TOMLAB –Unique Features for Optimization in MATLAB
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Julia, My New Friend for Computing and Optimization? Pierre Haessig, Lilian Besson
Julia, my new friend for computing and optimization? Pierre Haessig, Lilian Besson To cite this version: Pierre Haessig, Lilian Besson. Julia, my new friend for computing and optimization?. Master. France. 2018. cel-01830248 HAL Id: cel-01830248 https://hal.archives-ouvertes.fr/cel-01830248 Submitted on 4 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 1 « Julia, my New frieNd for computiNg aNd optimizatioN? » Intro to the Julia programming language, for MATLAB users Date: 14th of June 2018 Who: Lilian Besson & Pierre Haessig (SCEE & AUT team @ IETR / CentraleSupélec campus Rennes) « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 2 AgeNda for today [30 miN] 1. What is Julia? [5 miN] 2. ComparisoN with MATLAB [5 miN] 3. Two examples of problems solved Julia [5 miN] 4. LoNger ex. oN optimizatioN with JuMP [13miN] 5. LiNks for more iNformatioN ? [2 miN] « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 3 1. What is Julia ? Open-source and free programming language (MIT license) Developed since 2012 (creators: MIT researchers) Growing popularity worldwide, in research, data science, finance etc… Multi-platform: Windows, Mac OS X, GNU/Linux.. -
Numericaloptimization
Numerical Optimization Alberto Bemporad http://cse.lab.imtlucca.it/~bemporad/teaching/numopt Academic year 2020-2021 Course objectives Solve complex decision problems by using numerical optimization Application domains: • Finance, management science, economics (portfolio optimization, business analytics, investment plans, resource allocation, logistics, ...) • Engineering (engineering design, process optimization, embedded control, ...) • Artificial intelligence (machine learning, data science, autonomous driving, ...) • Myriads of other applications (transportation, smart grids, water networks, sports scheduling, health-care, oil & gas, space, ...) ©2021 A. Bemporad - Numerical Optimization 2/102 Course objectives What this course is about: • How to formulate a decision problem as a numerical optimization problem? (modeling) • Which numerical algorithm is most appropriate to solve the problem? (algorithms) • What’s the theory behind the algorithm? (theory) ©2021 A. Bemporad - Numerical Optimization 3/102 Course contents • Optimization modeling – Linear models – Convex models • Optimization theory – Optimality conditions, sensitivity analysis – Duality • Optimization algorithms – Basics of numerical linear algebra – Convex programming – Nonlinear programming ©2021 A. Bemporad - Numerical Optimization 4/102 References i ©2021 A. Bemporad - Numerical Optimization 5/102 Other references • Stephen Boyd’s “Convex Optimization” courses at Stanford: http://ee364a.stanford.edu http://ee364b.stanford.edu • Lieven Vandenberghe’s courses at UCLA: http://www.seas.ucla.edu/~vandenbe/ • For more tutorials/books see http://plato.asu.edu/sub/tutorials.html ©2021 A. Bemporad - Numerical Optimization 6/102 Optimization modeling What is optimization? • Optimization = assign values to a set of decision variables so to optimize a certain objective function • Example: Which is the best velocity to minimize fuel consumption ? fuel [ℓ/km] velocity [km/h] 0 30 60 90 120 160 ©2021 A. -
Derivative-Free Optimization: a Review of Algorithms and Comparison of Software Implementations
