Munidopsis Serricornis (Lovén, 1852)

Total Page:16

File Type:pdf, Size:1020Kb

Munidopsis Serricornis (Lovén, 1852) 1 La munidopsis serricorne Munidopsis serricornis (Lovén, 1852) Citation de cette fiche : Noël P., 2015. La munidopsis serricorne Munidopsis serricornis (Lovén, 1852). in Muséum national d'Histoire naturelle [Ed.], 1er décembre 2015. Inventaire national du Patrimoine naturel, pp. 1-6, site web http://inpn.mnhn.fr Contact de l'auteur : Pierre Noël, SPN et DMPA, Muséum national d'Histoire naturelle, 43 rue Buffon (CP 48), 75005 Paris ; e-mail [email protected] Résumé Chez Munidopsis serricornis la carapace est subquadrilatère avec les sillons peu indiqués, sauf le sillon sub- cervical ; les bords latéraux sont très peu convexes et munis de trois dents en avant du sillon, et d'une quatrième dent immédiatement après. Le rostre est tridenté. L'abdomen est inerme, cilié, et possède un sillon transverse. La cornée n'est pas pigmentée. Le fouet antennaire est grêle et nettement plus long que la carapace. Les chélipèdes sont au-moins aussi longs que le corps étendu. Les mâles sont un peu plus petits que les femelles. La longueur post-orbitale de la carapace atteint 10,9 mm pour les mâles, et 13,0 mm pour les femelles (ovigères). La couleur serait blanc-rougeâtre à orange vif avec du pigment blanc au niveau de la ligne médiodorsale, des bords latéraux de la carapace et des dactyles des pattes. Le développement larvaire est court avec trois stades zoés. L'espèce peut être parasitée par le rhizocéphale Cyphosaccus norvegicus. Cette espèce bathyale est trouvée entre (-50) - 300 et -1200 m (-2165), parfois sur sable fin mais le plus souvent en association avec des coraux d'eaux froides comme les Lophelia ou des gorgones comme les Paramuricea ou Acanthogorgia. La distribution générale s'étend principalement en Atlantique nord y compris la Méditerranée occidentale. Les signalements dans l'indo- pacifique correspondent probablement à d'autres espèces décrites assez récemment. Figure 1. Aspect de Munidopsis serricornis en vue Figure 2. Carte de distribution en France dorsale ; adapté en partie d'après Bouvier 1940 et métropolitaine. © P. Noël INPN-MNHN 2015. Martinez & Bernhardt 2003 ; dessin © Emilie Biens. Classification : Phylum Arthropoda Latreille, 1829 > Sub-phylum Crustacea Brünnich, 1772 > Super-classe Multicrustacea Regier, Shultz, Zwick, Hussey, Ball, Wetzer, Martin & Cunningham, 2010 > Classe Malacostraca Latreille, 1802 > Sous-classe Eumalacostraca Grobben, 1892 > Super- ordre Eucarida Calman, 1904 > Ordre Decapoda Latreille, 1802 > Sous-ordre Pleocyemata Burkenroad, 1963 > Infra-ordre Anomura H. Milne Edwards, 1832 > Super-famille Galatheoidea Samouelle, 1819 > Famille Munidopsidae Ortmann, 1898 > Genre Munidopsis Whiteaves, 1874. 2 Synonymes (Osawa & al. 2008 ; GBIF 2015 ; INPN 2015 ; Noms vernaculaires: WoRMS 2015): La munidopsis serricorne. Galathea serricornis Lovén, 1852 Galathea tridentata Esmark, 1857 Principaux noms étrangers. Galathodes rosaceus A. Milne Edwards, 1881 Anglais : squat lobster Galathodes serricornis (Lovén, 1852) Norvégien : Ingle & Christiansen 2004) Galathodes tridentata (Esmark, 1857) Korallkreps ( Galathodes tridentatus (Esmark, 1857) Munidopsis bahamensis Benedict, 1902 N° des bases de données Munidopsis rosacea (A. Milne Edwards, 1857) GBIF ID : 2222690. Munidopsis tenuirostris Benedict, 1902 INPN Cd_Nom : 350482. Munidopsis tridentata (Esmark, 1857) WoRMS AphiaID : 107181. Munidopsis tridentatus (Esmark, 1857) Description (Bouvier 1940 ; Pequegnat & Pequegnat 1970 ; Mayo 1974 ; Baba 1988, 2005 ; Baba & Poore 2002 ; Ingle & Christiansen 2004). La carapace est subquadrilatère avec les sillons peu indiqués, sauf le sillon sub-cervical ; les bords latéraux sont très peu convexes et munis de trois dents en avant du sillon, et d'une quatrième dent immédiatement après. Il y a de fines stries transverses ciliées sur le dos