Redescription of Immatures of Dasyhelea Flavifrons Guérin-Méneville (Culicomorpha: Ceratopogonidae) and New Contribution to the Knowledge of Its Larval Habitats

Total Page:16

File Type:pdf, Size:1020Kb

Redescription of Immatures of Dasyhelea Flavifrons Guérin-Méneville (Culicomorpha: Ceratopogonidae) and New Contribution to the Knowledge of Its Larval Habitats Anais da Academia Brasileira de Ciências (2019) 91(1): e20180047 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201920180047 www.scielo.br/aabc | www.fb.com/aabcjournal Redescription of immatures of Dasyhelea flavifronsGuérin-Méneville (Culicomorpha: Ceratopogonidae) and new contribution to the knowledge of its larval habitats FLORENTINA DÍAZ1, CAROLINA MANGUDO2, 3, RAQUEL M. GLEISER4, 5 and MARÍA M. RONDEROS1 1Centro de Estudios Parasitológicos y de Vectores/CEPAVE, Facultad de Ciencias Naturales y Museo/UNLP, Consejo Nacional de Investigaciones Científicas y Técnicas/CONICET, Boulevard 120, s/n, e/61 y 62 La Plata, Buenos Aires, Argentina 2Instituto de Investigaciones en Energía No Convencional/INENCO, Universidad Nacional de Salta, Av. Bolivia, 5150, A4400FVY Salta, Argentina 3Instituto de Investigaciones en Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Alvarado, 751, Orán, 4530 Salta, Argentina 4Universidad Nacional de Córdoba, CONICET, Instituto Multidisciplinario de Biología Vegetal, Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales/CREAN, Av. Valparaíso, s/n, CC 509, 5000 Córdoba, Argentina 5Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología, Av. Vélez Sársfield, 299, Córdoba, Argentina Manuscript received on January 15, 2018; accepted for publication on May 11, 2018 How to cite: DÍAZ F, MANGUDO C, GLEISER RM AND RONDEROS MM. 2019. Redescription of immatures of Dasyhelea flavifrons Guérin-Méneville (Culicomorpha: Ceratopogonidae) and new contribution to the knowledge of its larval habitats. An Acad Bras Cienc 91: e20180047. DOI 10.1590/0001-3765201920180047. Abstract: The fourth instar larva and pupa of Dasyhelea flavifrons Guérin-Méneville are redescribed, illustrated, and photomicrographed using binocular, phase-contrast, and scanning electron microscopy. Comparisons with the American species of the grisea group were made. The immatures were collected by using a siphon bottle in tree-holes and from water collected in dead snail shells in Salta Province, Argentina, transported to the laboratory and there bred to the emergence of the adults. Details on larval habitats are given. These are the first records from Argentina and in gastrotelmata. Key words: Ceratopogonidae, Dasyhelea flavifrons, gastrotelmata, immatures, tree holes. INTRODUCTION Adult females feed on nectar from flowers and pollen. Moreover, some are important pollinators The biting midges Dasyhelea Kieffer are common of commercial trees such as cacao (Theobroma and mainly diurnal dipterans occurring in all zoogeographical regions, except Antarctica. The cacao) and rubber (Hevea brasiliensis) (Borkent larvae of Dasyhelea develop mostly in shallow and Spinelli 2007, Córdoba et al. 2013). aquatic and semiaquatic habitats, and in general Taxonomically, the recognition of subgenera feed on detritus and algae, though a few species and/or groups of species have been proposed for feed in dead insects (Borkent and Spinelli 2007). all regions of the world. Borkent (2016) listed 77 species for the Neotropics, of which only 12 are Correspondence to: Florentina Díaz known also from their immatures. Subsequently, E-mail: [email protected] / [email protected] Grogan et al. (2016) described 13 new species ORCid: https://orcid.org/0000-0002-5991-6756 from Guadeloupe, and Díaz et al. (2017) described BIOLOGICAL SCIENCES An Acad Bras Cienc (2019) 91(1) FLORENTINA DÍAZ et al. IMMATURES OF Dasyhelea flavifrons two species from Peru and Brazil, all based on Winnertz, but also incompletely. The aim of this adults. Recently, Díaz et al. (2018) described two work is to provide the full redescription of these species, including their immature, from the Yungas immature in accordance with modern standards ecoregion, Argentina. and to present the first records from Argentina and The phytotelmata are aquatic in gastrotelmata as larval habitat. microenvironments formed by the accumulation of water in any part of the body of plants (e.g. MATERIALS AND METHODS leaves, flowers, stems, trunks, tree holes and STUDY AREA artificial containers). The gastrotelmata are aquatic microhabitats formed by the collection of water San Ramón de la Nueva Orán (hereafter Orán), (usually from rainfall) in the shells