Combining Real World Experiences with Worldwide Telescope Visualization to Build a Better Parallax Lab

Total Page:16

File Type:pdf, Size:1020Kb

Combining Real World Experiences with Worldwide Telescope Visualization to Build a Better Parallax Lab Celebrating Science: Putting Education Best Practices to Work ASP Conference Series, Vol. 500 Greg Schultz, Sanlyn Buxner, Linda Shore, and Jonathan Barnes, eds. c 2015 Astronomical Society of the Pacific Combining Real World Experiences with WorldWide Telescope Visualization to Build a Better Parallax Lab E. F. Ladd, 1 E. C. Gingrich, 1 K. E. K. Nottis, 1 P. Udomprasert, 2 and A. A. Goodman2 1Bucknell University, Lewisburg, Pennsylvania, USA; [email protected] 2Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA Abstract. We present a lab activity designed to help students understand the concept of parallax in both astronomical and non-astronomical contexts. In an outdoor setting, students learn the methodology of distance determination via parallax. They identify a distant landmark to establish a reference of direction, and then measure the change in apparent direction for more nearby objects as they change position in a 2 meter radius “orbit” around the “Sun.” This hands-on activity involves large, visually-discernable angles so that students can internalize the concept of parallax from everyday experi- ence. However, students often have di fficulty transferring this experience to the astro- nomical realm, so we pair this hands-on activity with a more explicitly astronomically- based activity using the WorldWide Telescope visualization environment. Students ap- ply the same methodology in this environment and learn how the apparent motion of stars is related to their distance from Earth. The combination of hands-on activity and computer-aided visualization is designed to produce a deeper understanding of paral- lax in the astronomical environment, and an improved understanding of the inherently three-dimensional distribution of objects in our universe. More formal assessment is underway. 1. Introduction Students learn best in active exploratory environments that draw upon their intuitive understanding of the world around them. Transferring this learning into the astronomi- cal context is often di fficult because the size, scale, and structure of the universe and its primary contents are so di fferent from students’ everyday experience (Miller & Brewer 2010). Because of the large distances to even nearby stars (compared to the size of the Earth’s orbit), astronomical parallax measurements typically involve small angles— far too small for visual observation. However, the concept of distance determination via parallax is not limited to these small angles, and students can be introduced to the technique in the terrestrial environment. In this lab activity, students use small terrestrial telescopes to measure the distances to nearby campus landmarks. Visualization tools, such as Microsoft’s WorldWide Telescope (WWT), can help students to better understand the astronomical realm by providing multiple perspectives on the universe 191 192 Ladd et al. The laboratory activity presented here is the first in a series of labs designed to inte- grate hands-on exploration with WWT visualization to improve student understanding of the size, scale, and structure of the universe. The new lab is based on a non-WWT parallax lab previously developed and used for many years by the astronomy faculty in the Department of Physics & Astronomy at Bucknell University. 2. WorldWide Telescope WorldWide Telescope is a rich visualization environment that functions as a virtual telescope (or spaceship!) allowing anyone to make use of real astronomical data to explore and understand the universe. Figure 1. Annotated WWT screenshot. WorldWide Telescope provides the tools and framework to revolutionize STEM education by o ffering students, learners, and educators: • unprecedented access to astronomical data, allowing them to experience the thrill of discovery that comes from exploring and understanding our universe; • tours that guide and encourage learners to engage actively with the material; • the ability to explore the universe in three dimensions, helping them visualize ideas that are otherwise challenging to understand through traditional media. Building a Better Parallax Lab with WWT 193 3. Measuring Parallax on Campus The hands-on component of the lab activity involves measurement of the parallax shifts for prominent objects in the campus landscape. Students use a surveyor’s transit to identify lines of sight to distant and nearby objects. Figure 2. The line of sight to a distant landmark (here, the steeple of a church in town) is used as a reference direction for angle measurements. Students measure the angle between the reference direction, and the direction to a more nearby object, such as an on-campus lamp post. Figure 3. Measurements of the angular separation between the reference direction and the direction to the nearby object are made at several positions in an “orbit” around a central “Sun.” The Sun is a pizza tin marked with twelve sections denoting the months of the year. Students typically make measurements at six positions in the orbit. 194 Ladd et al. 4. Visualizing Astronomical Parallax Students use WWT to transfer their parallax intuition from the terrestrial to celestial environments. Using the pseudo-3D multi-perspective capability of WWT, students view the well-known asterism the Big Dipper from Earth, and from another location six parsecs from Earth. Over this large baseline, the parallax shift is quite obvious, and students can discriminate between nearby and faraway stars. They make detailed measurements of the parallax shift, and determine the distances to several Big Dipper stars. Figure 4. Students can observe the Big Dipper from an “overhead” perspective, which shows the actual distances of these stars from Earth. Here, the grey dots mark the seven prominent stars in the asterism. All are located at a distance of about 80 ly from Earth, except for one which is substantially more distant. Acknowledgments. This research and development project is funded by the Na- tional Science Foundation through the TUES program (DUE-1140440). Additional support is provided by the Microsoft Corporation. References Miller, B. W., & Brewer, W. F. 2010, IJSE, 32, 1549.