et une paire de dépressions sur les côtés de l'aire cardiaque. Le front est peu oblique, étendu longuement depuis la base du rostre jusqu'à la dent antéro-latérale qui est peu développée. Sur le front se trouve un denticule extra-orbitaire. Le rostre est tridenté. Il n'y a pas d'épine épigastrique. L'abdomen est inerme, cilié, et possède un sillon transverse. Les pédoncules oculaires sont subcylindriques et atteignent à peu près le milieu de la base du rostre ; leur cornée est visible mais elle est non pigmentée et ne présente pas de facettes. Les pédoncules antennulaires dépassent à peine la pointe du rostre et leur article basal est muni de deux longues épines. Le fouet antennaire est très grêle et nettement plus long que la carapace. Le mérus du troisième maxillipède est à peine plus long que l'ischion et il est armé sur son bord de deux puissantes épines l'une vers le milieu, l'autre distale. Les chélipèdes sont au-moins aussi longs que le corps étendu, un peu plus forts chez le mâle que chez la femelle ; il y a une rangée de dents aigües sur le bord interne du mérus, et quelques autres semblables existent au bout distal de l'article et du carpe. Les pinces sont inermes ailleurs mais il y a partout des faisceaux de poils. La "main" de la pince (propode + dactyle) est aussi longue et plus forte que les deux articles précédents réunis ; les doigts représentent le tiers de la longueur de la paume et sont béants à la base et finement denticulés au bord interne. Les pattes 2, 3 et 4 ont une rangée de petites dents au bord supérieur du mérus et du carpe, la terminale étant plus forte et le doigt plus court que le propode. Les pléopodes des segments 3 à 5 sont peu développés, surtout chez le mâle. Les mâles sont un peu plus petits que les femelles. La longueur post-orbitale de la carapace est comprise entre 5,7 et 10,9 mm pour les mâles, entre 4,2 et 9,2 mm pour les femelles et entre 6,3 et 13,0 mm pour les femelles ovigères (Macpherson & Segonzac 2005). La couleur de Munidopsis serricornis ne semble pas avoir été décrite de façon détaillée ; la couleur serait blanc- rougeâtre avec les yeux blancs (Lovén 1852 ; Ingle & Christiansen 2004) ; une photo sur le web (Martinez & Bernhardt 2003) permet de préciser les éléments suivants : couleur générale orange vif avec une ligne médiodorsale blanche, bords latéraux de la carapace blancs et dactyles des pattes ambulatoires (P2 à P4) également blancs. Risques de confusion, espèces voisines. Il existe plus de 220 espèces dans le genre Munidopsis (Baba & al. 2008 ; WoRMS 2015) ; Munidopsis serricornis appartient à un groupe d'espèces ayant en commun les caractères suivants : - portion horizontale du rostre avec antérieurement une paire d'épines latérales, - carapace sans épines dorsales mais avec 4 épines sur la marge latérale, l'épine postérieure étant au niveau du milieu de la carapace , - abdomen sans épines, - pas d'épine oculaire, - marge mésiale du carpe de P1 avec 2 épines distales (la proximale étant la plus forte), - pattes ambulatoires (P2 à P4) avec une rangée d'épines sur une crète dorsale, - et aucun épipodite sur les péréiopodes (Macpherson & Segonzac 2005). Biologie. Les femelles ovigères se rencontrent surtout en hiver et au printemps (Macpherson & Segonzac 2005). Sars (1889) a suivi le développement de cette espèce qui est semblable à celui des autres Galathéides, abstraction faite du rostre qui est plat dès le début larvaire et des épines latérales postérieures qui font défaut (Bouvier 1040). Le développement larvaire est court : il comporte seulement trois stades zoés (Samuelsen 1972). La nourriture pourrait être constituée en partie de particules et de polypes des espèces de gorgones, et coraux hôtes (Macpherson & Segonzac 2005). L'espèce est parasitée par le rhizocéphale Cyphosaccus norvegicus Boschma, 1962 (Høeg & Lützen 1985 ; Lützen 1985) ; ce parasite a sans doute été décrit sur un hôte appartenant