Nonlin. Processes Geophys., 22, 579–587, 2015 www.nonlin-processes-geophys.net/22/579/2015/ doi:10.5194/npg-22-579-2015 © Author(s) 2015. CC Attribution 3.0 License. Identification of magnetic anomalies based on ground magnetic data analysis using multifractal modelling: a case study in Qoja-Kandi, East Azerbaijan Province, Iran E. Mansouri1, F. Feizi2, and A. A. Karbalaei Ramezanali1 1Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran 2Mine Engineering Department, South Tehran Branch, Islamic Azad University, Tehran, Iran Correspondence to: F. Feizi (
[email protected]) Received: 10 May 2015 – Published in Nonlin. Processes Geophys. Discuss.: 24 July 2015 Revised: 23 September 2015 – Accepted: 24 September 2015 – Published: 7 October 2015 Abstract. Ground magnetic anomaly separation using 1 Introduction the reduction-to-the-pole (RTP) technique and the fractal concentration–area (C–A) method has been applied to the Mineral exploration aims at discovering new mineral de- Qoja-Kandi prospecting area in northwestern Iran. The geo- posits in a region of interest (Abedi et al., 2013). These min- physical survey resulting in the ground magnetic data was eral deposits could be related to magnetic anomalies which conducted for magnetic element exploration. Firstly, the RTP are situated within the underground. In the first step of iden- technique was applied to recognize underground magnetic tification underground magnetic anomalies, a few boreholes anomalies. RTP anomalies were classified into different pop- should be drilled after interpretation of ground magnetic ulations based on the current method. For this reason, drilling data. Obviously, using new methods could increase the reso- point area determination by the RTP technique was compli- lution of the drilling point area determination and decrease cated for magnetic anomalies, which are in the center and the drilling risk.