Recommended publications
  • Online Visualization of Geospatial Stream Data Using the Worldwide Telescope
    Online Visualization of Geospatial Stream Data using the WorldWide Telescope Mohamed Ali#, Badrish Chandramouli*, Jonathan Fay*, Curtis Wong*, Steven Drucker*, Balan Sethu Raman# #Microsoft SQL Server, One Microsoft Way, Redmond WA 98052 {mali, sethur}@microsoft.com *Microsoft Research, One Microsoft Way, Redmond WA 98052 {badrishc, jfay, curtis.wong, sdrucker}@microsoft.com ABSTRACT execution query pipeline. StreamInsight has been used in the past This demo presents the ongoing effort to meld the stream query to process geospatial data, e.g., in traffic monitoring [4, 5]. processing capabilities of Microsoft StreamInsight with the On the other hand, the WorldWide Telescope (WWT) [9] enables visualization capabilities of the WorldWide Telescope. This effort a computer to function as a virtual telescope, bringing together provides visualization opportunities to manage, analyze, and imagery from the various ground and space-based telescopes in process real-time information that is of spatio-temporal nature. the world. WWT enables a wide range of user experiences, from The demo scenario is based on detecting, tracking and predicting narrated guided tours from astronomers and educators featuring interesting patterns over historical logs and real-time feeds of interesting places in the sky, to the ability to explore the features earthquake data. of planets. One interesting feature of WWT is its use as a 3-D model of earth, enabling its use as an earth viewer. 1. INTRODUCTION Real-time stream data acquisition has been widely used in This demo presents the ongoing work at Microsoft Research and numerous applications such as network monitoring, Microsoft SQL Server groups to meld the value of stream query telecommunications data management, security, manufacturing, processing of StreamInsight with the unique visualization and sensor networks.