of dead snails is a city established in northwestern Argentina (Janetzky et al. 1995). In spite of their small size, near the border with Bolivia (23º08’ S, 64º20’ W, snail shells retain water longer than any other natural elevation 337 m). The region has a subtropical container, providing a relatively permanent habitat climate, with an average summer temperature of (Lounibos 1980). The communities of organisms 27.7 °C and winter temperature of 16.4 °C, and that live in these microenvironments are simple a mean annual rainfall of 1,000 mm, occurring and based on detritus; the macroinvertebrates most mostly from October to April, the warmer months. frequently found are insects, immature stages of The study area has been described in more Diptera being dominant (Campos et al. 2011). The detail in Mangudo et al. (2015). Briefly, Orán is knowledge of Ceratopogonidae from Argentina located in the pedemontane floor of the Yungas that breed in these microenvironments is poor; only subtropical montane moist forest (Brown et al. 7 of the 31 genera registered (Borkent and Spinelli 2001), which remains mostly to the East and North 2007) have been associated with phytothelmata: of the city. Besides urbanization, other human Atrichopogon Kieffer, Forcipomyia Meigen, related ecological modifications include industrial Dasyhelea Kieffer,Culiciodes Latreille, Stilobezzia development, agriculture and forestry (Brown et al. Kieffer, Bezzia Kieffer, and Palpomyia Meigen 2001). The city is characterized by a densely built (Campos et al. 2011). central area surrounded by suburban areas with During a sampling program focused on the bigger gardens and more trees; throughout the city collection and study of Diptera that was carried out most buildings are low. in Salta province between 2011 and 2012, larvae ENTOMOLOGICAL SAMPLING and pupae were collected from tree holes and dead snail shells, and reared to adults. Based on Larvae, larval exuviae and pupae were collected the characters of adult males, they were identified between February and March in 2011 and 2012, as Dasyhelea flavifrons. This is considered a wide as a part of a larger study on mosquito (Diptera: spread Holarctic arboreal species, whose larvae Culicidae) larval habitats. Samples were collected have been reported in Europe as terrestrial and from tree holes using a siphon bottle (Müller and inhabiting sap flows, mushrooms and tree holes Marcondes 2006, Mangudo et al. 2010) and from (Dominiak and Szadziewski 2010). However, the snail shells by overturning and examining the original description and the different redescriptions water content from each shell in a white plastic of immatures are incomplete, except for the tray, from which larvae and pupae were collected contribution of Keilin (1921), who described all with a pipette. Tree holes were located in the city stages of this species under the name D. obscura and in yunga forest patches to the north and east of An Acad Bras Cienc (2019) 91(1) e20180047 2 | 14 FLORENTINA DÍAZ et al. IMMATURES OF Dasyhelea flavifrons town, while snail shells were collected from forest various tree species); Borkent and Grogan 2009: 11 patches only. For details on tree holes selection see (in Nearctic catalog; distribution), Borkent 2016: Mangudo et al. (2015, 2018) and for snail shell 65 (in online World catalog); Grogan et al. 2016: sampling see Mangudo et al. (2017). 208 (in review of Guadeloupe records, key). Larvae were preserved in ethanol 80% and Dasyhelea oppressa Thomsen 1935: 285 (New pupae were kept alive in the laboratory isolated in York); Waugh and Wirth 1976: 230 (in revision plastic vials (2 mm) holding water from the larval of eastern United States Dasyhelea; distribution, habitat and containing a piece of humid filter paper, larval habitats – tree holes, sap of oak, elm); Graves to maintain the humidity inside the vials, until adult and Graves 1985: 88 (USA: North Carolina, larval emergence. Emerged adults were maintained alive habitats – shelf fungi); Wilkening et al. 1985: 519 for 24 hours to ensure the development of their final (Florida records); Hribar and Grogan 2005: 231 pigmentation. Adults and their respective exuviae (Monroe County, Florida records); Szadziewski and were stored in vials containing 80% ethanol. Dominiak 2006: 142 (as synonym of C. flavifrons Larval, pupal exuviae and adults were mounted in Guérin-Méneville); Borkent and Grogan 2009: 11 Canada balsam following the technique described (in Nearctic catalog; distribution; as synonym of by Borkent and Spinelli (2007). The technique of D. flavifrons). Ronderos