Disruption of Transport Activity in a D93H Mutant Thiamine Transporter 1, from a Rogers Syndrome Family

Total Page:16

File Type:pdf, Size:1020Kb

Disruption of Transport Activity in a D93H Mutant Thiamine Transporter 1, from a Rogers Syndrome Family Eur. J. Biochem. 270, 4469–4477 (2003) Ó FEBS2003 doi:10.1046/j.1432-1033.2003.03839.x Disruption of transport activity in a D93H mutant thiamine transporter 1, from a Rogers Syndrome family Dana Baron1, Yehuda G. Assaraf2, Stavit Drori2 and Ami Aronheim1 1Department of Molecular Genetics, The Rappaport Institute for Research in the Medical Sciences and the B. Rappaport Faculty of Medicine, and 2Department of Biology, The Technion-Israel Institute of Technology, Haifa, Israel Rogers syndrome is an autosomal recessive disorder result- transport null cells of a homologous D88H mutation in ing in megaloblastic anemia, diabetes mellitus, and sensori- the hRFC did not result in restoration of MTX trans- neural deafness. The gene associated with this disease port activity, thereby suggesting that D88 is an essential encodes for thiamine transporter 1 (THTR1), a member of residue for MTX transport activity. These results suggest the SLC19 solute carrier family including THTR2 and the that the D93H mutation does not interfere with trans- reduced folate carrier (RFC). Using transient transfections porter expression, glycosylation and plasma membrane into NIH3T3 cells of a D93H mutant THTR1 derived targeting. However, the substitution of this negatively from a Rogers syndrome family, we determined the charged amino acid (Asp93) by a positively charged expression, post-translational modification, plasma mem- residue (His) in an extremely conserved region (the bor- brane targeting and thiamine transport activity. We also der of transmembrane domain 2/intracellular loop 2) in explored the impact on methotrexate (MTX) transport the SLC19 family, presumably inflicts deleterious struc- activity of a homologous missense D88H mutation in the tural alterations that abolish thiamine binding and/or human RFC, a close homologue of THTR1. Western blot translocation. Hence, this functional characterization analysis revealed that the D93H mutant THTR1 was nor- of the D93H mutation provides a molecular basis for mally expressed and underwent a complete N-glycosylation. Rogers syndrome. However, while this mutant THTR1 was targeted to the Keywords: Rogers syndrome; thiamine; transporter; muta- plasma membrane, it was completely devoid of thiamine tions. transport activity. Consistently, introduction into MTX Thiamine responsive megaloblastic anemia (TRMA) also progression, insulin secretion gradually declines to levels known as Rogers syndrome [1], is an early onset autosomal that require insulin therapy. On the other hand, in all recessive disorder that was described in only 20 families TRMA patients, anemia is fully reversed following the all over the world. Patients with Rogers syndrome are administration of high doses of thiamine [5]. diagnosed by the occurrence of multiple clinical manifesta- Fibroblasts isolated from Rogers syndrome patients, tions including: megaloblastic anemia, diabetes mellitus and display only 5–10% of thiamine uptake as compared with sensorineural deafness [Online Mendelian Inheritance in fibroblasts derived from healthy individuals. This uptake Man (OMIM) 249270, http://www.ncbi.nlm.nih.gov/ apparently occurs via a low-affinity, unsaturable thiamine Omim/]. The administration of high doses of thiamine or route [6]. These results are consistent with an entry of alternatively the use of medications such as sulfonylureas thiamine via passive diffusion and may explain the fact that recovers insulin secretion [2–4]. However, with disease high doses of thiamine are able to induce minimally sufficient thiamine levels in Rogers syndrome patients. The gene responsible for Rogers syndrome, SLC19A2, Correspondence to A. Aronheim, Department of Molecular Genetics, was identified