Faunistic Patterns and Diversity Components of Leech Assemblages in Karst Springs of Montenegro
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Confirmation of the North American Leech Placobdella Ornata (Verrill, 1872) (Hirudinida: Glossiphoniidae) in Europe
BioInvasions Records (2015) Volume 4, Issue 3: 185–188 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.3.05 © 2015 The Author(s). Journal compilation © 2015 REABIC Rapid Communication Molecular confirmation of the North American leech Placobdella ornata (Verrill, 1872) (Hirudinida: Glossiphoniidae) in Europe Jan Soors1*, Joost Mertens2, William E. Moser3, Dennis J. Richardson4, Charlotte I. Hammond4 and Eric A. Lazo-Wasem5 1Research Institute for Nature and Forest, Kliniekstraat 25, 1070 Brussels, Belgium 2Vlaamse Milieumaatschappij (VMM), Raymonde de Larochelaan 1, 9051 Sint-Denijs-Westrem, Belgium 3Smithsonian Institution, National Museum of Natural History, Department of Invertebrate Zoology, Museum Support Center MRC 534, 4210 Silver Hill Road, Suitland, MD 20746 USA 4School of Biological Sciences, Quinnipiac University, 275 Mt. Carmel Avenue, Hamden, Connecticut 06518 USA 5Division of Invertebrate Zoology, Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut 06520 USA E-mail: [email protected] (JS), [email protected] (JM), [email protected] (WEM), [email protected] (DJR), [email protected] (CIH), [email protected] (EALW) *Corresponding author Received: 28 January 2015 / Accepted: 15 May 2015 / Published online: 12 June 2015 Handling editor: Vadim Panov Abstract Specimens of the North American leech, Placobdella ornata (Verrill, 1872) were confirmed from the Donkmeer, a freshwater lake in the province of East Flanders, Belgium, by morphological and molecular analysis. Leech specimens from Belgium were morphologically consistent with the syntype series and description of P. ornata by Verrill (1872). Molecular comparison of the Belgian specimens to specimens of P. ornata from the type locality (New Haven, Connecticut, USA) using the cytochrome c oxidase subunit I (COI) gene revealed a similarity of 99.5%. -
Arhynchobdellida (Annelida: Oligochaeta: Hirudinida): Phylogenetic Relationships and Evolution
MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 30 (2004) 213–225 www.elsevier.com/locate/ympev Arhynchobdellida (Annelida: Oligochaeta: Hirudinida): phylogenetic relationships and evolution Elizabeth Bordaa,b,* and Mark E. Siddallb a Department of Biology, Graduate School and University Center, City University of New York, New York, NY, USA b Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA Received 15 July 2003; revised 29 August 2003 Abstract A remarkable diversity of life history strategies, geographic distributions, and morphological characters provide a rich substrate for investigating the evolutionary relationships of arhynchobdellid leeches. The phylogenetic relationships, using parsimony anal- ysis, of the order Arhynchobdellida were investigated using nuclear 18S and 28S rDNA, mitochondrial 12S rDNA, and cytochrome c oxidase subunit I sequence data, as well as 24 morphological characters. Thirty-nine arhynchobdellid species were selected to represent the seven currently recognized families. Sixteen rhynchobdellid leeches from the families Glossiphoniidae and Piscicolidae were included as outgroup taxa. Analysis of all available data resolved a single most-parsimonious tree. The cladogram conflicted with most of the traditional classification schemes of the Arhynchobdellida. Monophyly of the Erpobdelliformes and Hirudini- formes was supported, whereas the families Haemadipsidae, Haemopidae, and Hirudinidae, as well as the genera Hirudo or Ali- olimnatis, were found not to be monophyletic. The results provide insight on the phylogenetic positions for the taxonomically problematic families Americobdellidae and Cylicobdellidae, the genera Semiscolex, Patagoniobdella, and Mesobdella, as well as genera traditionally classified under Hirudinidae. The evolution of dietary and habitat preferences is examined. Ó 2003 Elsevier Inc. All rights reserved. -
Sperm Transfer Through the Vector Tissue in Piscicola Respirans (Clitellata, Hirudinea, Piscicolidae)