et al. (2000, 2008) was followed to prepare REDESCRIPTION OF THE FOURTH INSTAR LARVA larvae for scanning electron microscopy (SEM). A (FIGS. 1-3, 5) (N=3) camera lucida was used to make illustrations with pen and ink. Photomicrographs were taken with a Total length 4.5 mm. Color in life whitish with the Micrometrics SE Premium digital camera, through head capsule brown, short, wide, tapering to apex a Nikon Eclipse E200 microscope. For larval terms (Fig. 1c, d); chaetotaxy as in Fig. 1b, c. HL 0.29- see Díaz et al. (2018) and for pupae see Borkent 0.30 (0.295, n=3) mm; HW 0.215-0.220 (0.216, (2014). n=3) mm; HR 0.255-0.257 (0.256, n=3); SGW The plates were made in TIFF format in Adobe 0.17-0.19 (0.18, n=3) mm; SGR 1.21 (1.16-1.26, Photoshop version14. The material studied is n=3). Antenna cylindrical (Figs. 1b-d, 2a). Labrum deposited in the División Entomología, Museo de (Fig. 1c, d) 0.80 times longer than wide; palatum La Plata (MLPA), La Plata, Argentina. (Figs. 1b, 2a, 3a) with four pairs of sensillae campaniformia (Figs. 1d, 3b, c), posterior of them RESULTS three pairs of sensillae coeloconica (Figs. 1b, d, 2a, b, 3b, c): mesal one serrate, others simple; messors Dasyhelea flavifrons (Guérin-Méneville) (FIGS.
Recommended publications
  • Austroconops Wirth and Lee, a Lower Cretaceous Genus of Biting Midges
    PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3449, 67 pp., 26 ®gures, 6 tables August 23, 2004 Austroconops Wirth and Lee, a Lower Cretaceous Genus of Biting Midges Yet Living in Western Australia: a New Species, First Description of the Immatures and Discussion of Their Biology and Phylogeny (Diptera: Ceratopogonidae) ART BORKENT1 AND DOUGLAS A. CRAIG2 ABSTRACT The eggs and all four larval instars of Austroconops mcmillani Wirth and Lee and A. annettae Borkent, new species, are described. The pupa of A. mcmillani is also described. Life cycles and details of behavior of each life stage are reported, including feeding by the aquatic larvae on microscopic organisms in very wet soil/detritus, larval locomotion, female adult biting habits on humans and kangaroos, and male adult swarming. Austroconops an- nettae Borkent, new species, is attributed to the ®rst author. Cladistic analysis shows that the two extant Austroconops Wirth and Lee species are sister species. Increasingly older fossil species of Austroconops represent increasingly earlier line- ages. Among extant lineages, Austroconops is the sister group of Leptoconops Skuse, and together they form the sister group of all other Ceratopogonidae. Dasyhelea Kieffer is the sister group of Forcipomyia Meigen 1 Atrichopogon Kieffer, and together they form the sister group of the Ceratopogoninae. Forcipomyia has no synapomorphies and may be paraphyletic in relation to Atrichopogon. Austroconops is morphologically conservative (possesses many plesiomorphic features) in each life stage and this allows for interpretation of a number of features within Ceratopogonidae and other Culicomorpha. A new interpretation of Cretaceous fossil lineages shows that Austroconops, Leptoconops, Minyohelea Borkent, Jordanoconops 1 Royal British Columbia Museum, American Museum of Natural History, and Instituto Nacional de Biodiversidad.
    [Show full text]
  • Redalyc.Description of Fourth Instar Larva and Pupa of Atrichopogon
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil MARINO, PABLO I.; SPINELLI, GUSTAVO R.; FERREIRA-KEPPLER, RUTH; RONDEROS, MARÍA M. Description of fourth instar larva and pupa of Atrichopogon delpontei Cavalieri and Chiossone (Diptera: Ceratopogonidae) from Brazilian Amazonia Anais da Academia Brasileira de Ciências, vol. 89, núm. 3, 2017, pp. 2081-2094 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32753602011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2017) 89(3 Suppl.): 2081-2094 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201720150223 www.scielo.br/aabc | www.fb.com/aabcjournal Description of fourth instar larva and pupa of Atrichopogon delpontei Cavalieri and Chiossone (Diptera: Ceratopogonidae) from Brazilian Amazonia PABLO I. MARINO1, GUSTAVO R. SPINELLI1, RUTH FERREIRA-KEPPLER2 and MARÍA M. RONDEROS1,3 1División Entomología, Museo de La Plata, CCT-CEPAVE-ILPLA, Paseo del Bosque s/n, 1900 La Plata, Argentina 2Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araújo, 2936, Petrópolis, 69067-375 Manaus, AM, Brazil 3Centro de Estudios Parasitológicos y de Vectores/CEPAVE, Facultad de Ciencias Naturales y Museo/UNLP, Consejo Nacional de Investigaciones Científicas y Técnicas/CONICET, Boulevard 120 s/n e/ Avda.
