Design of a Laboratory System for the Prediction of Wireline Tool Sticking Cecilia Mariana Prieto
Total Page:16
File Type:pdf, Size:1020Kb
Design of a Laboratory System for the Prediction of Wireline Tool Sticking by Cecilia Mariana Prieto B.S., Mechanical Engineering (1998) Massachusetts Institute of Technology Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1999 @ Massachusetts Institute of Technology 1999. All rights reserved. Author................................................ Department of Mechanical Engineering May 24, 1999 Certified by........... ................ es o lanco Adjunct Pro essor of Mechanical Engineering Thesis Supervisor A ccepted by ............................. Ain A. Sonin Chairman, Department Committee on Graduate Students Design of a Laboratory System for the Prediction of Wireline Tool Sticking by Cecilia Mariana Prieto Submitted to the Department of Mechanical Engineering on May 24, 1999, in partial fulfillment of the requirements for the degree of Master of Science Abstract This thesis is the design of an apparatus that simulates differential pressure sticking downhole in an oil well. This equipment is to be used to further understand differential pressure sticking and to observe how Schlumberger measurement tool designs can be changed to reduce this effect. The apparatus builds a mudcake, embeds a test piece in the mudcake and measures the force required to pull the test piece free. This apparatus was designed, built and tested. Thesis Supervisor: Ernesto Blanco Title: Adjunct Professor of Mechanical Engineering 2 Contents 1 Overview 9 1.1 Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. 9 1.2 M otivation ... ... .... ... .... ... ... .... ... ... 10 1.3 Schlum berger . .. .. .. .. .. .. .. .. .. .. .. .. .. 12 1.4 Sticking . .. .. .. .. .. .. .. .. .. .. .. .. .. 13 1.5 Differential Pressure Sticking . .. .. .. .. .. .. .. .. .. 14 1.6 Existing Designs and Other Published Testing Procedures . .. .. 18 1.7 Functional Requirements for the Design of the Wireline Stickance Tester 22 2 Development 23 2.1 Initial Design Overview . .. .. .. .. .. .. .. .. .. .. .. .. 23 2.2 Identifying Issues .. .. ... .. .. ... .. .. .. ... .. .. .. 24 2.3 Design of a Prototype of a Stickance Tester .. .. .. .. .. .. 25 2.4 Test Set-Up and Experimental Procedure . .. .. .. .. .. .. 28 2.5 Test Results and Conclusions .. .. .. .. .. .. .. .. .. .. 30 3 Wireline Stickance Tester Design 32 3.1 O verview . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 32 3.2 Filter Housing Assembly . .. .. .. .. .. .. .. .. .. .. .. 33 3.3 Load Cell Assembly . .. .. .. .. .. .. .. .. .. .. .. .. .. 35 3.4 Housing Assembly .. .. .. .. .. .. .. .. .. .. ... .. .. .. 40 3.5 Air Cylinder Actuator ... .. .. ... .. .. .. ... .. .. .. 41 3.6 Full Assembly .. .. .. .. .. .. .. .. .. .. .. .. 42 3 3.7 Testing Procedures .. .. .. .. .. .. .. .. .. .. .. .. 43 4 Testing and Recommendations 45 4.1 Test Results ... .. .. ... .. .. ... .. ... -- - . .. 45 4.2 Conclusion and Recommendations . .. .. .. .. .. .. .. .. .. 47 A Prototype 49 A.1 Dynamic Fluid Loss Cell..... .... .... .. - . .-.- 49 A.2 Machined Parts . .. .. .. .. .. .. .. .. .. .. .. 