Zoologica5 PoloniaeSPERM (2009-2010)-TRANSFER 54-55/1-4:-IN-PISCICOLA 5-12 -RESPIRANS 5 DOI: 10.2478/v10049-010-0001-3 SPERM TRANSFER THROUGH THE VECTOR TISSUE IN PISCICOLA RESPIRANS (CLITELLATA, HIRUDINEA, PISCICOLIDAE) PIOTR WI¥TEK1, ANNA WIDER1 and ALEKSANDER BIELECKI2 1Department of Animal Histology and Embryology, Silesian University, Bankowa 9, 40-007 Katowice, Poland 2Department of Zoology, University of Warmia and Mazury, Oczapowskiego 5, 10-967 Olsztyn-Kortowo, Poland Correspondence to: Piotr wi¹tek, Department of Animal Histology and Embryology, Silesian University, Bankowa 9, 40-007 Katowice, Poland. tel. +48 32 3591361, fax. +48 32 2591318, e-mail: [email protected] Abstract: In fish leeches (Piscicolidae) indirect (hypodermic) insemination has evolved, thus the spermatophores are released in the specialised region of the body wall known as a copulatory area or a copulatory region. The way in which the spermatozoa reach the ovaries is not fully understood. In piscicolids beneath the copulatory area there is a specialized connective tissue (vector tissue), which is thought to guide the spermatozoa toward the ovaries. To date the structure of the vector tissue has not been observed in copulating specimens, which have spermatophores implanted in their coplulatory area. Here we present the first ultrastructural observation of massive sperm transfer from the spermatophore throughout the vector tissue to the ovaries. Our results show that the sperm transfer is both massive and rapid. The migrating sper- matozoa form huge aggregations which push aside the vector tissue cells, in such a way that between these cells voluminous gaps are formed. Unexpectedly to our previous suggestions, the ultrastructural pictures show that the long cytoplasmic processes of granular cells, which constitute the main mass of the vector tissue, are not engaged in sperm transport. -
Especie Nueva De Sanguijuela Del Género Helobdella (Rhynchobdellida: Glossiphoniidae) Del Lago De Catemaco, Veracruz, México
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Acta Zoológica Mexicana (nueva serie) Acta Zoológica MexicanaActa Zool. (n.s.)Mex. 23(1):(n.s.) 23(1)15-22 (2007) ESPECIE NUEVA DE SANGUIJUELA DEL GÉNERO HELOBDELLA (RHYNCHOBDELLIDA: GLOSSIPHONIIDAE) DEL LAGO DE CATEMACO, VERACRUZ, MÉXICO Alejandro OCEGUERA-FIGUEROA City University of New York (CUNY), Graduate School and University Center y Division of Invertebrate Zoology, American Museum of Natural History. Central Park West at 79th Street, Nueva York, Nueva York, 10024, EUA. [email protected] RESUMEN Se describe una especie nueva de sanguijuela del género Helobdella del Lago de Catemaco, Veracruz, México con base en 23 ejemplares. Los organismos se encontraron adheridos a piedras y raíces a las orillas del lago. La especie nueva carece de placa quitinoide dorsal y se diferencia del resto de las especies del género por presentar la superficie dorsal del cuerpo obscura con manchas blancas de tamaño y distribución muy variable; de tres a cinco hileras dorsales de papilas; glándulas salivales difusas en el parénquima; buche con seis pares de ciegos, el último par forma post-ciegos o divertículos. Palabras Clave: Hirudinea, Glossiphoniidae, Helobdella, Catemaco, México, sanguijuela. ABSTRACT A new leech species of the genus Helobdella from Catemaco Lake, Veracruz, Mexico is described based on the examination of 23 specimens. Leeches were found attached to submerged rocks and plants. The new species lacks a nuchal scute and is distinguishable from other species of the genus by the presence of a obscure dorsal surface with white spots of different size and irregularly arranged; three or five longitudinal rows of dorsal papillae; salivary glands diffused in the parenchyma; six pairs of crop caeca, the posterior pair forming post-caeca or diverticula. -
RH: Redescription and Molecular Characterization of Placobdella Pediculata