    [Show full text]
  • Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 37–46Checklist (2014) of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae... 37 doi: 10.3897/zookeys.441.7532 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) of Finland Jukka Salmela1, Lauri Paasivirta2, Gunnar M. Kvifte3 1 Metsähallitus, Natural Heritage Services, P.O. Box 8016, FI-96101 Rovaniemi, Finland 2 Ruuhikosken- katu 17 B 5, 24240 Salo, Finland 3 Department of Limnology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel-Oberzwehren, Germany Corresponding author: Jukka Salmela ([email protected]) Academic editor: J. Kahanpää | Received 17 March 2014 | Accepted 22 May 2014 | Published 19 September 2014 http://zoobank.org/87CA3FF8-F041-48E7-8981-40A10BACC998 Citation: Salmela J, Paasivirta L, Kvifte GM (2014) Checklist of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 37–46. doi: 10.3897/zookeys.441.7532 Abstract A checklist of the families Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) recorded from Finland is given. Four species, Dixella dyari Garret, 1924 (Dixidae), Threticus tridactilis (Kincaid, 1899), Panimerus albifacies (Tonnoir, 1919) and P. przhiboroi Wagner, 2005 (Psychodidae) are reported for the first time from Finland. Keywords Finland, Diptera, species list, biodiversity, faunistics Introduction Psychodidae or moth flies are an intermediately diverse family of nematocerous flies, comprising over 3000 species world-wide (Pape et al. 2011). Its taxonomy is still very unstable, and multiple conflicting classifications exist (Duckhouse 1987, Vaillant 1990, Ježek and van Harten 2005).
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Volume 2, Chapter 12-19: Terrestrial Insects: Holometabola-Diptera
    Glime, J. M. 2017. Terrestrial Insects: Holometabola – Diptera Nematocera 2. In: Glime, J. M. Bryophyte Ecology. Volume 2. 12-19-1 Interactions. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. eBook last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 12-19 TERRESTRIAL INSECTS: HOLOMETABOLA – DIPTERA NEMATOCERA 2 TABLE OF CONTENTS Cecidomyiidae – Gall Midges ........................................................................................................................ 12-19-2 Mycetophilidae – Fungus Gnats ..................................................................................................................... 12-19-3 Sciaridae – Dark-winged Fungus Gnats ......................................................................................................... 12-19-4 Ceratopogonidae – Biting Midges .................................................................................................................. 12-19-6 Chironomidae – Midges ................................................................................................................................. 12-19-9 Belgica .................................................................................................................................................. 12-19-14 Culicidae – Mosquitoes ................................................................................................................................ 12-19-15 Simuliidae – Blackflies
    [Show full text]
  • Diptera: Nematocera) of the Piedmont of the Yungas Forests of Tucuma´N: Ecology and Distribution
    Ceratopogonidae (Diptera: Nematocera) of the piedmont of the Yungas forests of Tucuma´n: ecology and distribution Jose´ Manuel Direni Mancini1,2, Cecilia Adriana Veggiani-Aybar1, Ana Denise Fuenzalida1,3, Mercedes Sara Lizarralde de Grosso1 and Marı´a Gabriela Quintana1,2,3 1 Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuma´n, Instituto Superior de Entomologı´a “Dr. Abraham Willink”, San Miguel de Tucuma´n, Tucuma´n, Argentina 2 Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, San Miguel de Tucuma´n, Tucuma´n, Argentina 3 Instituto Nacional de Medicina Tropical, Puerto Iguazu´ , Misiones, Argentina ABSTRACT Within the Ceratopogonidae family, many genera transmit numerous diseases to humans and animals, while others are important pollinators of tropical crops. In the Yungas ecoregion of Argentina, previous systematic and ecological research on Ceratopogonidae focused on Culicoides, since they are the main transmitters of mansonelliasis in northwestern Argentina; however, few studies included the genera Forcipomyia, Dasyhelea, Atrichopogon, Alluaudomyia, Echinohelea, and Bezzia. Therefore, the objective of this study was to determine the presence and abundance of Ceratopogonidae in this region, their association with meteorological variables, and their variation in areas disturbed by human activity. Monthly collection of specimens was performed from July 2008 to July 2009 using CDC miniature light traps deployed for two consecutive days. A total of 360 specimens were collected, being the most abundant Dasyhelea genus (48.06%) followed by Forcipomyia (26.94%) and Atrichopogon (13.61%). Bivariate analyses showed significant differences in the abundance of the genera at different sampling sites and climatic Submitted 15 July 2016 Accepted 4 October 2016 conditions, with the summer season and El Corralito site showing the greatest Published 17 November 2016 abundance of specimens.