à une espèce voisine de Munidopsis récoltée au large de la Somalie (Doflein & Balss 1913) [voir NB. dans le § 3 "distribution]. Les prédateurs de M. serricornis sont sans doute des espèces démersales de poissons, céphalopodes et crustacés. Ecologie. Espèce bathyale (Grieg 1927), trouvée entre -50 m (Ingle & Christiansen 2004) et -2165 m (Bouvier 1922, 1940) mais le plus souvent entre -300 et - 1200 m (Kemp 1910 ; d'Udekem d'Acoz 1999 ; Ingle & Christiansen 2004), parfois sur sable fin (Ingle & Christiansen 2004) mais souvent associée à des coraux d'eaux froides comme Lophelia pertusa (Linnaeus, 1758) (Norman 1894 ; Selbie 1914 ; Samuelsen 1972 ; Jonsson & al. 2004 ; Baeza 2011) ou des gorgones comme Paramuricea placomus (Linnaeus, 1758) (Grieg 1927) ou Paramuricea macrospina (Koch, 1882) (Cartes 1993 ; Martin 2010) ou encore Acanthogorgia spp. (Jonsson & al. 2004 ; Macpherson & Segonzac 2005 ; Baeza 2011). Distribution. La distribution générale de M. serricornis s'étend principalement en Atlantique nord y compris la Méditerranée occidentale. Du nord au sud, en ce qui concerne l'Europe, la distribution générale s'étend depuis les îles Lofoten et le Skager-Rak (Bouvier 1940), Norvège (Lovén, 1852 [locus typicus = Lofoten], Dons 1915, 1937 ; Grieg 1927 ; Burdon-Jones & Tambs-Lyche 1960 ; Brattegard & Christiansen 1997 ; Moen & Svensen 2000), Irlande (Selbie 1914), France - Golfe de Gascogne (Caullery 1896 ; Kemp 1910 ; Lagardère 1973), Espagne (Zariquiey Álvarez 1968) et plus au sud, l'espèce est également connue du Maroc (Milne Edwards & Bouvier 1900; Bouvier 1922), et des Açores (Milne Edwards & Bouvier 1900; Bouvier 1922). En Méditerranée l'espèce n'a été signalée qu'en Catalogne espagnole (Abelló & Valladares 1988 ; Cartes 1993) où elle est très rare. L'espèce est également rare dans l'Atlantique américain où elle est signalée de
Recommended publications
  • A New Species of Squat Lobster of the Genus Hendersonida (Crustacea, Decapoda, Munididae) from Papua New Guinea
    ZooKeys 935: 25–35 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.935.51931 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of squat lobster of the genus Hendersonida (Crustacea, Decapoda, Munididae) from Papua New Guinea Paula C. Rodríguez-Flores1,2, Enrique Macpherson1, Annie Machordom2 1 Centre d’Estudis Avançats de Blanes (CEAB-CSIC), C. acc. Cala Sant Francesc 14 17300 Blanes, Girona, Spain 2 Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain Corresponding author: Paula C. Rodríguez-Flores ([email protected]) Academic editor: I.S. Wehrtmann | Received 10 March 2020 | Accepted 2 April 2020 | Published 21 May 2020 http://zoobank.org/E2D29655-B671-4A4C-BCDA-9A8D6063D71D Citation: Rodríguez-Flores PC, Macpherson E, Machordom A (2020) A new species of squat lobster of the genus Hendersonida (Crustacea, Decapoda, Munididae) from Papua New Guinea. ZooKeys 935: 25–35. https://doi. org/10.3897/zookeys.935.51931 Abstract Hendersonida parvirostris sp. nov. is described from Papua New Guinea. The new species can be distin- guished from the only other species of the genus, H. granulata (Henderson, 1885), by the fewer spines on the dorsal carapace surface, the shape of the rostrum and supraocular spines, the antennal peduncles, and the length of the walking legs. Pairwise genetic distances estimated using the 16S rRNA and COI DNA gene fragments indicated high levels of sequence divergence between the new species and H. granulata. Phylogenetic analyses, however, recovered both species as sister species, supporting monophyly of the genus. Keywords Anomura, mitochondrial genes, morphology, West Pacific Introduction Squat lobsters of the family Munididae Ahyong, Baba, Macpherson & Poore, 2010 are recognised by the trispinose or trilobate front, usually composed of a slender rostrum flanked by supraorbital spines (Ahyong et al.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s).