J Glob Optim (2013) 56:1247–1293 DOI 10.1007/s10898-012-9951-y Derivative-free optimization: a review of algorithms and comparison of software implementations Luis Miguel Rios · Nikolaos V. Sahinidis Received: 20 December 2011 / Accepted: 23 June 2012 / Published online: 12 July 2012 © Springer Science+Business Media, LLC. 2012 Abstract This paper addresses the solution of bound-constrained optimization problems using algorithms that require only the availability of objective function values but no deriv- ative information. We refer to these algorithms as derivative-free algorithms. Fueled by a growing number of applications in science and engineering, the development of derivative- free optimization algorithms has long been studied, and it has found renewed interest in recent time. Along with many derivative-free algorithms, many software implementations have also appeared. The paper presents a review of derivative-free algorithms, followed by a systematic comparison of 22 related implementations using a test set of 502 problems. The test bed includes convex and nonconvex problems, smooth as well as nonsmooth prob- lems. The algorithms were tested under the same conditions and ranked under several crite- ria, including their ability to find near-global solutions for nonconvex problems, improve a given starting point, and refine a near-optimal solution. A total of 112,448 problem instances were solved. We find that the ability of all these solvers to obtain good solutions dimin- ishes with increasing problem size. For the problems used in this study, TOMLAB/MULTI- MIN, TOMLAB/GLCCLUSTER, MCS and TOMLAB/LGO are better, on average, than other derivative-free solvers in terms of solution quality within 2,500 function evaluations. -
Theory and Experimentation
Acta Astronautica 122 (2016) 114–136 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Suboptimal LQR-based spacecraft full motion control: Theory and experimentation Leone Guarnaccia b,1, Riccardo Bevilacqua a,n, Stefano P. Pastorelli b,2 a Department of Mechanical and Aerospace Engineering, University of Florida 308 MAE-A building, P.O. box 116250, Gainesville, FL 32611-6250, United States b Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy article info abstract Article history: This work introduces a real time suboptimal control algorithm for six-degree-of-freedom Received 19 January 2015 spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) Received in revised form approach and real-time linearization of the equations of motion. The control strategy is 18 November 2015 sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at Accepted 18 January 2016 each sample time. The cost function of the proposed controller has been compared with Available online 2 February 2016 the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implement- ability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six- Keywords: Spacecraft degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, Optimal control and control algorithms for nano-satellites in a one-g laboratory environment. The tests Linear quadratic regulator show the real-time feasibility of the proposed approach. Six-degree-of-freedom & 2016 The Authors. -
Research and Development of an Open Source System for Algebraic Modeling Languages
Vilnius University Institute of Data Science and Digital Technologies LITHUANIA INFORMATICS (N009) RESEARCH AND DEVELOPMENT OF AN OPEN SOURCE SYSTEM FOR ALGEBRAIC MODELING LANGUAGES Vaidas Juseviˇcius October 2020 Technical Report DMSTI-DS-N009-20-05 VU Institute of Data Science and Digital Technologies, Akademijos str. 4, Vilnius LT-08412, Lithuania www.mii.lt Abstract In this work, we perform an extensive theoretical and experimental analysis of the char- acteristics of five of the most prominent algebraic modeling languages (AMPL, AIMMS, GAMS, JuMP, Pyomo), and modeling systems supporting them. In our theoretical comparison, we evaluate how the features of the reviewed languages match with the requirements for modern AMLs, while in the experimental analysis we use a purpose-built test model li- brary to perform extensive benchmarks of the various AMLs. We then determine the best performing AMLs by comparing the time needed to create model instances for spe- cific type of optimization problems and analyze the impact that the presolve procedures performed by various AMLs have on the actual problem-solving times. Lastly, we pro- vide insights on which AMLs performed best and features that we deem important in the current landscape of mathematical optimization. Keywords: Algebraic modeling languages, Optimization, AMPL, GAMS, JuMP, Py- omo DMSTI-DS-N009-20-05 2 Contents 1 Introduction ................................................................................................. 4 2 Algebraic Modeling Languages ......................................................................... -
