Ancient Vicariance Or Recent Long-Distance Dispersal?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
16 Artigo Dyckia Racinae.Indd 1 17/12/2014 10:21:23 398 DORNELES, M.P.; OLIVEIRA, DE J.M.S
Dyckia racinae L.B.Sm. (Bromeliaceae ): morphological description emphasizing the reproductive structures 397 Dyckia racinae L. B. Sm. (Bromeliaceae): morphological description emphasizing the reproductive structures 1 Mariane Paludette Dorneles2, João Marcelo Santos de Oliveira3 & Thais Scotti do Canto-Dorow 4 1 Parte da dissertação de Mestrado da primeira autora no Programa de Pós-graduação em Agrobiologia, Universidade Federal de Santa Maria. 2 Programa de Pós-graduação em Agrobiologia, Universidade Federal de Santa Maria. 3 Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Biologia, Programa de Pós-graduação em Agrobiologia, Av. Roraima s/n, CEP 97105-900, Santa Maria, RS, Brasil - [email protected] 4 Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Biologia, Av. Roraima s/n, CEP 97105-900, Santa Maria, RS, Brasil. Recebido em 20.III.2014. Aceito em 8.X.2014. ABSTRACT – This study presents an analysis of the external morphology and anatomy, especially of the micromorphology of reproductive organs that are important for characterizing Dyckia racinae L.B.Sm. The presence of a parietal U-shaped thickening in the endothecium and in the connective differ from other Dyckia species. Characteristics of pollen grains and ovules, indicated by micromorphology of the sporoderm and structure of the chalazal appendix, respectively, are similar to other species, and useful for characterizing the genus. Preferences for rocky soils, besides leaf characteristics and infl orescence structure, approximate D. racinae to D. cabrerae Smith & Reitz in the main dichotomous keys for the genus. Considering that Dyckia racinae is endemic in Rio Grande do Sul, and that the original description of the species was proposed based on a single cultivated individual, it is clear that the characteristics described in the present study, based on individual species analyzed in their natural environment, are important botanical contributions. -
Network Scan Data
Selbyana 15: 132-149 CHECKLIST OF VENEZUELAN BROMELIACEAE WITH NOTES ON SPECIES DISTRIBUTION BY STATE AND LEVELS OF ENDEMISM BRUCE K. HOLST Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299, USA ABSTRACf. A checklist of the 24 genera and 364 native species ofBromeliaceae known from Venezuela is presented, including their occurrence by state and indications of which are endemic to the country. A comparison of the number of genera and species known from Mesoamerica (southern Mexico to Panama), Colombia, Venezuela, the Guianas (Guyana, Suriname, French Guiana), Ecuador, and Peru is presented, as well as a summary of the number of species and endemic species in each Venezuelan state. RESUMEN. Se presenta un listado de los 24 generos y 364 especies nativas de Bromeliaceae que se conocen de Venezuela, junto con sus distribuciones por estado y una indicaci6n cuales son endemicas a Venezuela. Se presenta tambien una comparaci6n del numero de los generos y especies de Mesoamerica (sur de Mexico a Panama), Colombia, Venezuela, las Guayanas (Guyana, Suriname, Guyana Francesa), Ecuador, y Peru, y un resumen del numero de especies y numero de especies endemicas de cada estado de Venezuela. INTRODUCTION Bromeliaceae (Smith 1971), and Revision of the Guayana Highland Bromeliaceae (Smith 1986). The checklist ofVenezuelan Bromeliaceae pre Several additional country records were reported sented below (Appendix 1) adds three genera in works by Smith and Read (1982), Luther (Brewcaria, Neoregelia, and Steyerbromelia) and (1984), Morillo (1986), and Oliva-Esteva and 71 species to the totals for the country since the Steyermark (1987). Author abbreviations used last summary of Venezuelan bromeliads in the in the checklist follow Brummit and Powell Flora de Venezuela series which contained 293 (1992). -
BROMELI ANA PUBLISHED by the NEW YORK BROMELIAD SOCIETY1 (Visit Our Website