    [Show full text]
  • Munidopsis Lauensis Baba & De Saint Laurent, 1992
    Zootaxa 3737 (1): 092–096 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3737.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:74259389-ECB8-4787-8954-3D9CFF3783B5 Munidopsis lauensis Baba & de Saint Laurent, 1992 (Decapoda, Anomura, Munidopsidae), a newly recorded squat lobster from a cold seep in Taiwan CHIA-WEI LIN1,2, SHINJI TSUCHIDA3, SAULWOOD LIN4, CHRISTIAN BERNDT5 & TIN-YAM CHAN6* 1Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University. Hualien 97401, Taiwan, R.O.C. 2Department of Exhibition, National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan, R.O.C. 3Japan Agency of Marine Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan. 4Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, R.O.C. 5GEOMAR Helmholtz Centre for Ocean Research Kiel, 24248 Kiel, Germany. 6Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, R.O.C. E-mail: [email protected] *Corresponding author. Abstract The squat lobster, Munidopsis lauensis Baba & de Saint Laurent, 1992, is recorded from Taiwan for the first time. This species was previously known only from deep-sea hydrothermal vents in the South-West Pacific but it was now found at a deep-sea cold seep site off southwestern Taiwan. The identity of the Taiwanese material is confirmed by comparison of sequences from the barcoding gene COI. Munidopsis lauensis can be easily separated from other congeners in Taiwanese waters by the eyes bearing a strong mesiodorsal spine and a small mesioventral spine, smooth carapace, fingers of the cheliped distally spooned and fixed finger without a denticulate carina on the distolateral margin.
    [Show full text]
  • Anomura (Crustacea Decapoda) from the Mayotte Region, Western Indian Ocean
    ATOLL RESEARCH BULLETIN NO. 593 ANOMURA (CRUSTACEA DECAPODA) FROM THE MAYOTTE REGION, WESTERN INDIAN OCEAN Joseph Poupin, Jean-Marie Bouchard, Vincent Dinhut, Régis Cleva, and Jacques Dumas ANOMURA (CRUSTACEA DECAPODA) FROM THE MAYOTTE REGION, WESTERN INDIAN OCEAN Joseph Poupin, Jean-Marie Bouchard, Vincent Dinhut, Régis Cleva and Jacques Dumas Atoll Research Bulletin No. 593 23 October 2013 All statements made in papers published in the Atoll Research Bulletin are the sole responsibility of the authors and do not necessarily represent the views of the Smithsonian Institution or of the editors of the Bulletin. Articles submitted for publication in the Atoll Research Bulletin should be original papers and must be made available by authors for open access publication. Manuscripts should be consistent with the “Author Formatting Guidelines for Publication in the Atoll Research Bulletin.” All submissions to the Bulletin are peer reviewed and, after revision, are evaluated prior to acceptance and publication through the publisher’s open access portal, Open SI (http://opensi.si.edu). Published by SMITHSONIAN INSTITUTION SCHOLARLY PRESS P.O. Box 37012, MRC 957 Washington, D.C. 20013-7012 www.scholarlypress.si.edu The rights to all text and images in this publication are owned either by the contributing authors or third parties. Fair use of materials is permitted for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify the content, and must comply with all other terms or restrictions that may be applicable. Users are responsible for securing permission from a rights holder for any other use. ISSN: 0077-5630 (online) i CONTENT CONTENT .............................................................................................................................
    [Show full text]
  • Symbiosis in Deep-Water Corals
    ;ymbiosis, 37 (2004) 33-61 33 Balaban, Philadelphia/Rehovot Review article. Symbiosis in Deep-Water Corals LENE BUHL-MORTENSEN,. AND PAL B. MORTENSEN Benthic Habitat Research Group, Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway, Tel. +47-55-236936, Fax. +47-55-236830, Email. [email protected] Received October 7, 2003; Accepted December 20, 2003 Abstract Deep or cold-water corals house a rich fauna of more or less closely associated animals. This fauna has been poorly studied, and most of the records are sporadic observations of single species. In this review we compile available records of invertebrates associated with alcyonarian, antipatharian, gorgonian, and scleractinian deep-water corals, including our own previously unpublished observations. Direct observations of the location of mobile species on deep-water corals are few and samples of deep-water corals often contain a mixture of sediments and broken corals. The nature of the relationship between the associated species and the coral is therefore in most cases uncertain. We present a list of species that can be characterised as symbionts. More than 980 species have been recorded on deep-water corals, of these 112 can be characterised as symbionts of which, 30 species are obligate to various cnidarian taxa. Fifty-three percent of the obligate deep-water coral symbionts are parasites, 47% are commensals. The obligate symbionts are rarer than their hosts, which implies that reduced coral abundance and distribution may be critical to the symbionts' ecology. Most of the parasites are endoparasites (37%), whereas ectoparasites and kleptoparasites are less common (13 and 3%, respectively).