Robert Fourer, David M. Gay INFORMS Annual Meeting
AMPL New Solver Support in the AMPL Modeling Language Robert Fourer, David M. Gay AMPL Optimization LLC, www.ampl.com Department of Industrial Engineering & Management Sciences, Northwestern University Sandia National Laboratories INFORMS Annual Meeting Pittsburgh, Pennsylvania, November 5-8, 2006 Robert Fourer, New Solver Support in the AMPL Modeling Language INFORMS Annual Meeting, November 5-8, 2006 1 AMPL What it is . A modeling language for optimization A system to support optimization modeling What I’ll cover . Brief examples, briefer history Recent developments . ¾ 64-bit versions ¾ floating license manager ¾ AMPL Studio graphical interface & Windows COM objects Solver support ¾ new KNITRO 5.1 features ¾ new CPLEX 10.1 features Robert Fourer, New Solver Support in the AMPL Modeling Language INFORMS Annual Meeting, November 5-8, 2006 2 Ex 1: Airline Fleet Assignment set FLEETS; set CITIES; set TIMES circular; set FLEET_LEGS within {f in FLEETS, c1 in CITIES, t1 in TIMES, c2 in CITIES, t2 in TIMES: c1 <> c2 and t1 <> t2}; # (f,c1,t1,c2,t2) represents the availability of fleet f # to cover the leg that leaves c1 at t1 and # whose arrival time plus turnaround time at c2 is t2 param leg_cost {FLEET_LEGS} >= 0; param fleet_size {FLEETS} >= 0; Robert Fourer, New Solver Support in the AMPL Modeling Language INFORMS Annual Meeting, November 5-8, 2006 3 Ex 1: Derived Sets set LEGS := setof {(f,c1,t1,c2,t2) in FLEET_LEGS} (c1,t1,c2,t2); # the set of all legs that can be covered by some fleet set SERV_CITIES {f in FLEETS} := union {(f,c1,c2,t1,t2) -
Julia: a Modern Language for Modern ML
Julia: A modern language for modern ML Dr. Viral Shah and Dr. Simon Byrne www.juliacomputing.com What we do: Modernize Technical Computing Today’s technical computing landscape: • Develop new learning algorithms • Run them in parallel on large datasets • Leverage accelerators like GPUs, Xeon Phis • Embed into intelligent products “Business as usual” will simply not do! General Micro-benchmarks: Julia performs almost as fast as C • 10X faster than Python • 100X faster than R & MATLAB Performance benchmark relative to C. A value of 1 means as fast as C. Lower values are better. A real application: Gillespie simulations in systems biology 745x faster than R • Gillespie simulations are used in the field of drug discovery. • Also used for simulations of epidemiological models to study disease propagation • Julia package (Gillespie.jl) is the state of the art in Gillespie simulations • https://github.com/openjournals/joss- papers/blob/master/joss.00042/10.21105.joss.00042.pdf Implementation Time per simulation (ms) R (GillespieSSA) 894.25 R (handcoded) 1087.94 Rcpp (handcoded) 1.31 Julia (Gillespie.jl) 3.99 Julia (Gillespie.jl, passing object) 1.78 Julia (handcoded) 1.2 Those who convert ideas to products fastest will win Computer Quants develop Scientists prepare algorithms The last 25 years for production (Python, R, SAS, DEPLOY (C++, C#, Java) Matlab) Quants and Computer Compress the Scientists DEPLOY innovation cycle collaborate on one platform - JULIA with Julia Julia offers competitive advantages to its users Julia is poised to become one of the Thank you for Julia. Yo u ' v e k i n d l ed leading tools deployed by developers serious excitement. -
Open Source Tools for Optimization in Python