RH: Redescription and Molecular Characterization of Placobdella pediculata Redescription and Molecular Characterization of Placobdella pediculata Hemingway, 1908 (Hirudinida: Glossiphoniidae) William E. Moser1,5, Dennis J. Richardson2, Nicholas Schlesser3, Charlotte I. Hammond2, and Eric A. Lazo- Wasem4 1Smithsonian Institution, National Museum of Natural History, Department of Invertebrate Zoology, Museum Support Center MRC 534, 4210 Silver Hill Road, Suitland, MD 20746 (e-mail: [email protected]) 2Department of Biological Sciences, Quinnipiac University, 275 Mt. Carmel Avenue, Hamden, Connecticut 06518 (e-mail: [email protected] and [email protected]) 3Minnesota Department of Natural Resources, Lake City Area Fisheries, 1801 South Oak Street, Lake City, Minnesota 55041 (e-mail: [email protected]) 4Division of Invertebrate Zoology, Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut 06520 (e-mail: [email protected]) 5Corresponding Author Abstract: Placobdella pediculata Hemingway, 1908 was originally described from individuals collected attached to Aplodinotus grunniens (freshwater drum) in Lake Pepin, Minnesota. Apparently, no type material was deposited. The acquisition of contemporary specimens from its type host in the type locality facilitated redescription of P. pediculata. Placobdella pediculata is different from its congeners in that its caudal sucker is extended from the body by a pedicel (peduncle), bears digitate processes near the rim of -
Sexual Conflict in Self-Fertile Hermaphrodites
bioRxiv preprint doi: https://doi.org/10.1101/401901; this version posted September 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Sexual conflict in self-fertile hermaphrodites: reproductive differences among species, and between individuals versus cohorts, in the leech genus Helobdella (Lophotrochozoa; Annelida; Clitellata; Hirudinida; Glossiphoniidae) 2 1 1 1 *Roshni G. Iyer , *D. Valle Rogers , Christopher J. Winchell and David A. Weisblat 1 Dept. of Molecular & Cell Biology, 385 LSA, Univ. of California, Berkeley, CA 94720-3200, USA 2 Dept. of Electrical Engineering & Computer Sciences, Univ. of California, Berkeley, CA 94720-3200, USA *These authors contributed equally to the work. August 13, 2018 ABSTRACT Leeches and oligochaetes comprise a monophyletic group of annelids, the Clitellata, whose reproduction is characterized by simultaneous hermaphroditism. While most clitellate species reproduce by cross-fertilization, self-fertilization has been described within the speciose genus Helobdella. Here we document the reproductive life histories and reproductive capacities for three other Helobdella species. Under laboratory conditions, both H. robusta and H. octatestisaca exhibit uniparental reproduction, apparently reflecting self-fertility, and suggesting that this trait is ancestral for the genus. -
Segmented Worms (Phylum Annelida): a Celebration of Twenty Years of Progress Through Zootaxa and Call for Action on the Taxonomic Work That Remains
Zootaxa 4979 (1): 190–211 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Review ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.18 http://zoobank.org/urn:lsid:zoobank.org:pub:8CEAB39F-92C2-485C-86F3-C86A25763450 Segmented worms (Phylum Annelida): a celebration of twenty years of progress through Zootaxa and call for action on the taxonomic work that remains WAGNER F. MAGALHÃES1, PAT HUTCHINGS2,3, ALEJANDRO OCEGUERA-FIGUEROA4, PATRICK MARTIN5, RÜDIGER M. SCHMELZ6, MARK J. WETZEL7, HELENA WIKLUND8, NANCY J. MACIOLEK9, GISELE Y. KAWAUCHI10 & JASON D. WILLIAMS11 1Institute of Biology, Federal University of Bahia, Salvador, 40170-115, Bahia, Brazil. �[email protected]; https://orcid.org/0000-0002-9285-4008 2Australian Museum Research Institute, Australian Museum, Sydney, NSW. Australia. �[email protected]; https://orcid.org/0000-0001-7521-3930 3Biological Sciences, Macquarie University, North Ryde, NSW 2019, Australia. 4Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer circuito s/n, Ciudad Universitaria, 04510, Mexico City, Mexico. �[email protected]; https://orcid.org/0000-0002-5514-9748 5Royal Belgian Institute of Natural Sciences, Taxonomy and Phylogeny, 29 rue Vautier, B-1000 Brussels, Belgium. �[email protected]; https://orcid.org/0000-0002-6033-8412 6IfAB Institute for Applied Soil Biology, Hamburg, Germany. �[email protected] 7Illinois Natural History Survey, Prairie Research Institute at the University of Illinois at Urbana-Champaign, Forbes Natural History Building, MC-652, 1816 S. Oak Street, Champaign, Illinois 61820 USA. �[email protected]; https://orcid.org/0000-0002-4247-0954 8Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden. -
Appendix 9 National-Scale Responses of Macroinvertebrates