    [Show full text]
  • Deep-Water Squat Lobsters (Crustacea: Decapoda: Anomura) from India Collected by the FORV Sagar Sampada
    Bull. Natl. Mus. Nat. Sci., Ser. A, 46(4), pp. 155–182, November 20, 2020 Deep-water Squat Lobsters (Crustacea: Decapoda: Anomura) from India Collected by the FORV Sagar Sampada Vinay P. Padate1, 2, Shivam Tiwari1, 3, Sherine Sonia Cubelio1,4 and Masatsune Takeda5 1Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Government of India. Atal Bhavan, LNG Terminus Road, Puthuvype, Kochi 682508, India 2Corresponding author: [email protected]; https://orcid.org/0000-0002-2244-8338 [email protected]; https://orcid.org/0000-0001-6194-8960 [email protected]; http://orcid.org/0000-0002-2960-7055 5Department of Zoology, National Museum of Nature and Science, Tokyo. 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan. [email protected]; https://orcid/org/0000-0002-0028-1397 (Received 13 August 2020; accepted 23 September 2020) Abstract Deep-water squat lobsters collected during five cruises of the Fishery Oceanographic Research Vessel Sagar Sampada off the Andaman and Nicobar Archipelagos (299–812 m deep) and three cruises in the southeastern Arabian Sea (610–957 m deep) are identified. They are referred to each one species of the families Chirostylidae and Sternostylidae in the Superfamily Chirostyloidea, and five species of the family Munidopsidae and three species of the family Muni- didae in the Superfamily Galatheoidea. Of altogether 10 species of 5 genera dealt herein, the Uro- ptychus species of the Chirostylidae is described as new to science, and Agononida aff. indocerta Poore and Andreakis, 2012, of the Munididae, previously reported from Western Australia and Papua New Guinea, is newly recorded from Indian waters.
    [Show full text]
  • Annotated Checklist of New Zealand Decapoda (Arthropoda: Crustacea)
    Tuhinga 22: 171–272 Copyright © Museum of New Zealand Te Papa Tongarewa (2011) Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea) John C. Yaldwyn† and W. Richard Webber* † Research Associate, Museum of New Zealand Te Papa Tongarewa. Deceased October 2005 * Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand ([email protected]) (Manuscript completed for publication by second author) ABSTRACT: A checklist of the Recent Decapoda (shrimps, prawns, lobsters, crayfish and crabs) of the New Zealand region is given. It includes 488 named species in 90 families, with 153 (31%) of the species considered endemic. References to New Zealand records and other significant references are given for all species previously recorded from New Zealand. The location of New Zealand material is given for a number of species first recorded in the New Zealand Inventory of Biodiversity but with no further data. Information on geographical distribution, habitat range and, in some cases, depth range and colour are given for each species. KEYWORDS: Decapoda, New Zealand, checklist, annotated checklist, shrimp, prawn, lobster, crab. Contents Introduction Methods Checklist of New Zealand Decapoda Suborder DENDROBRANCHIATA Bate, 1888 ..................................... 178 Superfamily PENAEOIDEA Rafinesque, 1815.............................. 178 Family ARISTEIDAE Wood-Mason & Alcock, 1891..................... 178 Family BENTHESICYMIDAE Wood-Mason & Alcock, 1891 .......... 180 Family PENAEIDAE Rafinesque, 1815 ..................................