Open Source Tools for Optimization in Python Ted Ralphs Sage Days Workshop IMA, Minneapolis, MN, 21 August 2017 T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Caveats and Motivation Caveats I have no idea about the background of the audience. The talk may be either too basic or too advanced. Why am I here? I’m not a Sage developer or user (yet!). I’m hoping this will be a chance to get more involved in Sage development. Please ask lots of questions so as to guide me in what to dive into! T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Mathematical Optimization Mathematical optimization provides a formal language for describing and analyzing optimization problems. Elements of the model: Decision variables Constraints Objective Function Parameters and Data The general form of a mathematical optimization problem is: min or max f (x) (1) 8 9 < ≤ = s.t. gi(x) = bi (2) : ≥ ; x 2 X (3) where X ⊆ Rn might be a discrete set. T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Types of Mathematical Optimization Problems The type of a mathematical optimization problem is determined primarily by The form of the objective and the constraints. -
Benchmarks for Current Linear and Mixed Integer Optimization Solvers
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume 63 207 Number 6, 2015 http://dx.doi.org/10.11118/actaun201563061923 BENCHMARKS FOR CURRENT LINEAR AND MIXED INTEGER OPTIMIZATION SOLVERS Josef Jablonský1 1 Department of Econometrics, Faculty of Informatics and Statistics, University of Economics, Prague, nám. W. Churchilla 4, 130 67 Praha 3, Czech Republic Abstract JABLONSKÝ JOSEF. 2015. Benchmarks for Current Linear and Mixed Integer Optimization Solvers. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63(6): 1923–1928. Linear programming (LP) and mixed integer linear programming (MILP) problems belong among very important class of problems that fi nd their applications in various managerial consequences. The aim of the paper is to discuss computational performance of current optimization packages for solving large scale LP and MILP optimization problems. Current market with LP and MILP solvers is quite extensive. Probably among the most powerful solvers GUROBI 6.0, IBM ILOG CPLEX 12.6.1, and XPRESS Optimizer 27.01 belong. Their attractiveness for academic research is given, except their computational performance, by their free availability for academic purposes. The solvers are tested on the set of selected problems from MIPLIB 2010 library that contains 361 test instances of diff erent hardness (easy, hard, and not solved). Keywords: benchmark, linear programming, mixed integer linear programming, optimization, solver INTRODUCTION with integer variables need not be solved even Solving linear and mixed integer linear in case of a very small size of the given problem. optimization problems (LP and MILP) that Real-world optimization problems have usually belong to one of the most o en modelling tools, many thousands of variables and/or constraints. -
MODELING LANGUAGES in MATHEMATICAL OPTIMIZATION Applied Optimization Volume 88
MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION Applied Optimization Volume 88 Series Editors: Panos M. Pardalos University o/Florida, U.S.A. Donald W. Hearn University o/Florida, U.S.A. MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION Edited by JOSEF KALLRATH BASF AG, GVC/S (Scientific Computing), 0-67056 Ludwigshafen, Germany Dept. of Astronomy, Univ. of Florida, Gainesville, FL 32611 Kluwer Academic Publishers Boston/DordrechtiLondon Distributors for North, Central and South America: Kluwer Academic Publishers 101 Philip Drive Assinippi Park Norwell, Massachusetts 02061 USA Telephone (781) 871-6600 Fax (781) 871-6528 E-Mail <[email protected]> Distributors for all other countries: Kluwer Academic Publishers Group Post Office Box 322 3300 AlI Dordrecht, THE NETHERLANDS Telephone 31 78 6576 000 Fax 31 786576474 E-Mail <[email protected]> .t Electronic Services <http://www.wkap.nl> Library of Congress Cataloging-in-Publication Kallrath, Josef Modeling Languages in Mathematical Optimization ISBN-13: 978-1-4613-7945-4 e-ISBN-13:978-1-4613 -0215 - 5 DOl: 10.1007/978-1-4613-0215-5 Copyright © 2004 by Kluwer Academic Publishers Softcover reprint of the hardcover 1st edition 2004 All rights reserved. No part ofthis pUblication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photo-copying, microfilming, recording, or otherwise, without the prior written permission ofthe publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Permissions for books published in the USA: P"§.;r.m.i.§J?i..QD.§.@:w.k~p" ..,.g.Qm Permissions for books published in Europe: [email protected] Printed on acid-free paper. -