BROMELI ANA PUBLISHED BY THE NEW YORK BROMELIAD SOCIETY1 (visit our website www.nybromeliadsociety.org) November, 2014 Vol. 51, No. 9 THE WBC IN HAWAII - Updates and Corrections by Herb Plever My report of the World Conference in the October issue was silent about visiting a local grower. We were scheduled to visit Larry McGraw’s garden during our trip to Lyon Arboretum and Nu’uanu Pali overlook, but were advised that we had to skip the visit because our bus couldn’t make the steep turnaround on Lisa Vinzant’s unnamed Auction Neo. the narrow road up to the garden. (We were running There was a lot of suspense about the late.) beautiful, unnamed Neoregelia generously But I learned from the In Larry McGraw’s garden - what donated by Lisa Vinzant, but it had not yet been looks like Neo. ‘Fireball’ in the back, report in the East London Tillandsia streptophylla in the middle auctioned when I had to leave. Lisa had given the Bromeliad Society (South and Tillandsia xerographica in front. buyer the right to name the plant (subject to her Africa) Newsletter that approval). I have heard that the plant went for another bus did manage to visit Larry McGraw’s $600 but the purchaser likely believes that is a garden and the people were very impressed. The bargain for such an outstanding plant. The winner and adjacent photo is from that Newsletter. any name given the plant have not yet been We did not stay to the end of the Rare Plant confirmed. (See photo above.) Auction on Saturday night after the banquet, as we Two trees dominated the coastal landscape on had an early flight to Kona the next morning. -
Cytotype Associations, Ecological Divergence and Genetic Variation in the Apomictic Complex Paspalum Intermedium Munro Ex Morong (Poaceae)
Cytotype Associations, Ecological Divergence and Genetic Variation in the Apomictic Complex Paspalum intermedium Munro Ex Morong (Poaceae) Dissertation for the award of the degree “Doctor of Philosophy” Ph.D. Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen within the doctoral program Biology of the Georg-August University School of Science (GAUSS) Submitted by Piyal Karunarathne Göttingen, 2018 THESIS COMMITTEE Prof. Dr. Elvira Hörandl Department of Systematics, Biodiversity and Evolution of Plants (with herbarium) Albrecht-von-Haller Institute for Plant Sciences University of Göttingen, Germany Prof. Dr. Holger Kreft Department of Biodiversity, Macroecology & Biogeography Faculty of Forest Sciences and Forest Ecology University of Göttingen, Germany Dr. Diego Hojsgaard Department of Systematics, Biodiversity and Evolution of Plants (with herbarium) Albrecht-von-Haller Institute for Plant Sciences University of Göttingen, Germany MEMBERS OF THE EXAMINATION BOARD Reviewer Prof. Dr. Elvira Hörandl Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), Albrecht-von-Haller Institute for Plant Sciences University of Göttingen, Germany Second Prof. Dr. Holger Kreft reviewer Department of Biodiversity, Macroecology & Biogeography Faculty of Forest Sciences and Forest Ecology University of Göttingen, Germany Further members of the Examination Board Prof. Dr. Stefan Scheu J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Prof. Dr. Mark Maraun J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Prof. Dr. Thomas Friedl Dept. EPSAG University of Göttingen Dr. Sven Bradler J.F. Blumenbach-Institut für Zoologie und Anthropologie University of Göttingen ii Acknowledgments I would like to place on record my sincere gratitude to Dr. Diego Hojsgaard for choosing me to carry out this research project, his excellent supervision, tremendous help and advice, and for remaining unflappable despite my various crisis. -
Alcantarea (Bromeliaceae) Leaf Anatomical Characterization and Its Systematic Implications