    [Show full text]
  • Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 3150: 1–35 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Recent and fossil Isopoda Bopyridae parasitic on squat lobsters and porcelain crabs (Crustacea: Anomura: Chirostyloidea and Galatheoidea), with notes on nomenclature and biogeography CHRISTOPHER B. BOYKO1, 2, 5, JASON D. WILLIAMS3 & JOHN C. MARKHAM4 1Department of Biology, Dowling College, 150 Idle Hour Boulevard, Oakdale, NY 11769, USA 2Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @79th St., New York, NY 10024, USA. E-mail: [email protected] 3Department of Biology, Hofstra University, Hempstead, NY 11549, USA. E-mail: [email protected] 4Arch Cape Marine Laboratory, Arch Cape, OR 97102, USA. E-mail: [email protected] 5Corresponding author Table of contents Abstract . 1 Material and methods . 3 Results and discussion . 3 Nomenclatural issues . 26 Aporobopyrus Nobili, 1906 . 26 Aporobopyrus dollfusi Bourdon, 1976 . 26 Parionella Nierstrasz & Brender à Brandis, 1923. 26 Pleurocrypta Hesse, 1865 . 26 Pleurocrypta porcellanaelongicornis Hesse, 1876 . 26 Pleurocrypta strigosa Bourdon, 1968 . 27 Names in synonymy . 27 Acknowledgements . 28 References . 28 Abstract The parasitic isopod family Bopyridae contains approximately 600 species that parasitize calanoid copepods as larvae and decapod crustaceans as adults. In total, 105 species of these parasites (~18% of all bopyrids) are documented from Recent squat lobsters and porcelain crabs in the superfamilies Chirostyloidea and Galatheoidea. Aside from one endoparasite, all the bopyrids reported herein belong to the branchially infesting subfamily Pseudioninae. Approximately 29% (67 of 233 species) of pseudionine species parasitize squat lobsters and 16% (38 of 233 species) parasitize porcelain crabs.
    [Show full text]
  • Articles and Detrital Matter
    Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban,
    [Show full text]
  • An Illustrated Key to the Malacostraca (Crustacea) of the Northern Arabian Sea. Part VI: Decapoda Anomura
    An illustrated key to the Malacostraca (Crustacea) of the northern Arabian Sea. Part 6: Decapoda anomura Item Type article Authors Kazmi, Q.B.; Siddiqui, F.A. Download date 04/10/2021 12:44:02 Link to Item http://hdl.handle.net/1834/34318 Pakistan Journal of Marine Sciences, Vol. 15(1), 11-79, 2006. AN ILLUSTRATED KEY TO THE MALACOSTRACA (CRUSTACEA) OF THE NORTHERN ARABIAN SEA PART VI: DECAPODA ANOMURA Quddusi B. Kazmi and Feroz A. Siddiqui Marine Reference Collection and Resource Centre, University of Karachi, Karachi-75270, Pakistan. E-mails: [email protected] (QBK); safianadeem200 [email protected] .in (FAS). ABSTRACT: The key deals with the Decapoda, Anomura of the northern Arabian Sea, belonging to 3 superfamilies, 10 families, 32 genera and 104 species. With few exceptions, each species is accompanied by illustrations of taxonomic importance; its first reporter is referenced, supplemented by a subsequent record from the area. Necessary schematic diagrams explaining terminologies are also included. KEY WORDS: Malacostraca, Decapoda, Anomura, Arabian Sea - key. INTRODUCTION The Infraorder Anomura is well represented in Northern Arabian Sea (Paldstan) (see Tirmizi and Kazmi, 1993). Some important investigations and documentations on the diversity of anomurans belonging to families Hippidae, Albuneidae, Lithodidae, Coenobitidae, Paguridae, Parapaguridae, Diogenidae, Porcellanidae, Chirostylidae and Galatheidae are as follows: Alcock, 1905; Henderson, 1893; Miyake, 1953, 1978; Tirmizi, 1964, 1966; Lewinsohn, 1969; Mustaquim, 1972; Haig, 1966, 1974; Tirmizi and Siddiqui, 1981, 1982; Tirmizi, et al., 1982, 1989; Hogarth, 1988; Tirmizi and Javed, 1993; and Siddiqui and Kazmi, 2003, however these informations are scattered and fragmentary. In 1983 McLaughlin suppressed the old superfamily Coenobitoidea and combined it with the superfamily Paguroidea and placed all hermit crab families under the superfamily Paguroidea.
    [Show full text]
  • Late Cretaceous and Paleocene Decapod Crustaceans from James Ross Basin, Antarctic Peninsula Author(S): Rodney M
    Paleontological Society Late Cretaceous and Paleocene Decapod Crustaceans from James Ross Basin, Antarctic Peninsula Author(s): Rodney M. Feldmann, Dale M. Tshudy, Michael R. A. Thomson Source: Memoir (The Paleontological Society), Vol. 28, Supplement to Vol. 67, no. 1 of the Journal of Paleontology (Jan., 1993), pp. 1-41 Published by: Paleontological Society Stable URL: http://www.jstor.org/stable/1315582 Accessed: 16/01/2009 20:00 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=paleo. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. Paleontological Society is collaborating with JSTOR to digitize, preserve and extend access to Memoir (The Paleontological Society).
    [Show full text]