    [Show full text]
  • Biomonitoring of Ceratopogonidae (Diptera: Nematocera) Using Car Nets
    © Entomologica Fennica. 17 June 2005 Biomonitoring of Ceratopogonidae (Diptera: Nematocera) using car nets Andrea Téthova, Jan Knoz, Miroslav Bartak and Stépan Kubik J M. & 2005: of Cerato- Tothova, A., Knoz, ., Bartak, Kubik, S. Biomonitoring pogonidae (Diptera: Nematocera) using car nets. — Entomol. Fennica 16: 124— 128. Car nets were used to collect two samples on a forest road in Podyji National park, the Braitava forest, Czech Republic. Sampling was done in 2002 between May 31 and June 1, and between July 30 and 31. These consisted of 10 rounds (each 10 km in length) from morning to dusk. Over 3,000 specimens (52 species) of Ceratopogonidae were captured. The results suggest that the car-net method may be efficient in ceratopogonid biomonitoring and e. g. determining their daily flight activity and swarming sites. A. Tothova, Masaryk University, Faculty ofScience, Department ofZoology and Ecology, Kotlafska 2, 611 3 7 Brno, Czech Republic; E—mail.‘ tothova@sci. muni.cz J. Knoz, Masaryk University, Faculty ofScience, Department of Comparative Physiology ofAnimals and General Zoology, Kotlafska 2, 611 3 7 Brno, Czech Republic M. Bartak & S. Kubik, Czech University ofAgriculture, Faculty ofAgronomy, Department ofZoology andFishery, I 65 21 Praha 6 —Suchdol, Czech Republic; E—mail.‘ [email protected], [email protected]. cz Received 24 May 2004, accepted 19 October 2004 1. Introduction tids. The method has since then faced some fur- ther improvements. Some researchers have sug- The car-net method, viz. catching flying insects gested that car nets mounted low (above the using a large net attached to the roofof a car, was ground) and into the front ofvehicles can be more probably first described by Lohse (Freude et al.
    [Show full text]
  • Fly Times 59
    FLY TIMES ISSUE 59, October, 2017 Stephen D. Gaimari, editor Plant Pest Diagnostics Branch California Department of Food & Agriculture 3294 Meadowview Road Sacramento, California 95832, USA Tel: (916) 262-1131 FAX: (916) 262-1190 Email: [email protected] Welcome to the latest issue of Fly Times! As usual, I thank everyone for sending in such interesting articles. I hope you all enjoy reading it as much as I enjoyed putting it together. Please let me encourage all of you to consider contributing articles that may be of interest to the Diptera community for the next issue. Fly Times offers a great forum to report on your research activities and to make requests for taxa being studied, as well as to report interesting observations about flies, to discuss new and improved methods, to advertise opportunities for dipterists, to report on or announce meetings relevant to the community, etc., with all the associated digital images you wish to provide. This is also a great placeto report on your interesting (and hopefully fruitful) collecting activities! Really anything fly-related is considered. And of course, thanks very much to Chris Borkent for again assembling the list of Diptera citations since the last Fly Times! The electronic version of the Fly Times continues to be hosted on the North American Dipterists Society website at http://www.nadsdiptera.org/News/FlyTimes/Flyhome.htm. For this issue, I want to again thank all the contributors for sending me such great articles! Feel free to share your opinions or provide ideas on how to improve the newsletter.