Nordic Journal of Botany 28: 385Á397, 2010 doi: 10.1111/j.1756-1051.2010.00727.x, # The Authors. Journal compilation # Nordic Journal of Botany 2010 Subject Editors: Guido Grimm and Thomas Denk. Accepted 26 April 2010 Alcantarea (Bromeliaceae) leaf anatomical characterization and its systematic implications Leonardo M. Versieux, Paula Maria Elbl, Maria das Grac¸as Lapa Wanderley and Nanuza Luiza de Menezes L. M. Versieux ([email protected]), Depto de Botaˆnica, Ecologia e Zoologia, Univ. Federal do Rio Grande do Norte, Natal, RN, 59072- 970, Brazil. Á P. M. Elbl and N. Luiza de Menezes, Depto de Botaˆnica, Inst. de Biocieˆncias, Univ. de Sa˜o Paulo, Rua do Mata˜o, trav. 14, n. 321, Sa˜o Paulo, SP, 05508-090, Brazil. Á M. das Grac¸as Lapa Wanderley, Inst. de Botaˆnica, Caixa Postal 3005, Sa˜o Paulo, SP, 01061- 970, Brazil. Alcantarea (Bromeliaceae) has 26 species that are endemic to eastern Brazil, occurring mainly on gneissÁgranitic rock outcrops (‘inselbergs’). Alcantarea has great ornamental potential and several species are cultivated in gardens. Limited data is available in the literature regarding the leaf anatomical features of the genus, though it has been shown that it may provide valuable information for characterizing of Bromeliaceae taxa. In the present work, we employed leaf anatomy to better characterize the genus and understand its radiation into harsh environments, such as inselbergs. We also searched for characteristics potentially useful in phylogenetic analyses and in delimiting Alcantarea and Vriesea. The anatomical features of the leaves, observed for various Alcantarea species, are in accordance with the general pattern shown by other Bromeliaceae members. -
For Enumeration of This Part a Linear Sequence of Lycophytes and Ferns After Christenhusz, M
PTERIDOPHYTA For enumeration of this part A linear sequence of Lycophytes and Ferns after Christenhusz, M. J. M.; Zhang, X.C. & Schneider, H. (2011) has been followed Subclass: Lycopodiidae Beketov (1863). Order: Selaginellales (1874). Selaginellaceae Willkomm, Anleit. Stud. Bot. 2: 163. 1854; Prodr. FI. Hisp. 1(1): 14. 1861. SELAGINELLA P. Beauvois, Megasin Encycl. 9: 478. 1804. Selaginella monospora Spring, Mém. Acad. Roy. Sci. Belgique 24: 135. 1850; Monogr. Lyc. II:135. 1850; Alston, Bull. Fan. Mem. Inst. Biol. Bot. 5: 288, 1954; Alston, Proc. Nat. Inst. Sc. Ind. 11: 228. 1945; Reed, C.F., Ind. Sellaginellarum 160 – 161. 1966; Panigrahi et Dixit, Proc. Nat. Inst. Sc. Ind. 34B (4): 201, f.6. 1968; Kunio Iwatsuki in Hara, Fl. East. Himal. 3: 168. 1972; Ghosh et al., Pter. Fl. East. Ind. 1: 127. 2004. Selaginella gorvalensis Spring, Monogr. Lyc. II: 256. 1850; Bak, Handb. Fern Allies 107. 1887; Selaginella microclada Bak, Jour. Bot. 22: 246. 1884; Selaginella plumose var. monospora (Spring) Bak, Jour. Bot. 21:145. 1883; Selaginella semicordata sensu Burkill, Rec. Bot. Surv. Ind. 10: 228. 1925, non Spring. Plant up to 90 cm, main stem prostrate, rooting on all sides and at intervals, unequally tetragonal, main stem alternately branched 5 – 9 times, branching unequal, flexuous; leavesobscurely green, dimorphus, lateral leaves oblong to ovate-lanceolate, subacute, denticulate to serrulate at base. Spike short, quadrangular, sporophylls dimorphic, large sporophyls less than half as long as lateral leaves, oblong- lanceolate, obtuse, denticulate, small sporophylls dentate, ovate, acuminate. Fertile: October to January. Specimen Cited: Park, Rajib & AP Das 0521, dated 23. 07. -
VOLUME LII Second Quarter 2018
Bromeliaceae VOLUME LII Second Quarter 2018 The Bromeliad Society of Queensland Inc. P.O. Box 565, Fortitude Valley, Q 4006 www.bromsqueensland.com.au Email: [email protected] [email protected] [email protected] Committee Details PRESIDENT Barry Kable (07) 3824 5931 VICE PRESIDENT John Olsen (07) 3856 0265 TREASURER John Olsen SECRETARY Alfonso Trudu COMMITTEE Pam Butler, John Williamson, Gilda Trudu, Glenn Bernoth, Fred Thomson, Tom Isaac, Joy Constantino, Maxim Wilson, Bruce Dunstan. DATABASE MANAGER John Williamson LIBRARIAN Evelyn Rees SHOW CONVENOR John Williamson BROMELIACEAE EDITORS John Olsen, Barbara Murray, Maxim Wilson BSQ WEBMASTER Joy Constantino FIELD DAY COORDINATORS Ruth Kimber & Bev Mulcahy SEED BANK COORDINATOR Peter Ball SUPPER STEWARDS Selga Boothby & Sharon Born PLANT SALES Margaret Kraa & Lee