51 A.3 Seal and Excruder Specifications . .. .. .. .. .. .. .. 60 A.4 Test Results .. .. .. .. .. .. .. .. .. .. .. .. 65 B Wireline Stickance Tester 68 B.1 Enginering Drawings of Machined Parts .. .. .. .. .. 68 B.2 Outsourced Parts .. .. .. .. .. .. .. .. .. 94 B.3 Load Cell Calibration Data .. .. .. .. .. .. .. 99 4 List of Figures 1-1 Frequency of Tool Sticking vs. Tool Failure . 11 11[-2 Wireline & Testing ................... ... ... .. ... 13 L-3 Modes of Sticking .. .. .. .. .. .. .. .. .. - 14 1-4 Differential Pressure Sticking . .. .. .. .. .. .. .. .. .. 15 1-5 Sticking Forces .. .. .. .. .. .. ... .. .. .. 18 1-6 Dowell Stickance Tester . .. .. .. .. .. .. .. .. - 19 1-7 Torque vs. Time .. .. .. .. .. .. .. .. .. .. .. 20 2-1 Schematic of an Initial Design .. .. .. .. .. .. 24 2-2 Bottom Part of the Dynamic Fluid Loss Cell .. .. ... ... .. 26 2-3 Prototype Assembly without the Fluid Loss Cell . ... ... .. ... 26 2-4 Top Views of Top Cap Assembly .. .. .. .. .. .. .. .. 27 2-5 Test Set-Up of Prototype . .. .. .. .. ... ... .. ... 28 2-6 Picture of Temperature Test . .. .. .. .. .. .. .. 29 2-7 O-rings Dynamics .. .. .. .. .. .. ... ... .. ... 30 3-1 Stickance Tester on the Test Stand . .. .. ... ... .. 33 3-2 Cross-Section of the Pressure Vessel . .. .. .. .. .. .. .. .. 34 3-3 Cross-Section of the Filter Assembly . .. ... ... .. ... 35 3-4 Picture of the Filter Housing Assembly . .. .. ... ... .. .. 36 3-5 Picture of the Filter, Gaskets and Filter Ring .. .. ... ... .. 37 3-6 Cross-Section of the Load Cell Assembly . ... ... .. ... 38 3-7 Picture of Load Cell Assembly .. .. .. .. ... ... .... .. 39 3-8 Picture of Load Cell Components . .. .. .. ... ... .. ... 39 5 3-9 Cross-Section of the Housing Assembly .. ... .. ... .. 40 3-10 Schematic of Full Assembly ... ... ... ... ... ... 43 4-1 Picture of The Full Assembled Stickance Tester . ... .. .. 46 4-2 Picture of Mudcake Inside the Filter . .. .. .. .. .. 47 A-1 Engineering Drawing of the Dynamic Fluid Loss Cell . .. 50 A-2 Assembly of Prototype .. .. .. .. .. .. .. .. 52 A-3 Top Cap . .. .. .. .. .. .. .. .. .. 53 A-4 M iddle Cap .. .. .. .. .. .. .. .. .. .. 54 A-5 Seal Retainer . .. .. .. .. .. .. .. .. .. .. .. 55 A -6 H ousing .. .. .. .. .. .. .. .. .. .. .. .. .. 56 A-7 Actuator Rod .. .. .. .. .. .. .. .. .. .. 57 A -8 Test Piece .. .. .. .. .. .. .. .. .. .. .. 58 A-9 Actuator Rod and Test Piece Assembly . .. .. .. .. 59 A-10 Green Tweed Rod Seals . .. .. .. .. .. .. .. .. 61 A-11 Green Tweed Rod Seals . .. .. .. .. .. .. .. .. 62 A-12 Shamban Turcite Excluder . .. .. .. .. .. .. .. 63 A-13 Shamban Turcite Excluder . .. .. .. .. .. .. .. 64 A-14 Sticking Force versus Time, Test 1 .. .. .. .. .. .. .. 65 A-15 Sticking Force versus Time, Test 2 . .. .. .. .. .. .. 65 A-16 Sticking Force versus Time, Test 3 . .. .. .. .. .. .. 66 A-17 Sticking Force versus Time, Test 4 . .. .. .. .. .. 66 A-18 Sticking Force versus Time, Test 5 . .. .. .. .. .. 67 A-19 Sticking Force versus Time, Test 6 . .. .. .. .. .. .. 67 B-1 Full Assembly, DRWO006 . .. .. .. .. .. .. .. .. 69 B-2 Pressure Vessel, DRWO004 .. .. .. .. .. .. .. .. .. 70 B-3 Filter Assembly, DRWOOO1 . .. .. .. .. .. .. .. .. 