by positional cloning [7–9]. SLC19A2 encodes The B. Rappaport Faculty of Medicine, 7th Efron St. Bat-Galim, for a thiamine transporter (THTR1), a member of the solute The Technion-Israel Institute of Technology, Haifa 31096, Israel. carrier family. This family includes SLC19A1 that encodes Fax: + 972 4 8295225, Tel.: + 972 4 8295226, for the reduced folate carrier (RFC) and SLC19A3 that E-mail: [email protected] encodes for thiamine transporter 2, THTR2 [10]. THTR1 Y. G. Assaraf, Department of Biology, The Technion-Israel contains 497-amino acids and has 12 putative transmem- Institute of Technology, Haifa 32000, Israel. brane domains (TMD) [7–9]. THTR1 is responsible for + Fax: + 972 4 8225153, Tel.: + 972 4 8293744, thiamine transport in a Na independent manner and is + E-mail: [email protected] stimulated by H efflux gradient [11]. Abbreviations: DMEM, Dulbecco’s modified Eagle’s medium; MTX, Although all Rogers syndrome patients exhibit similar Methotrexate; THTR1, thiamine transporter 1; TRMA, thiamine clinical manifestations, multiple mutations were identified responsive megaloblastic anemia; hRFC, human reduced folate resulting in premature translation termination due to base carrier; TMD, transmembrane domain. pair insertions or deletions which result in frame-shift. In (Received 23 July 2003, revised 11 September 2003, addition, three missense mutations were described resulting accepted 18 September 2003) in single amino-acid substitutions. Recently we have initiated 4470 D. Baron et al.(Eur. J. Biochem. 270) Ó FEBS2003 studies that are aimed at characterization of the impact BRL Inc.), whereas XtremeGENE reagent (Roche Inc.) was that these missense THTR1 mutations have on the expres- used for Swiss 3T3 cells. Typically, for NIH3T3 cell sion, post-translational modification, plasma membrane transfections, 6 lg of plasmid DNA were used with 9 lL targeting and thiamine transport activity. In a recent paper, of the LipofectAMINE reagent whereas for Swiss 3T3 cells, we described the molecular consequences of a single amino- 2 lg of plasmid DNA were used along with 10 lLof acid substitution identified in an Italian Rogers syndrome XtremeGENE reagent according to the instructions of the family harboring a glycine to aspartate substitution at manufacturer. position 172 of the THTR1 [12]. Although this mutant THTR1 gene is properly transcribed and translated in vitro, Cell extract no protein could be detected in NIH3T3 cells transfected with the mutant G172D THTR1 cultured at 37 °C. Shifting Whole cell extracts were isolated as previously described transfected cells to 28 °C resulted in a substantial expression [17]. of the mutant G172D THTR1 protein thereby allowing for biochemical and functional characterization [12]. The Isolation of THTR1 cDNA G172D mutant THTR1 failed to undergo a complete N-glycosylation, on the glutamine 63 acceptor which is THTR1 cDNA was isolated as previously described [12]. found to be conserved in both THTR1 and THTR2 [12] resulting in its cytoplasmic retention in the endoplasmic Mammalian expression plasmids reticulum. This is in contrast to the other members of the solute carrier family, including the hRFC, in which pCan-THTR1 expression plasmids; pCan is a pcDNA- N-glycosylation plays neither a role in its plasma membrane based (Invitrogen Inc.) mammalian expression vector localization nor in MTX transport activity [13]. Here we expressing proteins downstream of a Myc-epitope tag. describe the characterization of another mutation identified Protein expression is under the control of cytomegalovirus in a French Rogers family harboring an aspartate to (CMV) immediate early promoter. An oligonucleotide histidine substitution at position 93 (D93H) in THTR1 [14]. based PCR approach was used to amplify the human Unlike in a previous analysis of the D93H mutation [15], THTR1 cDNA that was fused, in frame, with the Myc- here we show that the mutant protein was efficiently epitope tag using 