Thornycroft ASSISTANT SALES Michelle Cameron COMPETITION STEWARDS Fred Thomson, Denice McLean, Helen Moriarty NEWSLETTER COORDINATOR Maxim Wilson ASSISTANT SHOW CONVENER Peter Ball HALL COORDINATOR David Rees RAFFLE COORDINATOR Lesley Gibbs EXHIBITION COORDINATOR Amanda Meads HISTORIAN Glenn Bernoth MONTHLY MEETINGS of the Society are held on the 3 rd Thursday of each month except for December, at the Uniting Hall, 52 Merthyr Road, New Farm, Brisbane, commencing 7:30 pm. ANNUAL GENERAL MEETING is held immediately before the March Meeting Front Cover: Edmundoa ‘Rosea’ painting Rear Cover: Tillandsia funckiana By: Steve Molnar The Bromeliad Society of Queensland Inc., gives permission to all Bromeliad Societies to reprint articles in their journals provided [email protected] is advised and proper acknowledgement is given to the original author and Bromeliaceae. This permission does not apply to any other person or organisation without the prior permission of the author. -
Taxonomic Revision of the Chilean Puya Species (Puyoideae
Taxonomic revision of the Chilean Puya species (Puyoideae, Bromeliaceae), with special notes on the Puya alpestris-Puya berteroniana species complex Author(s): Georg Zizka, Julio V. Schneider, Katharina Schulte and Patricio Novoa Source: Brittonia , 1 December 2013, Vol. 65, No. 4 (1 December 2013), pp. 387-407 Published by: Springer on behalf of the New York Botanical Garden Press Stable URL: https://www.jstor.org/stable/24692658 JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms New York Botanical Garden Press and Springer are collaborating with JSTOR to digitize, preserve and extend access to Brittonia This content downloaded from 146.244.165.8 on Sun, 13 Dec 2020 04:26:58 UTC All use subject to https://about.jstor.org/terms Taxonomic revision of the Chilean Puya species (Puyoideae, Bromeliaceae), with special notes on the Puya alpestris-Puya berteroniana species complex Georg Zizka1'2, Julio V. Schneider1'2, Katharina Schulte3, and Patricio Novoa4 1 Botanik und Molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung and Johann Wolfgang Goethe-Universität, Senckenberganlage 25, 60325, Frankfurt am Main, Germany; e-mail: [email protected]; e-mail: [email protected] 2 Biodiversity and Climate Research Center (BIK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany 3 Australian Tropical Herbarium and Tropical Biodiversity and Climate Change Centre, James Cook University, PO Box 6811, Caims, QLD 4870, Australia; e-mail: [email protected] 4 Jardin Botânico Nacional, Camino El Olivar 305, El Salto, Vina del Mar, Chile Abstract. -
Water Relations of Bromeliaceae in Their Evolutionary Context
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Botanical Journal of the Linnean Society, 2016, 181, 415–440. With 2 figures Think tank: water relations of Bromeliaceae in their evolutionary context JAMIE MALES* Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK Received 31 July 2015; revised 28 February 2016; accepted for publication 1 March 2016 Water relations represent a pivotal nexus in plant biology due to the multiplicity of functions affected by water status. Hydraulic properties of plant parts are therefore likely to be relevant to evolutionary trends in many taxa. Bromeliaceae encompass a wealth of morphological, physiological and ecological variations and the geographical and bioclimatic range of the family is also extensive. The diversification of bromeliad lineages is known to be correlated with the origins of a suite of key innovations, many of which relate directly or indirectly to water relations. However, little information is known regarding the role of change in morphoanatomical and hydraulic traits in the evolutionary origins of the classical ecophysiological functional types in Bromeliaceae or how this role relates to the diversification of specific lineages. In this paper, I present a synthesis of the current knowledge on bromeliad water relations and a qualitative model of the evolution of relevant traits in the context of the functional types. I use this model to introduce a manifesto for a new research programme on the integrative biology and evolution of bromeliad water-use strategies. The need for a wide-ranging survey of morphoanatomical and hydraulic traits across Bromeliaceae is stressed, as this would provide extensive insight into structure– function relationships of relevance to the evolutionary history of bromeliads and, more generally, to the evolutionary physiology of flowering plants. -