Appendix 9: National-scale responses of river macroinvertebrates species to changes in temperature and precipitation Abstract Global climate change is expected to have a large impact on the biodiversity and functioning of freshwater ecosystems because of shifts in temperature, seasonality and weather. The response of freshwater organisms to climate change is likely to vary according to their environmental optima, with some species thriving under new conditions, while some at risk species may decline in abundance. These changes could significantly alter biodiversity, trophic interactions and key ecological processes, affecting current and future management and conservation regimes, as well as compliance with current environmental legislation such as the Water Framework Directive. This study examines the response of 137 river macroinvertebrate species to two climatic variables (temperature and precipitation) from 1,588 sampling sites across the United Kingdom over 15 to 25 years (1983-2007). Using a bespoke modelling method, the sensitivity of each species to changes in temperature and precipitation was identified, with the aim of inferring likely changes in the abundance of particular species in response to climate change. The characterisations of species responses are also used to demonstrate that a combination of species-specific traits and environmental preferences may be a systematic way to predict impacts. Introduction Freshwater ecosystems are considered one of the richest ecosystems globally in terms of biodiversity, sustaining a disproportionate high fraction of species per surface area relative to other ecosystems (Dudgeon et al., 2006, Balian et al., 2008). This biodiversity supports a range of important ecosystem processes (Woodward, 2009) , many of which provide key goods and services, such as the supply of clean drinking water, the dilution of pollution and the harvest of fish and other produce, to name but a few (Millennium Ecosystem Assessment, 2005). -
Biological Diversity of Leeches (Clitellata: Hirudinida) Based on Characteristics of the Karyotype
Wiadomoœci Parazytologiczne 2008, 54(4), 309–314 Copyright© 2008 Polskie Towarzystwo Parazytologiczne Biological diversity of leeches (Clitellata: Hirudinida) based on characteristics of the karyotype Joanna Cichocka, Aleksander Bielecki Department of Zoology, Faculty of Biology, University of Warmia and Mazury, Oczapowskiego 5, 10−957 Olsztyn; E−mail: [email protected] ABSTRACT. The majority of studies on leeches are related to: internal and external morphology. Fewer molecular research projects focus on molecular studies and karyology. The latter are needed to explain the evolutionary and sys− tematic issues. Karyotypes for 22 species of Hirudinida have hitherto been determined, including: 8 species belonging to the Glossiphoniidae family, 3 species of Piscicolidae, 7 of Erpobdellidae, 1 of Haemopidae and 3 of Hirudinidae. The chromosome number vary among individual groups of leeches. Within Glossiphoniidae the chromosome diploid num− ber ranges from 14 to 32, in Piscicolidae from 20 to 32, in Erpobdelliformes from 16 to 22, and in Hirudiniformes from 24 to 28. The karyological analyses were used to show phylogenetic relations between main groups of Hirudinida, and the diploid number of 16 was suggested to be a primitive value. This number tends to increase as the evolution pro− gresses. The phylogeny scheme of leeches proposed by Mann shows the Glossiphoniidae as primitive to the Piscicolidae, and Hirudinidae as giving rise to the Haemopidae and Erpobdellidae. Those hypotheses are herewith con− fronted with morphological, molecular, karyological, ecological and behavioral data. Key words: Hirudinida, leeches, karyology Cytogenetic analyses vs. other research yielded phylogenetic results, except on theirs own, methods in leech investigations are related to spermatogenesis [4], and recently to the ultrastructure of an ovary and oogenesis [5, 6]. -
Leeches (Annelida: Hirudinida) of Northern Arkansas William E