5¢-EcoRI and 3¢-XhoI restriction sites. The expressed both in vitro and in vivo and upon immunoflu- Myc tag and polylinker regions are composed of the orescence studies this protein was properly targeted to the following 17 amino acids: MVQKLISEEDLRIHRCR. For plasma membrane. Uptake studies with the D93H mutant fusion of Myc tag to the C-terminus of the THTR1, an protein revealed no [3H]thiamine transport activity. Import- oligonucleotide-based PCR approach was used to amplify antly, this D93 region in THTR1 and the homologous D88 the human THTR1 cDNA that was fused in frame, using vicinity in the hRFC are extremely conserved among all 5¢-HindIII and 3¢-HindIII restriction sites with the Myc tag members of the solute carrier family (SLC19A1, SLC19A2 in the 3¢-end. The correct orientation was verified by XbaI and SLC19A3). Indeed, a hRFC harboring the same D88H digestion generating a 1100-bp fragment due to a unique mutation displayed no methotrexate transport activity. This XbaI site at position 377 within THTR1 cDNA and at is consistent with a previous report in which a D88V mutant the 3¢-end of the pCan expression vector’s multiple cloning RFC showed no transport activity [16]. We suggest that this site. site (i.e. D93 in THTR1 and D88 in hRFC) represents a highly conserved region, which is absolutely essential for the GFP expression plasmid structure and function of all members of the solute carrier family. Hence, the present study constitutes the first This plasmid encodes for the green fluorescent protein under demonstration of a THTR1 mutation that does not interfere the control of the CMV promoter (Life Technologies Inc.). with transporter expression, N-linked glycosylation and plasma membrane targeting but completely disrupts thi- Site-directed mutagenesis amine transport activity. The corresponding oligonucleotides were designed to
Recommended publications
  • Antibodies Products
    Chapter 2 : Gentaur Products List • Human Signal peptidase complex catalytic subunit • Human Sjoegren syndrome nuclear autoantigen 1 SSNA1 • Human Small proline rich protein 2A SPRR2A ELISA kit SEC11A SEC11A ELISA kit SpeciesHuman ELISA kit SpeciesHuman SpeciesHuman • Human Signal peptidase complex catalytic subunit • Human Sjoegren syndrome scleroderma autoantigen 1 • Human Small proline rich protein 2B SPRR2B ELISA kit SEC11C SEC11C ELISA kit SpeciesHuman SSSCA1 ELISA kit SpeciesHuman SpeciesHuman • Human Signal peptidase complex subunit 1 SPCS1 ELISA • Human Ski oncogene SKI ELISA kit SpeciesHuman • Human Small proline rich protein 2D SPRR2D ELISA kit kit SpeciesHuman • Human Ski like protein SKIL ELISA kit SpeciesHuman SpeciesHuman • Human Signal peptidase complex subunit 2 SPCS2 ELISA • Human Skin specific protein 32 C1orf68 ELISA kit • Human Small proline rich protein 2E SPRR2E ELISA kit kit SpeciesHuman SpeciesHuman SpeciesHuman • Human Signal peptidase complex subunit 3 SPCS3 ELISA • Human SLAIN motif containing protein 1 SLAIN1 ELISA kit • Human Small proline rich protein 2F SPRR2F ELISA kit kit SpeciesHuman SpeciesHuman SpeciesHuman • Human Signal peptide CUB and EGF like domain • Human SLAIN motif containing protein 2 SLAIN2 ELISA kit • Human Small proline rich protein 2G SPRR2G ELISA kit containing protein 2 SCUBE2 ELISA kit SpeciesHuman SpeciesHuman SpeciesHuman • Human Signal peptide CUB and EGF like domain • Human SLAM family member 5 CD84 ELISA kit • Human Small proline rich protein 3 SPRR3 ELISA kit containing protein
    [Show full text]
  • Transporters
    Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators (2019). The Concise Guide to Pharmacology 2019/20: Transporters. British Journal of Pharmacology, 176(S1), S397-S493. https://doi.org/10.1111/bph.14753 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/bph.14753 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14753. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters Stephen PH Alexander1 , Eamonn Kelly2, Alistair Mathie3 ,JohnAPeters4 , Emma L Veale3 , Jane F Armstrong5 , Elena Faccenda5 ,SimonDHarding5 ,AdamJPawson5 , Joanna L Sharman5 , Christopher Southan5 , Jamie A Davies5 and CGTP Collaborators 1School of Life Sciences,
