE BRILL Academic Publishers N.V., P.O. Box 9000, NL-2300 PA Leiden, The Netherlands. Series Editors for the current volume: J.C. VON VAUPEL KLEIN, P.O. Box 30, NL-3720 AA Bilthoven, The Netherlands; e-mail: [email protected] and C.H.J.M. FRANSEN, c/o National Museum of Natural History, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands; e-mail: [email protected] Editorial Committee: N.L. BRUCE, Wellington, New Zealand; Mrs. M. CHARMANTIER-DAURES, Mont- pellier, France; Mrs. D. DEFAYE, Paris, France; H. DIRCKSEN, Stockholm, Sweden; J. FOREST,Paris, France; R.C. GUIA¸SU, Toronto, Ontario, Canada; R.G. HARTNOLL,PortSt.Mary,IsleofMan; E. MACPHERSON, Blanes, Spain; P.K.L. NG, Singapore, Rep. of Singapore; H.-K. SCHMINKE,Old- enburg, Germany; F.R. SCHRAM, Langley, WA, U.S.A.; G. VA N D E R VELDE, Nijmegen, Netherlands; H.P. WAGNER, Leiden, Netherlands; D.I. WILLIAMSON, Port Erin, Isle of Man. Published in this series: CRM 001 - Stephan G. Bullard Larvae of anomuran and brachyuran crabs of North Carolina CRM 002 - Spyros Sfenthourakis et al. The biology of terrestrial isopods, V CRM 003 - Tomislav Karanovic Subterranean Copepoda from arid Western Australia CRM 004 - Katsushi Sakai Callianassoidea of the world (Decapoda, Thalassinidea) CRM 005 - Kim Larsen Deep-sea Tanaidacea from the Gulf of Mexico CRM 006 - Katsushi Sakai Upogebiidae of the world (Decapoda, Thalassinidea) CRM 007 - Ivana Karanovic Candoninae (Ostracoda) from the Pilbara region in Western Australia CRM 008 - Frank D.
    [Show full text]
  • St. Georges Bay Fish Harvesters' Ecological Knowledge and White Hake (Urophycis Tenius) Predation on Juvenile American Lobster (Homarus Americanus)
    St. Georges Bay Fish Harvesters’ Ecological Knowledge and White Hake (Urophycis tenuis) Predation on Juvenile American Lobster (Homarus americanus): Comparative Analysis of Research Results SRSF Research Report #7 Prepared by Hadley Watts, Holli MacPherson, Anthony Davis, and Mark Hanson in Collaboration with Fisheries and Oceans Canada, Gulf Region Gulf Nova Scotia Bonafide Fishermen’s Association Social Research for Sustainable Fisheries (SRSF) at St. Francis Xavier University February 2003 Summary of Findings White hake (Urophycis tenuis) is a demersal fish species that inhabits the nearshore waters of the Southern Gulf of St. Lawrence (sGSL). Recently, many St. Georges Bay fishermen have expressed concern that the white hake is a predator of juvenile American lobster (Homarus americanus). Standard research surveys do not support these concerns. Fishermen maintain that these surveys were conducted at inappropriate sampling times and locations. To address these concerns, a multiphase collaborated study was developed where groundfish were sampled in St. Georges Bay during a time of year and in locations selected by fishermen. Six sampling sites covering two depth zones of 15-30 and 30-40 meters were sampled with gillnets. A total of 3452 groundfish stomachs were collected, including 3093 of white hake. American lobster were identified in the stomachs of Atlantic cod and shorthorn sculpin, and not in the stomachs of white hake. This research has significantly increased our knowledge of the feeding habits of groundfish in St. Georges Bay. It has shown that incorporating fish harvesters’ ecological knowledge will enhance the design and conduct of research aimed at exploring groundfish ecology. It has also demonstrated the willingness for fish harvesters to engage enthusiastically, and to share their knowledge in a study that is inclusive, sincere, and respectful.
    [Show full text]
  • Decapoda, Thalassinidea, Axiidae
    TWOSYMP ATRICSPECIES OF AXIUS FROMTHE NORTH-WEST ATLANTIC(DECAPODA, THALASSINIDEA, AXIIDAE) BY BRIAN KENSLEY 1/ Departmentof SystematicBiology, National Museum of NaturalHistory, Smithsonian Institution, Washington,D.C. 20560,U.S.A. ABSTRACT Axiusserratus Stimpson,1852, is redescribed and illustrated, and its distribution based on 54 recordsof 68 specimensis recorded. The sympatric, and rarely recorded Axiusarmatus Smith,1881, isredescribed and illustrated for the rsttime, based on six female specimens from veseparate records.These two species are compared with the eastern Atlantic Axiusstirhynchus Leach,1815. Thethree species can be separated on the basis of the uropodal transverse suture, telsonic and pereopodalspination, and pereopod 4 sternitestructure. RÉSUMÉ Axiusserratus Stimpson,1852 est redé crit et illustréet saré partition gé ographique est donné e, àpartirde 54 signalements de 68 spé cimens. L ’espèce sympatrique Axiusarmatus Smith,1881, rarementrencontré e, est redé crite et illustrée pourla premiè re fois, à partirde sixindividus femelles provenantde cinq stations sé paré es. Ces deux espè ces sont comparé es avec Axiusstirhynchus Leach, 1815,de l’ Atlantiqueoriental. Les trois espè ces peuvent ê trediffé rencié es par la suture transversale del’uropode, les é pinesdu telsonet des pé ré iopodes et en n lastructuredu sternitedu pé ré iopode 4. INTRODUCTION Thegeminate species Axius serratus Stimpson,1852, in the north-western Atlantic, and Axius stirhynchus Leach,1815, in the north-easternAtlantic, are bothlong-established,
    [Show full text]