    [Show full text]
  • Diptera of Tropical Savannas - Júlio Mendes
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. X - Diptera of Tropical Savannas - Júlio Mendes DIPTERA OF TROPICAL SAVANNAS Júlio Mendes Institute of Biomedical Sciences, Uberlândia Federal University, Brazil Keywords: disease vectors, house fly, mosquitoes, myiasis, pollinators, sand flies. Contents 1. Introduction 2. General Characteristics 3. Classification 4. Suborder Nematocera 4.1. Psychodidae 4.2. Culicidae 4.3. Simullidae 4.4. Ceratopogonidae 5. Suborder Brachycera 5.1. Tabanidae 5.2. Phoridae 5.3. Syrphidae 5.4. Tephritidae 5.5. Drosophilidae 5.6. Chloropidae 5.7. Muscidae 5.8. Glossinidae 5.9. Calliphoridae 5.10. Oestridae 5.11. Sarcophagidae 5.12. Tachinidae 6. Impact of human activities upon dipterans communities in tropical savannas. Glossary Bibliography Biographical Sketch UNESCO – EOLSS Summary Dipterous are a very much diversified group of insects that occurs in almost all tropical habitats and alsoSAMPLE other terrestrial biomes. Some CHAPTERS diptera are important from the economic and public health point of view. Mosquitoes and sandflies are, respectively, vectors of malaria and leishmaniasis in the major part of tropical countries. Housefly and blowflies are mechanical vectors of many pathogens, and the larvae of the latter may parasitize humans and other animals, as well. Nevertheless, the majority of diptera are inoffensive to humans and several of them are benefic, having important roles in nature such as pollinators of plants, recyclers of decaying organic matter and natural enemies of other insects, including pests. 1. Introduction ©Encyclopedia of Life Support Systems (EOLSS) TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. X - Diptera of Tropical Savannas - Júlio Mendes Diptera are a very diverse and abundant group of insects inhabiting almost all habitats throughout the world.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Adaptations of Insects at Cloudbridge Nature Reserve, Costa Rica
    Adaptations of Insects at Cloudbridge Nature Reserve, Costa Rica Aiden Vey Cloudbridge Nature Reserve July 2007 Introduction Costa Rica’s location between North and South America, its neotropical climate and variety of elevations and habitats makes it one of the biodiversity hotspots of the world. Despite being only 51,100km² in size, it contains about 5% (505,000) of the world’s species. Of these, 35,000 insect species have been recorded and estimates stand at around 300,000. The more well known insects include the 8,000 species of moth and 1,250 butterflies - almost 10% of the world total, and 500 more than in the USA! Other abundant insects of Costa Rica include ants, beetles, wasps and bees, grasshoppers and katydids. The following article presents a select few aspects of the insect life found at Cloudbridge, a nature reserve in the Talamanca mountain range. Relationships Insects play many important roles in Costa Rica, including pollination of the bountiful flora and as a food supply for many other organisms. The adult Owl butterfly (Caligo atreus, shown at right) feeds on many Heliconiaceae and Musaceae (banana) species, in particular on the rotting fruit. They are pollinators of these plants, but also use the leaves to lay eggs on. When hatched, the larvae remain on the plant and eat the leaves. Being highly gregarious, they can cause significant damage, and are considered as pests (especially in banana plantations). However, there are a number of insects that parasitise the Caligo larvae, including the common Winthemia fly (left) and Trichogramma and Ichneumon wasps, which act as biological control agents.
    [Show full text]
  • Aquatic Insects: Holometabola – Diptera, Suborder Nematocera
    Glime, J. M. 2017. Aquatic Insects: Holometabola – Diptera, Suborder Nematocera. Chapt. 11-13a. In: Glime, J. M. 11-13a-1 Bryophyte Ecology. Volume 2. Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 11-13a AQUATIC INSECTS: HOLOMETABOLA – DIPTERA, SUBORDER NEMATOCERA TABLE OF CONTENTS DIPTERA – Flies .......................................................................................................................................... 11-13a-2 Suborder Nematocera ............................................................................................................................. 11-13a-5 Nymphomyiidae .............................................................................................................................. 11-13a-6 Cylindrotomidae – Long-bodied Craneflies .................................................................................... 11-13a-6 Limoniidae – Limoniid Craneflies .................................................................................................. 11-13a-8 Pediciidae – Hairy-eyed Craneflies ............................................................................................... 11-13a-11 Tipulidae – Craneflies ................................................................................................................... 11-13a-11 Anisopodidae – Wood Gnats, Window Gnats .............................................................................
    [Show full text]