    [Show full text]
  • Seeing the Sky Visualization & Astronomers
    Seeing the Sky Visualization & Astronomers Alyssa A. Goodman Harvard Smithsonian Center for Astrophysics & Radcliffe Institute for Advanced Study @aagie WorldWide Telescope Gm1m2 F= gluemultidimensional data exploration R2 Cognition “Paper of the Future” Language* Data Pictures Communication *“Language” includes words & math Why Galileo is my Hero Explore-Explain-Explore Notes for & re-productions of Siderius Nuncius 1610 WorldWide Telescope Galileo’s New Order, A WorldWide Telescope Tour by Goodman, Wong & Udomprasert 2010 WWT Software Wong (inventor, MS Research), Fay (architect, MS Reseearch), et al., now open source, hosted by AAS, Phil Rosenfield, Director see wwtambassadors.org for more on WWT Outreach WorldWide Telescope Galileo’s New Order, A WorldWide Telescope Tour by Goodman, Wong & Udomprasert 2010 WWT Software Wong (inventor, MS Research), Fay (architect, MS Reseearch), et al., now open source, hosted by AAS, Phil Rosenfield, Director see wwtambassadors.org for more on WWT Outreach Cognition “Paper of the Future” Language* Data Pictures Communication *“Language” includes words & math enabled by d3.js (javascript) outputs d3po Cognition Communication [demo] [video] Many thanks to Alberto Pepe, Josh Peek, Chris Beaumont, Tom Robitaille, Adrian Price-Whelan, Elizabeth Newton, Michelle Borkin & Matteo Cantiello for making this posible. 1610 4 Centuries from Galileo to Galileo 1665 1895 2009 2015 WorldWide Telescope Gm1m2 F= gluemultidimensional data exploration R2 WorldWide Telescope gluemultidimensional data exploration WorldWide Telescope gluemultidimensional data exploration Data, Dimensions, Display 1D: Columns = “Spectra”, “SEDs” or “Time Series” 2D: Faces or Slices = “Images” 3D: Volumes = “3D Renderings”, “2D Movies” 4D:4D Time Series of Volumes = “3D Movies” Data, Dimensions, Display Spectral Line Observations Loss of 1 dimension Mountain Range No loss of information Data, Dimensions, Display mm peak (Enoch et al.
    [Show full text]
  • How Do Astronomers Share Data? Reliability and Persistence of Datasets Linked in AAS Publications and a Qualitative Study of Data Practices Among US Astronomers
    How Do Astronomers Share Data? Reliability and Persistence of Datasets Linked in AAS Publications and a Qualitative Study of Data Practices among US Astronomers The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Pepe, Alberto, Alyssa Goodman, August Muench, Merce Crosas, and Christopher Erdmann. 2014. “How Do Astronomers Share Data? Reliability and Persistence of Datasets Linked in AAS Publications and a Qualitative Study of Data Practices among US Astronomers.” PLoS ONE 9 (8): e104798. doi:10.1371/journal.pone.0104798. http:// dx.doi.org/10.1371/journal.pone.0104798. Published Version doi:10.1371/journal.pone.0104798 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12785853 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA How Do Astronomers Share Data? Reliability and Persistence of Datasets Linked in AAS Publications and a Qualitative Study of Data Practices among US Astronomers Alberto Pepe1,2*, Alyssa Goodman1,2, August Muench1, Merce Crosas2, Christopher Erdmann1 1 Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States of America, 2 Institute for Quantitative Social Science, Harvard University, Cambridge, Massachusetts, United States of America Abstract We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year.
    [Show full text]
  • Microsoft Protégé 2012 Case Study Brief OVERVIEW
    Microsoft Protégé 2012 Case Study Brief OVERVIEW If you’re an Australian undergraduate Uni student, you’re eligible to enter the Microsoft Protégé Challenge. Your task is to show us how you would market Microsoft Kinect for Windows for use outside the gaming industry. This Case Study Brief gives you some background info, outlines the challenge and details the rules for entry. This is your chance to get your teeth into a real-life marketing challenge and gain experience that will make your CV stand out. And if you’re the Protégé 2012 Grand Prize winner, you’ll also score an amazing prize pack. BACKGROUND: THE KINECT EFFECT Headquartered in Redmond, USA, Microsoft Corporation gestures captured by the 3D sensor as well as the voice is one of the world’s largest technology companies and a commands captured by the microphone array from pioneer in software products for computing devices. someone much further away than someone using a headset or a phone. More importantly, Kinect software can In May 2005, Microsoft released the second iteration of its understand what each user means by a particular gesture hugely popular Xbox video game console, the Xbox 360. or command across a wide range of possible shapes, sizes, Helping the Xbox 360 in its success was the introduction of and actions of real people. Kinect, which became a gaming phenomenon overnight. People were inspired. Six months down the track, a diverse Through the magic of Kinect, controller-free games and group of hobbyists and academics from around the world entertainment – once the stuff of science fiction – had embraced the possibilities of using Kinect with their become a reality.