Journal of the Arkansas Academy of Science Volume 60 Article 14 2006 Leeches (Annelida: Hirudinida) of Northern Arkansas William E. Moser National Museum of Natural History, [email protected] Donald J. Klemm U.S. Environmental Protection Agency Dennis J. Richardson Quinnipiac University Benjamin A. Wheeler Arkansas State University Stanley E. Trauth Arkansas State University See next page for additional authors Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Zoology Commons Recommended Citation Moser, William E.; Klemm, Donald J.; Richardson, Dennis J.; Wheeler, Benjamin A.; Trauth, Stanley E.; and Daniels, Bruce A. (2006) "Leeches (Annelida: Hirudinida) of Northern Arkansas," Journal of the Arkansas Academy of Science: Vol. 60 , Article 14. Available at: http://scholarworks.uark.edu/jaas/vol60/iss1/14 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected]. Leeches (Annelida: Hirudinida) of Northern Arkansas Authors William E. Moser, Donald J. Klemm, Dennis J. Richardson, Benjamin A. Wheeler, Stanley E. Trauth, and Bruce A. Daniels This article is available in Journal of the Arkansas Academy of Science: http://scholarworks.uark.edu/jaas/vol60/iss1/14 Journal of the Arkansas Academy of Science, Vol. -
Aquatic Biodiversity and Mosquito Ecology in Urban Wetlands
Aquatic Biodiversity and Mosquito Ecology in Urban Wetlands Jayne K. Hanford April 2020 School of Life and Environmental Sciences The University of Sydney A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Declaration This is to certify that the content of this thesis is my own work. This thesis has not been submitted for any other degree or diploma at any other university or institution. I consent to this thesis being made available for photocopying and loan under the appropriate Australian copyright laws. Funding sources This research was financially funded in part through grants from the Holsworth Wildlife Research Endowment (grant numbers HOLSW2016-R1-F113, 2017-R1, 2019-R2) and the Society of Wetlands Scientists Student Research Award (2016). Jayne K. Hanford Title page photos L-R: mosquito trap, J. Hanford; juvenile corixid, J. Hanford; macroinvertebrate sampling, C. Tyler. ii Table of Contents Author attributions ............................................................................................................................. iv Acknowledgements ............................................................................................................................ vi Abstract ................................................................................................................................................ 1 Chapter 1: ............................................................................................................................................. 2 -
Sorting of Glossiphonia Complanata (Linnaeus, 1758) (Rhynchobdellida: Glossiphoniidae) from Three Aquatic Plants in Tigris River Within Baghdad City
Egyptian Journal of Petroleum (2016) xxx, xxx–xxx HOSTED BY Egyptian Petroleum Research Institute Egyptian Journal of Petroleum www.elsevier.com/locate/egyjp www.sciencedirect.com FULL LENGTH ARTICLE Sorting of Glossiphonia complanata (Linnaeus, 1758) (Rhynchobdellida: Glossiphoniidae) from three aquatic plants in Tigris River within Baghdad city Manar Dawood Salman a, Mohammed K. Shebli a, Mohammed Jassim Obed Alfalahi b, Allaa M. Aenab c,*, S.K. Singh c a Environment and Water Directorate – Ministry of Science and Technology, Baghdad, Iraq b Environmental Engineer, Rasan Group Company, Erbil, Iraq c Environmental Engineering Department, Delhi Technological University, Delhi, India Received 10 June 2016; revised 26 October 2016; accepted 2 November 2016 KEYWORDS Abstract The present study shows that the reason for isolation of Glossiphonia complanata from Glossiphonia complanata; these aquatic plants was firstly founding of aquatic oligochaeta, snails and chironomidae that set- Aquatic plants; tled on aquatic plants as food. Secondly the aquatic plants itself represent favorable environment Snails; for growth and reproduction for G. complanata and as food for oligochaeta, chironomidae and Feeding of G. complanata snails. When the number of G. complanata increased the number of worms and snails decreased as observed. The aim of this study was to discover causes of isolation of G. complanata. Ó 2016 Egyptian Petroleum Research Institute. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction This species is one of the commonest leeches in fresh water and is usually rare on a muddy substratum and found Glossiphonia complanata species is one of phylum Annelida, chiefly on stones and macrophytes [14,16].