71 B-4 Housing Assembly, DRWO002 . .. .. .. .. .. .. .. 72 B-5 Load Cell Assembly, DRWO003 . ... ... ... .... 7 3 6 B-6 O-ring Cap, MRCD301 -74 B-7 Top Cap, MRCD302 ....... ........................... 75 B-8 Thermocouple Housing, MRCD303 . ... .. ... .. ... .. ... 76 B-9 Upper Housing, MRCD304 .. .. .. .. .. .. .. .. .. .. .. 77 B-10 Bottom Housing, MRCD305 . .. ... .. ... .. .. ... .. ... 78 B-11 Bottom Cap, MRCD306 .. .. .. ... .. .. .. ... .. .. 79 B-12 Pressure Line Screw, MRCD307 . .. .. .. .. .. .. .. .. 80 B-13 Filter Housing, MRCD308 .. .. .. .. .. .. .. .. .. .. .. 81 B-14 Filter Ring, MRCD309 .. .. .. .. .. .. .. ... .. .. .. .. 82 B-15 Test Piece, MRCD310 .. .. .. .. .. .. .. .. .. .. 83 B-16 Test Piece Coupling, MRCD311 .. .. .. .. .. .. .. .. .. .. 84 B-17 Test Piece Assembly, MRCD312 . .. .. .. .. .. .. .. .. .. 85 B-18 Test Piece Coupling for Cable, MRCD313 .. .. .. .. .. .. 86 B-19 Test Piece Assembly for Cable, MRCD314 .. .. .. .. .. .. 87 B-20 Load Cell Connector, MRCD315 .. .. .. .. .. .. .. 88 B-21 Actuator Rod, MRCD316 . .. .. .. .. .. .. .. .. .. 89 B-22 Shaft Connector, MRCD317 .. .. .. .. .. .. .. .. .. .. .. 90 B-23 Bottom Plate, MRCD318 . ... .. .. .. .. .. .. .. .. .. 91 B-24 Middle Plate, MRCD319 . .. .. .. .. .. .. .. .. .. 92 B-25 Top Plate, MRCD320 .. .. .. .. .. .. .. .. .. .. .. .. .. 93 B-26 Pressure Bulk Head, DH549219 . .. .. .. .. .. .. .. .. 95 B-27 Bimba Stainless Steel Body Air Cylinders . .. .. .. .. .. 96 B-28 Waldes Truarc 0.562 in Retainer Ring . .. .. .. .. .. .. 97 B-29 Waldes Truarc 4.0 in Retainer Ring . .. .. .. .. .. .. .. .. .. 98 B-30 Calibration Data .. .. .. .. .. .. .. .. .. .. .. .. .. .. 100 7 List of Tables 1.1 Differential Pressure Apparatus .. ...... ...... ....... 21 8 Chapter 1 Overview 1.1 Introduction In the oil industry, tools are lowered downhole in an oil well to perform a series of tasks ranging from drilling to taking measurements of the formation to determine the location of oil. These tools repeatedly get stuck and cannot be raised, lowered or rotated. This is even more frequent for tools that have to remain stationary for a long period of time. Once a tool gets stuck, special procedures have to be taken to pull the tool free. These procedures can take a long time and in the oil industry, time is extremely expensive. This is the case for Schlumberger, the leading supplier of services and technology to the international petroleum industry. Its tools, in particular its measurement tools provided by the division Wireline & Testing, get stuck due to a phenomenon called differential pressure sticking. This occurs when a tool or cable is pinned against the borehole wall due to a differential pressure between the borehole and the rock formation. Because of this differential pressure, mud filters through the rock and starts building a mudcake around the wall. The tool gets stuck when it becomes embedded in the mudcake. A theoretical model of this type of tool sticking has been developed [10]. However, the phenomenon is still not completely understood nor is it known how these incidents can be reduced. Thus, this thesis develops the design of a laboratory test equipment to simulate the conditions downhole