Insight MFR By
Manufacturers, Publishers and Suppliers by Product Category 11/6/2017 10/100 Hubs & Switches ASCEND COMMUNICATIONS CIS SECURE COMPUTING INC DIGIUM GEAR HEAD 1 TRIPPLITE ASUS Cisco Press D‐LINK SYSTEMS GEFEN 1VISION SOFTWARE ATEN TECHNOLOGY CISCO SYSTEMS DUALCOMM TECHNOLOGY, INC. GEIST 3COM ATLAS SOUND CLEAR CUBE DYCONN GEOVISION INC. 4XEM CORP. ATLONA CLEARSOUNDS DYNEX PRODUCTS GIGAFAST 8E6 TECHNOLOGIES ATTO TECHNOLOGY CNET TECHNOLOGY EATON GIGAMON SYSTEMS LLC AAXEON TECHNOLOGIES LLC. AUDIOCODES, INC. CODE GREEN NETWORKS E‐CORPORATEGIFTS.COM, INC. GLOBAL MARKETING ACCELL AUDIOVOX CODI INC EDGECORE GOLDENRAM ACCELLION AVAYA COMMAND COMMUNICATIONS EDITSHARE LLC GREAT BAY SOFTWARE INC. ACER AMERICA AVENVIEW CORP COMMUNICATION DEVICES INC. EMC GRIFFIN TECHNOLOGY ACTI CORPORATION AVOCENT COMNET ENDACE USA H3C Technology ADAPTEC AVOCENT‐EMERSON COMPELLENT ENGENIUS HALL RESEARCH ADC KENTROX AVTECH CORPORATION COMPREHENSIVE CABLE ENTERASYS NETWORKS HAVIS SHIELD ADC TELECOMMUNICATIONS AXIOM MEMORY COMPU‐CALL, INC EPIPHAN SYSTEMS HAWKING TECHNOLOGY ADDERTECHNOLOGY AXIS COMMUNICATIONS COMPUTER LAB EQUINOX SYSTEMS HERITAGE TRAVELWARE ADD‐ON COMPUTER PERIPHERALS AZIO CORPORATION COMPUTERLINKS ETHERNET DIRECT HEWLETT PACKARD ENTERPRISE ADDON STORE B & B ELECTRONICS COMTROL ETHERWAN HIKVISION DIGITAL TECHNOLOGY CO. LT ADESSO BELDEN CONNECTGEAR EVANS CONSOLES HITACHI ADTRAN BELKIN COMPONENTS CONNECTPRO EVGA.COM HITACHI DATA SYSTEMS ADVANTECH AUTOMATION CORP. BIDUL & CO CONSTANT TECHNOLOGIES INC Exablaze HOO TOO INC AEROHIVE NETWORKS BLACK BOX COOL GEAR EXACQ TECHNOLOGIES INC HP AJA VIDEO SYSTEMS BLACKMAGIC DESIGN USA CP TECHNOLOGIES EXFO INC HP INC ALCATEL BLADE NETWORK TECHNOLOGIES CPS EXTREME NETWORKS HUAWEI ALCATEL LUCENT BLONDER TONGUE LABORATORIES CREATIVE LABS EXTRON HUAWEI SYMANTEC TECHNOLOGIES ALLIED TELESIS BLUE COAT SYSTEMS CRESTRON ELECTRONICS F5 NETWORKS IBM ALLOY COMPUTER PRODUCTS LLC BOSCH SECURITY CTC UNION TECHNOLOGIES CO FELLOWES ICOMTECH INC ALTINEX, INC. -
Optimization of the Algal Biomass to Biodiesel Supply Chain: Case Studies of the State of Oklahoma and the United States
processes Article Optimization of the Algal Biomass to Biodiesel Supply Chain: Case Studies of the State of Oklahoma and the United States Soumya Yadala 1, Justin D. Smith 1, David Young 2, Daniel W. Crunkleton 1 and Selen Cremaschi 2,* 1 Russell School of Chemical Engineering, The University of Tulsa, Tulsa, OK 74104, USA; [email protected] (S.Y.); [email protected] (J.D.S.); [email protected] (D.W.C.) 2 Department of Chemical Engineering, Auburn University, Auburn, AL 36830, USA; [email protected] * Correspondence: [email protected] Received: 29 February 2020; Accepted: 15 April 2020; Published: 18 April 2020 Abstract: The goal of this work is to design a supply chain network that distributes algae biomass from supply locations to meet biodiesel demand at specified demand locations, given a specified algae species, cultivation (i.e., supply) locations, demand locations, and demand requirements. The final supply chain topology includes the optimum sites to grow biomass, to extract algal oil from the biomass, and to convert the algae oil into biodiesel. The objective is to minimize the overall cost of the supply chain, which includes production, operation, and transportation costs over a planning horizon of ten years. Algae production was modeled both within the U.S. State of Oklahoma, as well as the entire contiguous United States. The biodiesel production cost was estimated at $7.07 per U.S. gallon ($1.87 per liter) for the State of Oklahoma case. For the contiguous United States case, a lower bound on costs of $13.68 per U.S.