    [Show full text]
  • Comprehensive Review on Lactate Metabolism in Human Health☆,☆☆
    Mitochondrion 17 (2014) 76–100 Contents lists available at ScienceDirect Mitochondrion journal homepage: www.elsevier.com/locate/mito Review Comprehensive review on lactate metabolism in human health☆,☆☆ M. Adeva-Andany a,⁎, M. López-Ojén b, R. Funcasta-Calderón a,1,E.Ameneiros-Rodrígueza,1, C. Donapetry-García a,1, M. Vila-Altesor a,1, J. Rodríguez-Seijas a,1 a Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain b Internal Medicine Division, Policlínica Assistens, c/Federico García, 4-planta baja, 15009 La Coruña, Spain article info abstract Article history: Metabolic pathways involved in lactate metabolism are important to understand the physiological response to Received 18 October 2013 exercise and the pathogenesis of prevalent diseases such as diabetes and cancer. Monocarboxylate transporters Received in revised form 19 March 2014 are being investigated as potential targets for diagnosis and therapy of these and other disorders. Glucose and al- Accepted 5 May 2014 anine produce pyruvate which is reduced to lactate by lactate dehydrogenase in the cytoplasm without oxygen Available online 12 June 2014 consumption. Lactate removal takes place via its oxidation to pyruvate by lactate dehydrogenase. Pyruvate may be either oxidized to carbon dioxide producing energy or transformed into glucose. Pyruvate oxidation requires Keywords: Glycolysis oxygen supply and the cooperation of pyruvate dehydrogenase, the tricarboxylic acid cycle, and the mitochondri- Tricarboxylic acid cycle al respiratory chain. Enzymes of the gluconeogenesis pathway sequentially convert pyruvate into glucose. Con- Respiratory chain genital or acquired deficiency on gluconeogenesis or pyruvate oxidation, including tissue hypoxia, may induce Gluconeogenesis lactate accumulation.
    [Show full text]
  • The Effects of Genetic Mutations and Drugs on the Activity of the Thiamine Transporter, SLC19A2
    UCSF UC San Francisco Previously Published Works Title The Effects of Genetic Mutations and Drugs on the Activity of the Thiamine Transporter, SLC19A2. Permalink https://escholarship.org/uc/item/0fb7q1fj Journal The AAPS journal, 23(2) ISSN 1550-7416 Authors Enogieru, Osatohanmwen J Koleske, Megan L Vora, Bianca et al. Publication Date 2021-03-01 DOI 10.1208/s12248-021-00562-4 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The AAPS Journal (2021) 23:35 DOI: 10.1208/s12248-021-00562-4 Brief/Technical Note Theme: Celebrating Women in the Pharmaceutical Sciences Guest Editors: Diane Burgess, Marilyn Morris and Meena Subramanyam The Effects of Genetic Mutations and Drugs on the Activity of the Thiamine Transporter, SLC19A2 Osatohanmwen J. Enogieru,1 Megan L. Koleske,1 Bianca Vora,1 Huy Ngo,1 Sook Wah Yee,1 Derrick Chatad,2 Marina Sirota,3,4,5 and Kathleen M. Giacomini1,4 Received 11 November 2020; accepted 26 January 2021 Abstract. A rare cause of megaloblastic anemia (MA) is thiamine-responsive megalo- blastic anemia (TRMA), a genetic disorder caused by mutations in SLC19A2 (encoding THTR1), a thiamine transporter. The study objectives were to (1) functionally characterize selected TRMA-associated SLC19A2 variants and (2) determine whether current prescrip- tion drugs associated with drug-induced MA (DIMA) may act via inhibition of SLC19A2. Functional characterization of selected SLC19A2 variants was performed by confocal microscopy and isotopic uptake studies of [3H]-thiamine in HEK293 cells. Sixty-three drugs associated with DIMA were screened for SLC19A2 inhibition in isotopic uptake studies. Three previously uncharacterized SLC19A2 variants identified in TRMA patients exhibited disrupted localization to the plasma membrane along with near-complete loss-of-function.