    [Show full text]
  • A Satellite Constellation Visualization Program for Walkers and Lattice
    BOUQUET: A SATELLITE CONSTELLATION VISUALIZATION PROGRAM FOR WALKERS AND LATTICE FLOWER CONSTELLATIONS A Thesis by MANDAKH ENKH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2011 Major Subject: Aerospace Engineering Bouquet: A Satellite Constellation Visualization Program for Walkers and Lattice Flower Constellations Copyright 2011 Mandakh Enkh BOUQUET: A SATELLITE CONSTELLATION VISUALIZATION PROGRAM FOR WALKERS AND LATTICE FLOWER CONSTELLATIONS A Thesis by MANDAKH ENKH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Daniele Mortari Committee Members, John Hurtado John Junkins J. Maurice Rojas Head of Department, Dimitris Lagoudas August 2011 Major Subject: Aerospace Engineering iii ABSTRACT Bouquet: A Satellite Constellation Visualization Program for Walkers and Lattice Flower Constellations. (August 2011) Mandakh Enkh, B.S., Texas A&M University Chair of Advisory Committee: Dr. Daniele Mortari The development of the Flower Constellation theory offers an expanded framework to utilize constellations of satellites for tangible interests. To realize the full potential of this theory, the beta version of Bouquet was developed as a practical computer application that visualizes and edits Flower Constellations in a user-friendly manner. Programmed using C++ and OpenGL within the Qt software development environment for use on Windows systems, this initial version of Bouquet is capable of visualizing numerous user defined satellites in both 3D and 2D, and plot trajectories corresponding to arbitrary coordinate frames. The ultimate goal of Bouquet is to provide a viable open source alternative to commercial satellite orbit analysis programs.
    [Show full text]
  • Presented by Alyssa Goodman, Center for Astrophysics | Harvard & Smithsonian, Radcliffe Institute for Advanced Study
    The Radcliffe Wave presented by Alyssa Goodman, Center for Astrophysics | Harvard & Smithsonian, Radcliffe Institute for Advanced Study Nature paper by: João Alves1,3, Catherine Zucker2, Alyssa Goodman2,3, Joshua Speagle2, Stefan Meingast1, Thomas Robitaille4, Douglas Finkbeiner3, Edward Schlafly5 & Gregory Green6 representing (1) University of Vienna; (2) Harvard University; (3) Radcliffe Insitute; (4) Aperio Software; (5) Lawrence Berkeley National Laboratory; (6) Kavli Insitute for Particle Physics and Cosmology The Radcliffe Wave CARTOON* DATA *drawn by Dr. Robert Hurt, in collaboration with Milky Way experts based on data; as shown in screenshot from AAS WorldWide Telescope The Radcliffe Wave Each red dot marks a star-forming blob of gas whose distance from us has been accurately measured. The Radcliffe Wave is 9000 light years long, and 400 light years wide, with crest and trough reaching 500 light years out of the Galactic Plane. Its gas mass is more than three million times the mass of the Sun. video created by the authors using AAS WorldWide Telescope (includes cartoon Milky Way by Robert Hurt) The Radcliffe Wave ACTUALLY 2 IMPORTANT DEVELOPMENTS DISTANCES!! RADWAVE We can now Surprising wave- measure distances like arrangement to gas clouds in our of star-forming gas own Milky Way is the “Local Arm” galaxy to ~5% of the Milky Way. accuracy. Zucker et al. 2019; 2020 Alves et al. 2020 “Why should I believe all this?” DISTANCES!! We can now requires special measure distances regions on the Sky to gas clouds in our (HII regions own Milky Way with masers) galaxy to ~5% accuracy. can be used anywhere there’s dust & measurable stellar properties Zucker et al.