2Do(). '!Phe . Famuy . Are Generally Con§Picu Mono
Rev. Bio\. Trop., 46(3):493-513, 1998 Current. floristk and phytogeographk knowledge of Mexican Bromeliaceae Adolfo Espejo Serna yAna Rosa López-Ferrari1 I Herbario Metropolitano, Depart¡unento de Biología,C.B.S., Universidad Autónoma Metropolitana, Unidad Jztapalapa, Apartado Postal 55,535,09340 México, D. F.,Fax 7244688, e-m<'lil: [email protected] Rece.ived 6-XI-1997. Corrected 28-V-1998. Accepted 19-VI-1998. Abstract: A current floristicand phytogeographic knowledge of native Mexican Bromeliaceae is presented. There are 22 genera of Brorlleliaceae recorded from the country Iha! ¡nelude 326 species. The genus Ursulaea with 2 species is endemic to Mexico, wbíle Hechtiawith 48 oC its 50 specíesbas its principal centerof diversity in the country. 7illandsia (175 spp), Hechtia (48 spp) and Pitcairnia (46 spp) are tbe genera with tbe greatest number of species. We present a comparative análysisof Mexican Bromeliaceae with tbat of other American regions that buve recently published accounts Cor the Family, .particularlythe Mesomerican area,Venezu¡:la, Ecuador, and tbeGuianas.Our results ledus to the cOI1e1usiontbat alltbese floras sbould be considered as distinct. We obse,rve a progressive decre¡¡¡se ofthe Simpson index value related wit� tbe remoteness of the Mexican area. A general análysisof tlrpspeCies numbers of Mexican bromeliad genera shows adistinct preference oftbespeci es forconiferousand oakfo,rests'; folÍowed by t�opical caduci ' folious forests. There is also significan! r¡:presentation of tbe family ifi'o ther vegetation types such as doud forests and tropical perennifolious forests. Generally Mel\ican Bromeliacea¡: speeies hav¡: scárceand sparse populationsandin manyc ases they inbabit diffs,bluffs and scaIJÍs in restrlcted areas,Col1cerning tbe. -
Status of Bamboo in India
International Journal of Economic Plants 2019, 6(1):030-039 Review Article Doi: HTTPS://DOI.ORG/10.23910/IJEP/2019.6.1.0288 Status of Bamboo in India Salil Tewari1*, Harshita Negi1 and R. Kaushal2 1Dept. of Genetics and Plant Breeding, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand (263 145), India 2ICAR-Indian Institute of Soil and Water Conservation, Dehradun, Uttrakhand (248 195), India Corresponding Author Article History Salil Tewari Article ID: IJEP0288 e-mail: [email protected] Received in 15th February, 2019 Received in revised form 21st February, 2019 Accepted in final form 24th February, 2019 Abstract Bamboos are very important forest resources found in the forest as well as the non-forest area in the country. The total bamboo bearing area of India is estimated to be 15.69 million hectares. Endemism in Indian bamboos is of a very high order. The maximum concentration of species is found in the deciduous and semi-evergreen regions of North-east and the tropical moist deciduous forests of North and South India. The North-eastern hilly States of India harbor nearly 90 species of bamboos, 41 of which are endemic to that region. There are 3 large genera (Bambusa, Dendrocalamus, and Ochlandra) of bamboos in India with more than 10 species each. Together, these three genera represent about 45% of the total bamboo species found in India. On the other hand, there are some genera which are represented by only one species each e.g. Ampelocalamus, Sarocalamus, Chimonobambusa, Pseudostachyum and Stapletonia. Bamboos in India show a great diversity in both their habitat and habit of growth. -
Epilist 1.0: a Global Checklist of Vascular Epiphytes
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.