    [Show full text]
  • Linking Vitamin B1 with Cancer Cell Metabolism Jason a Zastre*, Rebecca L Sweet, Bradley S Hanberry and Star Ye
    Zastre et al. Cancer & Metabolism 2013, 1:16 http://www.cancerandmetabolism.com/content/1/1/16 Cancer & Metabolism REVIEW Open Access Linking vitamin B1 with cancer cell metabolism Jason A Zastre*, Rebecca L Sweet, Bradley S Hanberry and Star Ye Abstract The resurgence of interest in cancer metabolism has linked alterations in the regulation and exploitation of metabolic pathways with an anabolic phenotype that increases biomass production for the replication of new daughter cells. To support the increase in the metabolic rate of cancer cells, a coordinated increase in the supply of nutrients, such as glucose and micronutrients functioning as enzyme cofactors is required. The majority of co- enzymes are water-soluble vitamins such as niacin, folic acid, pantothenic acid, pyridoxine, biotin, riboflavin and thiamine (Vitamin B1). Continuous dietary intake of these micronutrients is essential for maintaining normal health. How cancer cells adaptively regulate cellular homeostasis of cofactors and how they can regulate expression and function of metabolic enzymes in cancer is underappreciated. Exploitation of cofactor-dependent metabolic pathways with the advent of anti-folates highlights the potential vulnerabilities and importance of vitamins in cancer biology. Vitamin supplementation products are easily accessible and patients often perceive them as safe and beneficial without full knowledge of their effects. Thus, understanding the significance of enzyme cofactors in cancer cell metabolism will provide for important dietary strategies and new molecular targets to reduce disease progression. Recent studies have demonstrated the significance of thiamine-dependent enzymes in cancer cell metabolism. Therefore, this review discusses the current knowledge in the alterations in thiamine availability, homeostasis, and exploitation of thiamine-dependent pathways by cancer cells.
    [Show full text]
  • The Concise Guide to PHARMACOLOGY 2015/16: Transporters
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: Transporters. British Journal of Pharmacology (2015) 172, 6110–6202 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: Transporters Stephen PH Alexander1, Eamonn Kelly2, Neil Marrion2, John A Peters3, Helen E Benson4, Elena Faccenda4, Adam J Pawson4, Joanna L Sharman4, Christopher Southan4, Jamie A Davies4 and CGTP Collaborators L 1 School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2 School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK 3 Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK N 4 Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13355/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets.
    [Show full text]
  • Mirnas Documented to Play a Role in Hematopoietic Cell Lineage. Our
    Table S1: miRNAs documented to play a role in hematopoietic cell lineage. Our review of the literature summarizing miRNAs known to be involved in the development and proliferation of the hematopoietic lineage cells. miRNA Expression/function/target/regulator References miR-150 Elevated during developmental stages of B and T cell maturation. 16-19 Controls B cell differentiation, present in mature, resting T and B cells but decreased upon activation of naïve T or B cells. Plays a role in establishing lymphocyte identity. Very little is known about function in T cells. Regulators: Foxp3 Target: C-Myb miR-146a/b Upregulated in macropgahe inflammatory response. Differentially 17, 20 upregulated in murine Th1 subset but abolished in Th2 subset. Upregulated in response to TCRs stimulation, as well as by IL-1 and TNF. Highly expressed in murine T-regs and could play a role in establishing lymphocyte identity. Modulates activation induced cell death in activated T cells. Negative regulator of TLR and cytokine signaling pathway. Endotoxin tolerance. Antiviral role. Targets: IRAK1, IRAK2, TRAF6, FAF1 miR-16-1 Promote apoptosis by targeting Bcl2 expression, act as tumor 22 cluster suppressor RNAs. May block differentiation of later stage hematopoietic progenitor cells to mature cells. Downregulated in CLL. Target: BCL2. miR-155 Regulator of T and B cell maturation and innate immune response. 23-29 Expressed in primary mediastinal B-cell lymphoma, T and B cells, macrophages and DCs. Upregulated during B cell activation. Involved in T cell differentiation and indicated as a positive regulator of cytokine production. Activated by stimulating TLR3 and INFab receptors in bone derived macrophages (regulation of antimicrobial defense).