    [Show full text]
  • Microsoft Research Worldwide Telescope Multi-Channel Dome/Frustum Setup Guide
    Microsoft Research WorldWide Telescope Multi-Channel Dome/Frustum Setup Guide Prepared by Beau Guest & Doug Roberts Rev. 1.4, October 2013 WorldWide Telescope Multi-Channel Setup Guide Introduction Microsoft Research WorldWide Telescope (WWT) is a free program designed to give users the ability to explore the universe in a simple easy to use interface. Recently support has been developed to include a variety of playback mediums. This document will detail the steps required for a multi-channel display setup for use in a dome or frustum environment. It is recommended before attempting to setup a multi-channel system that you familiarize yourself with WWT as a system. There are many introductory tours that will help in this process that are included with the software. WWT is an ever evolving program and the steps, descriptions, and information contained in this guide is subject to change at any time. Parts of this guide work on the premise that you have the required data regarding projector positioning and field of view/aspect ratio. Please obtain these data before attempting to start this process. WWT is a trademark of Microsoft and all rights are reserved. 2 WorldWide Telescope Multi-Channel Setup Guide Table of Contents Software Installation ......................................................................................................................................................... 4 FOV Values .....................................................................................................................................................................
    [Show full text]
  • Responding to the Event Deluge
    Responding to the Event Deluge Roy D. Williams·, Scott D. Barthelmyb, Robert B. Dennyc, Matthew J. Graham', and John Swinbankd 'California Institute of Technology "NASA Goddard Space Flight Center 'DC-3 Dreams SP d University of Amsterdam ABSTRACT We present the VOEventNet infrastructure for large-scale rapid follow-up of astronomical events, including selection, annotation, machine intelligence, and coordination of observations. The VOEvent.standard is central to this vision, with distributed and replicated services rather than centralized facilities. We also describe some of the event brokers, services, and software that .are connected to the network. These technologies will become more important in the coming years, with new event streams from Gaia, LOFAR, LIGO, LSST, and many others. Keywords: VOEvent, GCN, TAN, Skyalert, transients 1. Deluge In the late 199Os, the gamma-ray burst (GRB) community ignited the current excitement over transient astronontical events. Gamma-Ray Bursts (GRBs) were a real enigma until ultra-fast event dissemination allowed optical identification of afterglOWS, leading to rich data and rich ·science. The events back then were both valuable and infrequent: every new ORB could make a career for a young astronomer, and they were only detected every few days. However, in the next few years, surveys carried out by telescopes sucb as Gaia, LOFAR, Pan-STARRS, LSST and SICA will produce a flood of hundreds of events every 24 hours, with the scientific jewels surrounded by dross, and so both scalability and discrimination will be increasingly important. We should also point out that a deluge of event metadata is also coming, as more transient surveys come online, and each of those spawns its own streams offollow-up events and annotations.
    [Show full text]
  • The Work of Microsoft Research Connections in the Region
    • To tell you more about Microsoft Research Connections • Global • EMEA • PhD Programme • Other engagements • • • Microsoft Research Connections Work broadly with the academic and research community to speed research, improve education, foster innovation and improve lives around the world. Accelerate university Support university research and research through education through collaborative technology partnerships investments Inspire the next Drive awareness generation of of Microsoft researchers and contributions scientists to research Engagement and Collaboration Focus Core Computer Natural User Earth Education and Health and Science Interface Energy Scholarly Wellbeing Environment Communication Research Accelerators Global Partnerships People • • • • • • • • • • • • • • Investment Focus Education & Earth, Energy, Health & Computer Science Scholarly and Environment Wellbeing Communication Programming, Natural User WW Telescope, Academic Search, MS Biology Tools, Mobile Interfaces Climate Change Digital Humanities, Foundation & Tools Earth Sciences Publishing Judith Bishop Kris Tolle Dan Fay Lee Dirks Simon Mercer Regional Outreach/Engagements EMEA: Fabrizio Gagliardi LATAM: Jaime Puente India: Vidya Natampally Asia: Lolan Song America/Aus/NZ: Harold Javid Engineering High-quality and high-impact software release and community adoption Derick Campbell CMIC EMIC ILDC • • . New member of MSR family • • • . Telecoms, Security, Online services and Entertainment Microsoft Confidential Regional Collaborations at Joint Institutes INRIA, FRANCE