    [Show full text]
  • Transporters
    University of Dundee The Concise Guide to PHARMACOLOGY 2015/16 Alexander, Stephen P. H.; Kelly, Eamonn; Marrion, Neil; Peters, John A.; Benson, Helen E.; Faccenda, Elena Published in: British Journal of Pharmacology DOI: 10.1111/bph.13355 Publication date: 2015 Licence: CC BY Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Alexander, S. P. H., Kelly, E., Marrion, N., Peters, J. A., Benson, H. E., Faccenda, E., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators (2015). The Concise Guide to PHARMACOLOGY 2015/16: Transporters. British Journal of Pharmacology, 172(24), 6110-6202. https://doi.org/10.1111/bph.13355 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: Transporters.
    [Show full text]
  • The Adaptive Regulation of Thiamine Pyrophosphokinase-1 Facilitates Malignant Growth During Supplemental Thiamine Conditions
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 83), pp: 35422-35438 Research Paper The adaptive regulation of thiamine pyrophosphokinase-1 facilitates malignant growth during supplemental thiamine conditions Hunter C. Jonus1, Bradley S. Hanberry2, Shivani Khatu1, Jaeah Kim1, Hendrik Luesch3, Long H. Dang4, Michael G. Bartlett1 and Jason A. Zastre1 1Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States of America 2Department of Pediatrics, Emory University, Atlanta, GA, United States of America 3Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States of America 4Division of Hematology/Oncology, Department of Internal Medicine, University of Florida Shands Cancer Center, University of Florida, Gainesville, FL, United States of America Correspondence to: Jason A. Zastre, email: [email protected] Keywords: thiamine; cancer; hypoxia-inducible factor-1α; reactive oxygen species; thiamine pyrophosphokinase-1 Received: August 22, 2018 Accepted: October 06, 2018 Published: October 23, 2018 Copyright: Jonus et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Supplemental levels of vitamin B1 (thiamine) have been implicated in tumor progression. Tumor cells adaptively up-regulate thiamine transport during hypoxic stress. Upon uptake, thiamine pyrophosphokinase-1 (TPK1) facilitates the rapid phosphorylation of thiamine into thiamine pyrophosphate (TPP). However, the regulation of TPK1 during hypoxic stress is undefined. Understanding how thiamine homeostasis changes during hypoxia will provide critical insight into the malignant advantage supplemental thiamine may provide cancer cells.
    [Show full text]
  • Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults
    UC Davis UC Davis Previously Published Works Title Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. Permalink https://escholarship.org/uc/item/71n066f0 Journal Frontiers in psychiatry, 10(APR) ISSN 1664-0640 Authors Dhir, Shibani Tarasenko, Maya Napoli, Eleonora et al. Publication Date 2019 DOI 10.3389/fpsyt.2019.00207 Peer reviewed eScholarship.org Powered by the California Digital Library University of California MINI REVIEW published: 04 April 2019 doi: 10.3389/fpsyt.2019.00207 Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults Shibani Dhir 1†, Maya Tarasenko 1†, Eleonora Napoli 1 and Cecilia Giulivi 1,2* 1 Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States, 2 Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, CA, United States Thiamine (vitamin B1) is an essential nutrient that serves as a cofactor for a number of enzymes, mostly with mitochondrial localization. Some thiamine-dependent enzymes are involved in energy metabolism and biosynthesis of nucleic acids whereas others are part of the antioxidant machinery. The brain is highly vulnerable to thiamine deficiency due to its heavy reliance on mitochondrial ATP production. This is more evident during rapid Edited by: growth (i.e., perinatal periods and children) in which thiamine deficiency is commonly Shannon Rose, associated with either malnutrition or genetic defects. Thiamine deficiency contributes University of Arkansas for Medical Sciences, to a number of conditions spanning from mild neurological and psychiatric symptoms United States (confusion, reduced memory, and sleep disturbances) to severe encephalopathy, ataxia, Reviewed by: congestive heart failure, muscle atrophy, and even death.
    [Show full text]
  • A Novel Homozygous SLC19A2 Mutation in a Portuguese Patient with Diabetes Mellitus and Thiamine-Responsive Megaloblastic Anaemia
    Tahir et al. International Journal of Pediatric Endocrinology (2015) 2015:6 DOI 10.1186/s13633-015-0002-6 CASE REPORT Open Access A novel homozygous SLC19A2 mutation in a Portuguese patient with diabetes mellitus and thiamine-responsive megaloblastic anaemia Sophia Tahir1†, Lieve GJ Leijssen1†, Maha Sherif1, Carla Pereira2, Anabela Morais3 and Khalid Hussain1,4* Abstract Thiamine-responsive megaloblastic anaemia (TRMA) is a rare syndrome where patients present with early onset diabetes mellitus, megaloblastic anaemia and sensorineural deafness. This report describes a new case of TRMA syndrome in a female patient of Portuguese descent, born to unrelated parents. The patient was found to have a novel homozygous change R397X in exon 4 of the SLC19A2 gene, leading to a premature stop codon. The patient’s diabetes and anaemia showed a good response to daily thiamine doses, reducing the daily insulin dose requirement. The report further indicates that TRMA is not only limited to consanguineous or ethnically isolated families, and should be considered as a differential diagnosis for patients presenting with suggestive clinical symptoms. Keywords: TRMA, Diabetes mellitus, Sensorineural deafness, Megaloblastic anaemia, SLC19A2 mutation Introduction endocrine function, but neurological manifestations do Thiamine-responsive megaloblastic anaemia (TRMA; not respond as well [1,3]. OMIM 249270), also called Roger’s syndrome, is a very Most of the TRMA patients originated from consan- rare autosomal recessive disorder characterized by early guineous families, which is consistent with autosomal re- onset diabetes mellitus (DM), megaloblastic anaemia and cessive inheritance [4]. TRMA is caused by homozygous sensorineural deafness. The syndrome was first described mutations in the SLC19A2 gene [4], which encodes a high- by Rogers et al.
    [Show full text]
  • Novel Mutation in the SLC19A2 Gene in an Iranian Family with Thiamine-Responsive Megaloblastic Anemia
    J Clin Res Pediatr Endocrinol 2013;5(3):199-201 DO I: 10.4274/Jcrpe.969 Case Report Novel Mutation in the SLC19A2 Gene in an Iranian Family with Thiamine-Responsive Megaloblastic Anemia: A Series of Three Cases Nosrat Ghaemi1, Martha Ghahraman2, Mohammad Reza Abbaszadegan2, Alireza Baradaran-Heravi3, Rahim Vakili1 1Department of Pediatric Endocrinology, Imam Reza Hospital, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran 2Human Genetics Division, Immunology Research Center, and Medical Genetic Research Center (MGRC), Mashhad University of Medical Sciences (MUMS), Mashhad, Iran 3Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada Introduction Thiamine-responsive megaloblastic anemia (TRMA) or Rogers syndrome is a rare autosomal recessive disorder characterized by early-onset diabetes mellitus, anemia, and sensorineural deafness. Other less common abnormalities such as congenital heart disease, degeneration of the retina and the optic nerve, and stroke-like episodes have also been reported with this syndrome (1). Mutations in the SLC19A2 gene, encoding the ABS TRACT thiamine transporter protein thiamine transporter 1 (THTR1), have Thiamine-responsive megaloblastic anemia (TRMA) is a clinical triad characterized by megaloblastic anemia, non-autoimmune diabetes been associated with TRMA (2,3,4). Although lifelong thiamine mellitus, and sensory-neural hearing loss. Mutations in the thiamine treatment is required for improving the hematologic and endocrine transporter gene, solute carrier family 19, member 2 (SLC19A2), have pathologies, no response has been reported for the neurological been associated with TRMA. Three pediatric patients from a large symptoms including the hearing loss (5,6). This study presents consanguineous Iranian family with hyperglycemia, anemia, and hearing loss were clinically diagnosed with TRMA.
    [Show full text]