    [Show full text]
  • Scientific Workflow Workbench
    Addressing World-Scale Challenges Computation as a powerful change agent in areas such as Energy, Environment, Healthcare, Education Collaboration and Community Massive amounts of data collected and aggregated from the internet, satellites, sensors, and other sources We need to move from data to knowledge Computing technologies are enabling Astronomy has been one of the first disciplines to embrace data-intensive science with the Virtual Observatory (VO), new approaches applied to world- enabling highly efficient access to data and analysis tools scale challenges in disciplines such at a centralized site. The image shows the as medicine and healthcare, energy Pleiades star cluster form the Digitized Sky Survey combined with an image of the moon, and the environment, educational and synthesized within the WorldWide Telescope service. social progress Research Councils UK Division within Microsoft Research focused on partnerships between academia, industry and government to advance computer science, education, and research in fields that rely heavily upon advanced computing Supporting groundbreaking research to help advance human potential and the wellbeing of our planet Developing advanced technologies and services to support every stage of the research process Microsoft External Research is committed to interoperability and to providing open access, open tools, and open technology Community and Geographic Outreach Education & Earth, Energy & Health & Scholarly Core Computer Environment Wellbeing Science Communication Advanced Research Tools and Services Judith Bishop was in the first group to study computer science in South Africa in 1970 and has stayed at the front of her field of programming languages for distributed systems ever since. She wrote the first BASIC compiler for ICL computers in 1972 and was involved in the first Pascal compiler for the in 1976.
    [Show full text]
  • October 30, 2002 (227.02
    1 1 FEDERAL TRADE COMMISSION 2 DEPARTMENT OF JUSTICE ANTITRUST DIVISION 3 ROUNDTABLE 4 5 6 7 8 9 COMPETITION, ECONOMIC, AND BUSINESS 10 PERSPECTIVES ON SUBSTANTIVE PATENT LAW ISSUES: 11 NON-OBVIOUSNESS AND OTHER PATENTABILITY CRITERIA 12 13 14 15 Wednesday, October 30, 2002 16 10:00 a.m. to 4:30 p.m. 17 18 19 20 21 Federal Trade Commission 22 600 Pennsylvania Avenue, N.W. 23 Room 432 24 Washington, D.C. 25 For The Record, Inc. Waldorf, Maryland (301) 870-8025 2 1 P R O C E E D I N G S 2 - - - - - 3 MR. WILLIAM COHEN: Good morning. Welcome to 4 today's panel on Competition, Economic, and Business 5 Perspectives on Substantive Law Issues. My name is 6 Bill Cohen, and I'm an Assistant General Counsel here 7 at the Federal Trade Commission, and to my left is 8 Susan DeSanti. She's the Deputy General Counsel for 9 Policy Studies. To my right is Hillary Greene, the 10 Project Director for Intellectual Property. 11 The hearing groups we began back in February 12 have now nearly come to their close. Today is the last 13 day directly focused on patent issues, and the hearings 14 will end with one more roundtable on November the 6th. 15 The Department of Justice will not be participating in 16 today's session of the Joint Hearings on Competition 17 and Intellectual Property Law and Policy in the 18 Knowledge-Based Economy. The Department will resume 19 its participation in these hearings at the November 6th 20 session.
    [Show full text]
  • Getting the Most from Your Schmidt Cassegrain Or Any Catadioptric Telescope
    Patrick Moore’s Practical Astronomy Series For other titles published in the series, go to www.springer.com/series/3192 Choosing and Using a New CAT Getting the Most from Your Schmidt Cassegrain or Any Catadioptric Telescope Rod Mollise Rod Mollise 1207 Selma Street Mobile AL 36604 USA ISBN 978-0-387-09771-8 e-ISBN 978-0-387-09772-5 DOI: 10.1007/978-0-387-09772-5 Library of Congress Control Number: 2008934774 © Springer Science+Business Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by simi- lar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper springer.com About the Author Rod Mollise is an engineer by profession. He is also the author of numerous books and magazine articles on every aspect of amateur astronomy. Known to his fans as “Uncle” Rod Mollise, he is most well known for his books about catadioptric tel- escopes (CATs), which aim to help new CAT owners get past the inexperience and anxiety that often accompanies their entry into this wonderful hobby.
    [Show full text]